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Lexical semantics



Meaning compositionality
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▪ Most commonly in natural language processing, we consider words to be 

atomic units of meaning

• Most of the meaning is associated with content words

▪ Compositional semantics: inducing the meaning of sentences and larger 

units of text (from the meaning of words)

▪ Lexical semantics: modeling/capturing the meaning of words

• But how do we encode the meaning of words?



Lexical semantics
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▪ Lexical semantics: modeling/capturing the meaning of words

• But how do we encode the meaning of words?

• Through relations with other words

▪ Lexico-semantic resources

• E.g., WordNet, BabelNet, ConceptNet

• Define semantic relations between words

› Synonymy

› Antonymy

› Hyponymy-hypernymy („is-a”, „type of” relation)

› Meronymy („part of” relation)

› ...



Lexico-semantic resources
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Image from: https://stackoverflow.com/questions/49355976/obtain-path-

between-concepts-in-wordnet

WordNet hierarchy



Lexical semantics
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▪ Lexical semantics: modeling/capturing the meaning of words

• But how do we encode the meaning of words?

• Through relations with other words

▪ Lexico-semantic resources

• Manually curated 

• Limited coverage

• Exist only for a handful of major languages

• Hard to find a general-purpose meaningful measure of semantic 

similarity on these trees / graphs



Lexical semantics
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▪ Lexical semantics: modeling/capturing the meaning of words

• But how do we encode the meaning of words?

• Through relations with other words

▪ Distributional semantics

• co-occurrences of words in large corpora

• Distributional hypothesis: „you’ll know a word by the company it 

keeps” (Harris, 1954)

• Assumption: the contexts in which the word appears, define its 

meaning



Distribution semantics: example
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What is „ong choi”?

Suppose you see these sentences:

• Ong choi is delicious sauteed with garlic.

• Ong choi is superb over rice

• Ong choi leaves with salty sauces

− And you've also seen these:

• ... spinach sauteed with garlic over rice

• Chard stems and leaves are delicious

• Collard greens and other salty leafy greens



Distribution semantics: example
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What is „ong choi”?



Word representations

▪ An embedding of a word is nothing but a numeric vector that aims to capture 

some properties (typically meaning) of the word

▪ Word can be represented with sparse or dense vectors

▪ Sparse vectors: one hot encoding

▪ Dense vectors: all rely on the distributional hypothesis

• Co-occurrence vectors

• Latent semantic vectors (obtained with Latent Semantic Analysis)

• Topical distribution vectors (obtained using Latent Dirichlet 

Allocation)

• Word embeddings (obtained using „neural” algorithms like 

SkipGram or CBOW) 



Word representations

Sparse representation

▪ Each word is represented by a one-hot vector, i.e., it is given a unique 

symbolic ID 

▪ The dimension of the symbolic representation for each word is equal to the 

size of the vocabulary V (number of words) 

▪ All but one dimension are equal to 

zero, and one is set to one 

vword = (..., 0, 1, 0,...) 



Word representations

Dense representations

▪ Each word is represented by a dense vector, a point in a vector space

▪ The dimension of the semantic representation d is usually much smaller than 

the size of the vocabulary (d << V)

▪ All dimensions contain real-valued numbers (possibly normalized between −1 

and 1) 

vword = (..., 0.3, −0.5, 0.1,...) 



Word representations

Shortcomings of sparse word representations

▪ There is no notion of similarity between words 

▪ All words are equidistant in this vector space

▪ V = (cat, dog, airplane) 

vcat = (0, 0, 1) 

vdog = (0, 1, 0) 

vairplane = (1, 0, 0) 

sim(cat, airplane) = sim(dog, cat) = sim(dog, airplane)

▪ The size of the vocabulary matrix D

▪ V · V , as we have a V-dimensional vector for each out of V words 

▪ Usually we have to remove some words from the vocabulary due to memory 

footprint



Word representations

▪ Distributional hypothesis: „you’ll know a word by the company it keeps” 

(Harris, 1954)

▪ Dense representations are derived from word co-occurrences in a large 

corpus of text

▪ Assumption: the contexts in which the word appears, define its meaning

▪ This allows to create a (still rather sparse) V x V dimension matrix of co-

occurrences between words

▪ Word vectors from the co-occurrence matrix can now be compared (similar 

words will appear in similar contexts, hence have similar vectors) 



Word representations

Exploiting co-occurrences for deriving dense word representations

1. Count-based / dimensionality reduction strategies

▪ Idea: don’t need all the dimensions representing a word, just the most 

important ones

▪ Dense vectors obtained through factorization of the co-occurrence matrix

• Latent semantic analysis (LSA), based on SVD decomposition



Word representations

Exploiting co-occurrences for deriving dense word representations

1. Prediction-based models

▪ Start with dense random vectors for all word in the vocabulary

▪ Go through the corpus and try to predict the center word from the context

(or the context from the center word)

▪ Update dense word vectors based on the prediction error

▪ Word2Vec models (Mikolov et al., 2013): Continuous Bag-of-Words 

(CBOW) and Skip-Gram (SG)



Count-based distributional methods

▪ Start by counting (co-)occurrences on a large corpus

▪ Occurrences of words in contexts

▪ Contexts can be: 

• A symmetric or asymmetric word window of some size

• A sentence

• A paragraph

• ...

c1 c2 c3 c4 c5 c6



Latent Semantic Analysis

▪ Latent Semantic Analysis (LSA) – a distributional lexical semantics model 

based on a factorization of a sparse (co)ocurrence matrix

▪ Namely Singular Value Decomposition (SVD)

▪ We decompose the sparse co-ccurrence into factor matrices 

▪ Which we use to obtain dense vector representations of words

▪ Obtained dense vectors better capture meaning of words that raw sparse 

distributional vectors

▪ Comparing dense vectors of words better captures their semantic similarity

than comparing their sparse distributional vectors



Latent Semantic Analysis

▪ Given a matrix A (with non-negative elements!), the Singular Value 

Decomposition finds orthogonal matrices U and V and a rectangular diagonal 

matrix Σ such that:

▪ Matrix U is of dimensions M x M 

▪ M is the number of words, i.e., the vocabulary size

▪ Matrix V is of dimensions N x N

▪ N is the number of contexts

▪ Matrix Σ is of dimensions M x N

▪ U and V are orthogonal: UTU = I, VTV = I

▪ Values of the diagonal matrix Σ are singular values of A



IR & WS, Lecture 8: Latent and Semantic Retrieval

LSI – SVD Example

▪ The first column („topic”) seems to have weights of large magnitude for politics

terms, and the second column for sports terms

te
rm
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topics



Latent Semantic Analysis

▪ Goal: reduce the dimensionality of word and context vectors and obtain dense 

semantic vectors of words (and contexts)

▪ We reduce the size of the matrix Σ with singular values

• We keep only the top K largest singular values: σ1, ..., σk

• We denote the reduced matrix with Σk

• Dense vectors for terms and contexts will be then be of dimension K

▪ By reducing the rank of the matrix with singular values, we are effectively 

retaining only the K most prominent „topics”

• Retained topics carry the most of the „meaning”

• The topics/dimensions we discard are assumed to be noise



Latent Semantic Analysis

▪ This leaves us with the best possible approximation of rank AK of the original 

term-document occurrence matrix A

▪ AK has the same dimensions as original A (M x N)

▪ UK is of size M x K, and ΣKVT
K of size K x N

UK

ΣKVT
K

c1 c2 c3             c4 c5 c6
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Dense vectors of contexts



Latent Semantic Analysis

▪ In practice, we don’t compute AK

▪ AK is not sparse – it’s explicit computation is computationally expensive!

▪ We don’t need to have AK to compare pairs of words

▪ Term comparison is performed by comparing rows of UK

• sim(„president”, „minister”) = cos([-0.43, 0.13], [-0.53, 0.25])

• sim(„president”, „player”) = cos([-0.43, 0.13], [-0.22, -0.40])

▪ Context comparison is performed by comparing columns of ΣKVT
K

• sim(c1, c2) = cos([-4.66, 2.01], [-4.37, 2.12])

• sim(c4, c6) = cos([-2.37, -4.23], [-1.65, -3.35])



Prediction-based model: Skip-Gram

▪ Start by assigning two different dense random vectors to each word

▪ Center vector and context vector (each of size d << V)

▪ For a center word, predict the words will appeat in its context

• E.g., given „fox” predict „quick”; „brown”; „jumps”; „over”

▪ Algorithm

• Single-layer neural network (not really deep :) 

• The input X is the one-hot encoding representation of the center word

• Two parameter matrices: W and W’

› W (V x d) transforms the one-hot encoding vector of the center word into a dense 

vector

› W’ (d x V) transforms the dense vector into the sparse vector of the context



Skip-Gram (SG) model

W W’



Skip-Gram (SG) model

▪ Let vw be the sparse vector of the center word w

▪ The dense center vector (dimension d) is then computed as:

cw = vw W

▪ The predicted vector of the context is computed as: 

cp = cw 
T W’

▪ Let ct be the sparse, one hot-encoding vector of some context word

▪ We compute the prediction error by comparing the true vector of the context 

word ct and the predicted context vector cp



Skip-Gram (SG) model – softmax

▪ The predicted context vector cp is not a probability distribution over 

vocabulary terms, and it should be

▪ Thus, we apply the softmax function, to transform cp into a probability 

distribution

softmax(cp
i) = 

exp(𝑐𝑝𝑖)

σ𝑗 exp(𝑐𝑝𝑗)

▪ Now, both the predicted vector cp and context one-hot encoding vector ct are 

probability distributions

▪ We compute how dissimilar they are and propagate the error to update the 

weights in W and W’



Skip-Gram

▪ One matrix (W of dimensions V x d) to encode the center word into low-

dimensional dense vector  

▪ One matrix (W’ of dimensions d x V) to „reconstruct” the context word

▪ Each vocabulary word has a corresponding row in W and a corresponding 

column in W’

▪ When training finishes (i.e., we learn good values in W and W’), the word 

embedding of i-th vocabulary word is the concatenation of:

1. The i-th row of the matrix W

2. The i-th column of the matrix W’



Word embeddings – results



Word embeddings – results



Evaluating Word Representations

▪ Q: How do we measure if the obtain dense vectors representing words are 

good?

▪ We don’t really know how the vectors should look like (no gold vectors!)

▪ A: We evaluate whether word similarities perceived by humans correspond to 

similarities computed based on the obtained vectors

▪ We need manually created evaluation resources: 

• Consisting of triples (w1, w2, score)

• Score is the human-assigned degree of semantic 

similarity/relatedness between the words w1 and w2



Some Evaluation Resources

▪ WordSim-353

• 353 word pairs annotated with scores of general semantic 

relatedness

• http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

▪ SimLex-999

• 999 word pairs annotated for semantic similarity 

• Car is similar to vehicle, but not to driver

• https://fh295.github.io/simlex.html

▪ SimVerb-3500

• 3500 verb pairs judged for semantic similarity

• Verbs are typically more difficult to model in a vector space

• http://people.ds.cam.ac.uk/dsg40/simverb.html

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
https://fh295.github.io/simlex.html
http://people.ds.cam.ac.uk/dsg40/simverb.html


Evaluation Measures

▪ Two sets of scores:

1. Manually assigned scores by the annotatord

2. Automatically obtained scores based on dense word vectord

• Most commonly, cosine similarity between the vectors of the two 

words

▪ We measure a correlation measure between the two sets of scores: 

1. Pearson correlation – correlation between the actual scores

2. Spearman correlation – correlation between rankings

• We rank the word-pairs according to both gold-standard scores and 

predicted scores

• We compute Pearson correlation between sets of ranks
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