
Clustering
Faster DBSCAN and HDBSCAN in Low-Dimensional Euclidean Spaces

Slides by Thomas van Dijk

Algorithmen für geographische Informationssysteme

Alexander Wolff

Clustering
Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Clustering

Fundamental problem in data mining, but not uniquely defined.

What are you clustering?

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

What are you trying to do with the data?

Clustering

Fundamental problem in data mining, but not uniquely defined.

What are you clustering?

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Distance: Metric?Euclidean?

What are you trying to do with the data?

Clustering

Fundamental problem in data mining, but not uniquely defined.

What are you clustering?

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Distance:

How many clusters?

Metric?Euclidean?

What can clusters look like?

What are you trying to do with the data?

Clustering

1956

Clustering
1967

Clustering

DBSCAN KDD 1996

Clustering

DBSCAN KDD 1996

KDD “test of time award” 2014⩾ 8× 103 citations

Open source implementations available in many languages

Clustering

DBSCAN KDD 1996

Clustering

Clustering

Clustering

DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”

DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”

2. “Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc.”

DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”

2. “Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc.”

3. “Good efficiency on large databases, i.e., on databases of
significantly more than just a few thousand objects.”

DBSCAN
Given: data points X, distance function d(·, ·), thresholds ε and k.

DBSCAN
Given: data points X, distance function d(·, ·), thresholds ε and k.

“Eps” “MinPts”

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Given: data points X, distance function d(·, ·), thresholds ε and k.

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

Given: data points X, distance function d(·, ·), thresholds ε and k.

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is directly density-reachable from a point q iff:

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

p ∈ Nε(q) |Nε(q)| ⩾ k (q is a core point)

Given: data points X, distance function d(·, ·), thresholds ε and k.

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is directly density-reachable from a point q iff:

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

p ∈ Nε(q) |Nε(q)| ⩾ k (q is a core point)

Given: data points X, distance function d(·, ·), thresholds ε and k.

Not a symmetric relation!

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is directly density-reachable from a point q iff:

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

p ∈ Nε(q) |Nε(q)| ⩾ k (q is a core point)

Def. A point p ∈ X is density reachable from a point q if there exists
a chain of direct density-reachability from q to p.

Given: data points X, distance function d(·, ·), thresholds ε and k.

Not a symmetric relation!

DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is directly density-reachable from a point q iff:

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

p ∈ Nε(q) |Nε(q)| ⩾ k (q is a core point)

Def. A point p ∈ X is density reachable from a point q if there exists
a chain of direct density-reachability from q to p.

Def. A point p ∈ X is density connected to a point q if there exists a
(core) point r such that both p and q are density-reachable from r.

Given: data points X, distance function d(·, ·), thresholds ε and k.

Not a symmetric relation!

DBSCAN example

k = 3

Legend

DBSCAN example

k = 3

Distance ε

Legend

DBSCAN example

k = 3

Distance ε

Core points

Legend

DBSCAN example

k = 3

Distance ε

Core points

Legend

DBSCAN example

k = 3

Distance ε

Core points

Legend

DBSCAN example

k = 3

Distance ε

Core points

Legend

DBSCAN example

k = 3

Distance ε

Core points

p

q

r

Density connected

Legend

DBSCAN example

← border point

k = 3

Distance ε

Core points

← border point
Density connected

DBSCAN clustering

noise point→Legend

p and q are in the same cluster⇔ p and q are density connected
DBSCAN:

DBSCAN example

← border point

DBSCAN*:

k = 3

Distance ε

Core points

← border point
Density connected

DBSCAN clustering

noise point→

DBSCAN* clustering

Legend

p and q are in the same cluster⇔ p and q are density connected
DBSCAN:

(and core pts.)

DBSCAN example

← border point

DBSCAN*:

k = 3

Distance ε

Core points

← border point
Density connected

DBSCAN clustering

noise point→

DBSCAN* clustering

Legend Runtime

Naive algorithm runs in O(n2) time.

p and q are in the same cluster⇔ p and q are density connected
DBSCAN:

(and core pts.)

DBSCAN example

← border point

DBSCAN*:

k = 3

Distance ε

Core points

← border point
Density connected

DBSCAN clustering

noise point→

DBSCAN* clustering

Legend Runtime

Naive algorithm runs in O(n2) time.

“Since the Eps-neighborhoods are
expected to be small compared to
the size of the whole data space,
the average run time complexity of
a single region query is O(logn). [...]
Thus, the average run time com-
plexity of DBSCAN is O(n logn).”

p and q are in the same cluster⇔ p and q are density connected
DBSCAN:

(and core pts.)

De Berg, Gunawan, Roeloffzen (2017)

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

De Berg, Gunawan, Roeloffzen (2017)

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

Box graph Gbox

Box graph Gbox
ε:

Box graph Gbox
ε:

ε/
√
2:

A grid-based approach?

Make a grid
Side length ε/

√
2

(Assumes we can round
down to a multiple of ε/

√
2)

Box graph Gbox
ε:

ε/
√
2:

A grid-based approach?

Make a grid
Side length ε/

√
2

(Assumes we can round
down to a multiple of ε/

√
2)

Connectivity within cells?

Box graph Gbox
ε:

ε/
√
2:

A grid-based approach?

Make a grid
Side length ε/

√
2

(Assumes we can round
down to a multiple of ε/

√
2)

Connectivity within cells?

Between points in different
cells?

Box graph Gbox
ε:

ε/
√
2:

A grid-based approach?

Make a grid
Side length ε/

√
2

(Assumes we can round
down to a multiple of ε/

√
2)

Connectivity within cells?

Between points in different
cells?

Not clear how to get a
runtime bound in n without
assumption on the
distribution.

Be more flexible...

Box graph Gbox
ε:

ε/
√
2:

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox

⩽ ε/
√
2

ε:
ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox

> ε/
√
2

ε:
ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SORTED

Add points as long as
strip width ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox

⩽ ε/
√
2

ε:
ε/
√
2:

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

> ε/
√
2

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

SO
RT

ED

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

1. Construct boxes

Box graph Gbox
ε:

ε/
√
2:

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

Sort by x
O(n logn)

1. Construct boxes

Runtime:

Box graph Gbox
ε:

ε/
√
2:

O(n1 logn1)

O(n2 logn2)

O
(n

3
lo
gn

3
)

O
(n

4
lo
gn

4
)

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

Sort by x

Sort by y per strip

O(n logn)

∑
j O(nj lognj)

1. Construct boxes

Total
O(n logn)

Runtime:

Box graph Gbox
ε:

ε/
√
2:

Property of single boxes

All points within a box...

Box graph Gbox
ε:

ε/
√
2:

Property of single boxes

All points within a box...

Box graph Gbox
ε:

ε/
√
2:

Property of single boxes

All points within a box...
are in ε-neighbourhood.
(Box width & height are
each ⩽ ε/

√
2.)

In boxes with at least k
points, ...

Box graph Gbox
ε:

ε/
√
2:

k = 4

Property of single boxes

All points within a box...
are in ε-neighbourhood.
(Box width & height are
each ⩽ ε/

√
2.)

In boxes with at least k
points, ...
all points are core points.

Box graph Gbox
ε:

ε/
√
2:

k = 4

?

Property of single boxes

All points within a box...
are in ε-neighbourhood.
(Box width & height are
each ⩽ ε/

√
2.)

In boxes with at least k
points, ...
all points are core points.

In boxes with fewer than k
points, ...

Box graph Gbox
ε:

ε/
√
2:

k = 4

?

Property of single boxes

All points within a box...
are in ε-neighbourhood.
(Box width & height are
each ⩽ ε/

√
2.)

In boxes with at least k
points, ...
all points are core points.

In boxes with fewer than k
points, ...
points can be core points.

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have?

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

ε

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? 22 ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? 22 ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? 22 ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? 22 ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

Property of box pairs

Connect boxes with edge
if distance between boxes
is at most ε.

Nonneighbours in Gbox:
none of these points are
in ε-neighbourhood.

How many neighbours can
a box have? 22 ∈ O(1)

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k2) = O(1)

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k2) = O(1)

Other box is crowded:

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k2) = O(1)

Other box is crowded:
Charge to crowded box:

Box graph Gbox
ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k2) = O(1)

Other box is crowded:
Charge to crowded box:
Point in crowded box
checked ⩽ 22k times (!!)

Box graph Gbox
ε:

ε/
√
2:

k = 4

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes
O(n logn) time for n pts.

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
O(n logn) time for n pts.

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
Edge ij gets charged
cij(ni + nj) log(ni + nj).

O(n logn) time for n pts.

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
Edge ij gets charged
cij(ni + nj) log(ni + nj).

Total charge is

O(n logn) time for n pts.

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
Edge ij gets charged
cij(ni + nj) log(ni + nj).

Total charge is O(n logn)

O(n logn) time for n pts.

Box graph Gbox

Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
Edge ij gets charged
cij(ni + nj) log(ni + nj).

Total charge is O(n logn)
since

∑
ij is edge ni ⩽ 22kni.

O(n logn) time for n pts.

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

1. Construct Gbox

2. Find core points

3. Merge clusters

(4. Assign border points.)

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

1. Construct Gbox

2. Find core points

3. Merge clusters

(4. Assign border points.)

BICHROMATIC CLOSEST POINT instead of
Delaunay triangulation.

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

1. Construct Gbox

2. Find core points

3. Merge clusters

(4. Assign border points.)

BICHROMATIC CLOSEST POINT instead of
Delaunay triangulation.
(Agarwal, Edelsbrunner, Schwarzkopf, 1991)

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

1. Construct Gbox

2. Find core points

3. Merge clusters

(4. Assign border points.)

BICHROMATIC CLOSEST POINT instead of
Delaunay triangulation.
(Agarwal, Edelsbrunner, Schwarzkopf, 1991)

now

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).
• New cluster forms.

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).
• New cluster forms.
• Two clusters merge

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).
• New cluster forms.
• Two clusters merge

Events only happen when ε = d(p, q) for some p, q.

[McInnes, Healy, Astels: JOSS 2017]

HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).
• New cluster forms.
• Two clusters merge

Events only happen when ε = d(p, q) for some p, q.

Store this tree structure of cluster creation and merges: HDBSCAN.

[McInnes, Healy, Astels: JOSS 2017]

Mutual reachability
Starting at which value of ε will these points be in the same cluster?

Mutual reachability
Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).

Mutual reachability
Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

1. Compute dcore for all points.Algorithm:

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

1. Compute dcore for all points.

2. Construct Gmr and compute a minimum spanning tree T.

Algorithm:

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

1. Compute dcore for all points.

2. Construct Gmr and compute a minimum spanning tree T.

3. Convert T into HDBSCAN tree.

Algorithm:

Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

1. Compute dcore for all points.

2. Construct Gmr and compute a minimum spanning tree T.

3. Convert T into HDBSCAN tree.

Algorithm: O(n logn) time [Vaidya, 1989]

(by Kruskal’s algorithm)

2. Construct Gmr and compute an MST.

Cannot look at all edges: too slow.

2. Construct Gmr and compute an MST.

Def. {p, q} is a Delaunay edge “iff” there exists a circle with:

Cannot look at all edges: too slow.

• p and q on the boundary

• no points in its interior

2. Construct Gmr and compute an MST.

Def. {p, q} is a Delaunay edge “iff” there exists a circle with:

Cannot look at all edges: too slow.

• p and q on the boundary

• no points in its interior

kth-order

⩽ k a “k-OD edge”

2. Construct Gmr and compute an MST.

Def. {p, q} is a Delaunay edge “iff” there exists a circle with:

Cannot look at all edges: too slow.

• p and q on the boundary

• no points in its interior

kth-order

⩽ k

Theorem (Gudmundsson, Hammer, van Kreveld, 2002)
The kth-order Delaunay graph has O(n(k+ 1)) edges and can be
computed in O(n(k+ 1) logn) expected time by randomized
incremental construction.

a “k-OD edge”

2. Construct Gmr and compute an MST.

Def. {p, q} is a Delaunay edge “iff” there exists a circle with:

Cannot look at all edges: too slow.

• p and q on the boundary

• no points in its interior

kth-order

⩽ k

Theorem (Gudmundsson, Hammer, van Kreveld, 2002)
The kth-order Delaunay graph has O(n(k+ 1)) edges and can be
computed in O(n(k+ 1) logn) expected time by randomized
incremental construction.

Claim: The MST of Gmr uses only k-OD edges.

a “k-OD edge”

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

p q

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.
p q

r

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.
p q

r

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.

Recurse until only k-OD edges.
p q

r

The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.

Recurse until only k-OD edges.

Kruskal has already considered those
edges, so p and q are already connected.

p q
r

Results

O(n logn)DBSCAN

2D

Everywhere: ε free, k fixed constant, Euclidean distances

dD

O(n logn) expectedHDBSCAN

O(n2− 2
⌈d/2⌉+1

+γ) γ > 0

×

	Titel

