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Clustering

Fundamental problem in data mining, but not uniquely defined.

What are you clustering?

Clustering is classically the problem of finding a partition of a data
set such that elements in the same cell (“cluster”) are near each other
according to a given distance criterion, while elements in different
sets are distant.

Distance:

How many clusters?

Metric?Euclidean?

What can clusters look like?

What are you trying to do with the data?
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KDD “test of time award” 2014⩾ 8× 103 citations

Open source implementations available in many languages



Clustering

DBSCAN KDD 1996



Clustering



Clustering



Clustering



DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”



DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”

2. “Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc.”



DBSCAN: Objectives
1. “Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known in
advance when dealing with large databases.”

2. “Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc.”

3. “Good efficiency on large databases, i.e., on databases of
significantly more than just a few thousand objects.”
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DBSCAN

Def. The ε-neighborhood of a point p ∈ X is
Nε(p) = { q ∈ X | d(p, q) ⩽ ε }.

Def. A point p ∈ X is directly density-reachable from a point q iff:

Def. A point p ∈ X is called a core point iff |Nε(p)| ⩾ k.

p ∈ Nε(q) |Nε(q)| ⩾ k (q is a core point)

Def. A point p ∈ X is density reachable from a point q if there exists
a chain of direct density-reachability from q to p.

Def. A point p ∈ X is density connected to a point q if there exists a
(core) point r such that both p and q are density-reachable from r.

Given: data points X, distance function d(·, ·), thresholds ε and k.

Not a symmetric relation!
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DBSCAN example

← border point

DBSCAN*:

k = 3

Distance ε

Core points

← border point
Density connected

DBSCAN clustering

noise point→

DBSCAN* clustering

Legend Runtime

Naive algorithm runs in O(n2) time.

“Since the Eps-neighborhoods are
expected to be small compared to
the size of the whole data space,
the average run time complexity of
a single region query is O(logn). [...]
Thus, the average run time com-
plexity of DBSCAN is O(n logn).”

p and q are in the same cluster⇔ p and q are density connected
DBSCAN:

(and core pts.)
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ε:

ε/
√
2:

A grid-based approach?

Make a grid
Side length ε/

√
2

(Assumes we can round
down to a multiple of ε/

√
2)

Connectivity within cells?

Between points in different
cells?

Not clear how to get a
runtime bound in n without
assumption on the
distribution.

Be more flexible...
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1. Construct boxes
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O
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3
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gn

4
)

Add points as long as
strip width ⩽ ε/

√
2.

Per strip: add points to box
as long as height ⩽ ε/

√
2.

Sort by x

Sort by y per strip

O(n logn)

∑
j O(nj lognj)

1. Construct boxes

Total
O(n logn)

Runtime:
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Box graph Gbox
ε:

ε/
√
2:

k = 4

?

Property of single boxes

All points within a box...
are in ε-neighbourhood.
(Box width & height are
each ⩽ ε/

√
2.)

In boxes with at least k
points, ...
all points are core points.

In boxes with fewer than k
points, ...
points can be core points.
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ε:

ε/
√
2:

k = 4

2. Find all core points

Already have all core points
in “crowded” boxes.

For all “sparse” boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?
Other box is sparse:
O(k2) = O(1)

Other box is crowded:
Charge to crowded box:
Point in crowded box
checked ⩽ 22k times (!!)
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Pairs of crowded boxes

These are all core points.

Are they the same cluster?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?
Delaunay triangulation (DT)
contains this edge!
DT has O(n) edges, takes

Charge to edges in Gbox:
Edge ij gets charged
cij(ni + nj) log(ni + nj).

Total charge is O(n logn)
since

∑
ij is edge ni ⩽ 22kni.

O(n logn) time for n pts.
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O(n logn) expectedHDBSCAN
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+γ) γ > 0

×

1. Construct Gbox

2. Find core points

3. Merge clusters

(4. Assign border points.)

BICHROMATIC CLOSEST POINT instead of
Delaunay triangulation.
(Agarwal, Edelsbrunner, Schwarzkopf, 1991)
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HDBSCAN
Use DBSCAN* and sweep ε from 0 to ∞.
Initially all points are noise; eventually everything is one cluster.

Three types of “events”:
• Noise point becomes core point. Call this value dcore(p).
• New cluster forms.
• Two clusters merge

Events only happen when ε = d(p, q) for some p, q.

Store this tree structure of cluster creation and merges: HDBSCAN.

[McInnes, Healy, Astels: JOSS 2017]
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Mutual reachability

Def. Let dmr(p, q) = max{ dcore(p), dcore(q), d(p, q) }.

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least dcore(p) and dcore(q).
Either ε ⩾ d(p, q), or they must be connected through other points.

Def. Mutual reachability graph Gmr: complete, edge weights dmr.

1. Compute dcore for all points.

2. Construct Gmr and compute a minimum spanning tree T.

3. Convert T into HDBSCAN tree.

Algorithm: O(n logn) time [Vaidya, 1989]

(by Kruskal’s algorithm)
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Theorem (Gudmundsson, Hammer, van Kreveld, 2002)
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The MST of Gmr uses only k-OD edges.
Consider applying Kruskal’s algorithm to Gmr:
• Looks at edges in order of increasing cost.
•With weights dmr this corresponds to the HDBSCAN events.

Claim: Whenever Kruskal looks at a non-k-OD edge {p, q},
p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.

Recurse until only k-OD edges.

Kruskal has already considered those
edges, so p and q are already connected.

p q
r
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Everywhere: ε free, k fixed constant, Euclidean distances
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