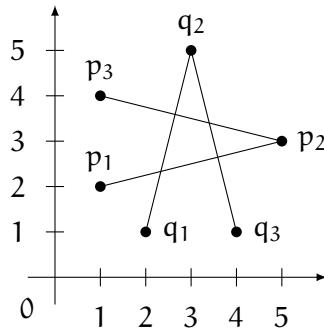


Homework Assignment #2

Algorithms for Geographic Information Systems (SS 2023)

Exercise 1 – Hausdorff and Fréchet

Let $P = (p_1, p_2, p_3)$ und $Q = (q_1, q_2, q_3)$ be two polylines with $p_1 = (1, 2)$, $p_2 = (5, 3)$, $p_3 = (1, 4)$, $q_1 = (2, 1)$, $q_2 = (3, 5)$ and $q_3 = (4, 1)$ as shown in the drawing.



- a) Compute the Hausdorff distance $d_{\text{hd}}(P, Q)$ of P and Q and visualize the distance. [2 points]
- b) Draw the free-space diagram of P and Q with respect to $\varepsilon = 2$. You don't need to draw the ellipses, but do compute their intersections with the cells and mark these intersections in the diagram.

With the help of the free-space diagram, decide whether $d_{\text{fréchet}}(P, Q) \leq 2$. [5 points]

- c) Prove or disprove the following statement:
 For every pair (P, Q) of polylines, it holds that $d_{\text{fréchet}}(P, Q) \geq d_{\text{hd}}(P, Q)$. [2 points]
- d) Let Q' be the same polyline as Q , but traversed in the opposite direction, that is, $Q' = (q_3, q_2, q_1)$. Which of the following equations are correct? Justify your answer. [2 points]

1. $d_{\text{hd}}(P, Q) = d_{\text{hd}}(P, Q')$
2. $d_{\text{hd}}(Q, Q') = 0$
3. $d_{\text{fréchet}}(P, Q) = d_{\text{fréchet}}(P, Q')$
4. $d_{\text{fréchet}}(Q, Q') = 0$

Exercise 2 – Symmetric Hausdorff Distance

Let P and Q be two polylines, and let $P' = \{p_1, \dots, p_n\}$ and $Q' = \{q_1, \dots, q_n\}$ be the vertex sets of P and Q , respectively. Prove or disprove the following statement:

$$d_{\text{hd}}(P, Q) = \max\{d(p_i, Q') \mid i \in \{1, \dots, n\}\}.$$

In other words, prove or disprove that for computing the symmetric Hausdorff distance of two polylines it suffices to consider their vertices. [4 points]

Exercise 3 – Free-Space Ellipses

Consider the free-space diagrams for checking whether the Fréchet distance between two polylines is at most ε , as seen in the lecture. If we are looking at just two line segments (that is, $n = m = 1$), the free space is defined as

$$F_\varepsilon \stackrel{\text{def}}{=} \{ (s, t) \in [0, 1]^2 \mid d(p_1(s), p_2(t)) \leq \varepsilon \}.$$

Note that this definition is over s and t , that is, in *parameter space*. Show that F_ε is an ellipse, intersected with $[0, 1]^2$. **[4 points]**