
Algorithmen für Geographische
Informa5onssysteme

3. Vorlesung: Map Matching

Alexander Wolff
basiert auf Folien von Jan-Henrik Haunert

Map Matching
Problemformulierung

Map Matching

Gegeben:
Das Straßennetz als planar eingebe1eter Graph ! = #, %
Die GPS-Trajektorie als Folge & = '(, '), … , '+ von Punkten

Gesucht:
Weg in !, der minimale Distanz zu & hat.

und

Hausdorff-Distanz

!"

$%, !" = min # $%, $" $" ∈ !"

#,- !%, !" = max #⃗,- !%, !" , #⃗,- !", !%
mit

!%

#,- !%, !"

#⃗,- !%, !" = max # $%, !" $%∈ !%

Fréchet-Distanz

!"
!#

Defini0on: $%&é()*+ = min0: 2," → 2,56"
7: 2," → 2,86"

max;∈ 2," $ =" > ? , =# @ ?

wobei > und @ monoton wachsende und ste0ge Funk0onen sind und
> 0 = @ 0 = 1, > 1 = C − 1, @ 1 = E − 1.

Map Matching
Problemformulierung

Map Matching

Gegeben:
• Das Straßennetz als planar eingebetteter Graph ! = #, %
• Die GPS-Trajektorie als Folge & = '(, '), … , '+ von Punkten

Gesucht:
Weg in !, der
minimale Distanz
zu & hat.

Map Matching
Problemformulierung

Map Matching

Gegeben:
• Das Straßennetz als planar eingebetteter Graph ! = #, % ,
• Die GPS-Trajektorie als Folge & = '(, '), … , '+ von Punkten.

Gesucht:
Weg in !, der
minimale Fréchet-Distanz
zu & hat.

Map Matching
Entscheidungsproblem

Map Matching

Gegeben:
• Das Straßennetz als planar eingebe1eter Graph ! = #, % ,
• Die GPS-Trajektorie als Folge & = '(, '), … , '+ von Punkten,
• Zulässige Distanz ,.

Gibt es einen Weg in !, dessen
Fréchet-Distanz
zu & kleiner ist als ,?

Map Matching
Entscheidungsproblem

!"

!#

Freiraumdiagramm für zwei Polygonzüge

Map Matching
Entscheidungsproblem

!"

!#

Freiraumdiagramm für zwei Polygonzüge

Idee: Freiraumdiagramm für Polygonzug und Graph

Map Matching

Idee: Freiraumdiagramm für Polygonzug und Graph

Map Matching

Idee: Freiraumdiagramm für Polygonzug und Graph

Map Matching

Idee: Freiraumdiagramm für Polygonzug und Graph

Freiraumdiagramm für
Polygonzug und eine Kante

Map Matching

Idee: Freiraumdiagramm für Polygonzug und Graph

Suche einen zulässigen Pfad
von links nach rechts.

Map Matching

Suche einen zulässigen Pfad
von links nach rechts.

Entscheidbar in ! " # $%& " Zeit.

Alt, Efrat, Rote, Wenk:
Matching Planar Maps,
J. Algorithm, 2003.

Map Matching

Finde einen zulässigen
Pfad mit minimaler
Fréchet-Distanz.

Alt, Efrat, Rote, Wenk:
Matching Planar Maps,
J. Algorithm, 2003.

Lösbar in ! " # $%& " $%& " # Zeit.

Map Matching
Problemformulierung

Map Matching

Gegeben:
• Das Straßennetz als planar eingebetteter Graph ! = #, %
• Die GPS-Trajektorie als Folge & = '(, '), … , '+ von Punkten

Gesucht:
Weg in !, der
minimale Fréchet-Distanz
zu & hat.

Lösbar in , - . /01 - /01 - . Zeit.

VIDEO

Map Matching

Problem:
GPS-Punkte der Trajektorie weisen einen relativ großen Abstand
zueinander auf.

Map Matching

Problem:
GPS-Punkte der Trajektorie weisen einen relativ großen Abstand
zueinander auf. → Direkte Verbindung zwischen Punkten ist

schlechte Näherung

Map Matching

Problem:
GPS-Punkte der Trajektorie weisen einen relativ großen Abstand
zueinander auf.

Ergebnis mit minimaler
Fréchet-Distanz

Idee:
Fahrer wählen bevorzugt kürzeste Wege im Straßennetz.

Map Matching

Problem:
GPS-Punkte der Trajektorie weisen einen relativ großen Abstand
zueinander auf.

kürzeste Route

Idee:
Fahrer wählen bevorzugt kürzeste Wege im Straßennetz.

Map Matching
Ansatz über kürzeste Wege

Lou et al.:
Map-Matching for Low-Sampling-Rate GPS Trajectories,
Proc. ACM GIS 2009.

P. Newson und J. Krum:
Hidden Markov Map Matching Through Noise and Sparseness,
Proc. ACM GIS 2009

Eisner et al.:
Algorithms for Matching and Predicting Trajectories,
Proc. ALENEX 2011

Ein Punkt etwa alle zwei Minuten (z.B. zur
Aufzeichnung & Analyse von Taxirouten)

Map Matching
Ansatz über kürzeste Wege

Lou et al.:
Map-Matching for Low-Sampling-Rate GPS Trajectories,
Proc. ACM GIS 2009.

P. Newson und J. Krum:
Hidden Markov Map Matching Through Noise and Sparseness,
Proc. ACM GIS 2009

Eisner et al.:
Algorithms for Matching and Predicting Trajectories,
Proc. ALENEX 2011

= Maximum likelihood estimation + Markov Chains + Hidden Markov Models

Maximum-Likelihood Estimation
Probability versus Likelihood

• Flipping a coin:
– ![ℎ$%&'] = *
– ! +%,-' = 1 − *

• Do three independent flips.

• The coin is fair (p = ½).

• What is the probability of getting outcome x=(H,H,T)?

Model

Outcome?

Parameter value

! 0 = 1,1, 3 | * = 51 2 = 51 2 ⋅ 51 2 ⋅ 1 − 51 2 = 0.125! 0 = 1,1, 3 ; * = 51 2
< is not a random variable!

• Flipping a coin:
– ![ℎ$%&'] = *
– ! +%,-' = 1 − *

• Did three independent flips.

• The result was x=(H,H,T).

• What is the likelihood that the coin is fair (p = ½)?

Maximum-Likelihood Estimation
Probability versus Likelihood

Model

Parameter value?

Outcome

• Given the outcome !,
how “likely“ is a certain parameter value "?

• Assuming parameter value ",
what is the probability of outcome !?

• Define likelihood function ℒ " ! = %[!; "]

• The result was (H,H,T).
• What is the likelihood that the coin is fair (p = ½)?
• ℒ) = ⁄+ , | ! = .,., 0 = ⁄1 2 ⋅ ⁄1 2 ⋅ ⁄1 2 = 0.125
• ℒ) = 9. + | ! = .,., 0 = 0.1 ⋅ 0.1 ⋅ 0.9 = 0.009
• ℒ) = ⁄, ; | ! = .,., 0 = ⁄2 < ⋅ ⁄2 < ⋅ ⁄1 < = 0. 148

Maximum-Likelihood Estimation
Likelihood Functions

Not a probability!

• Most probable outcome
– Given parameter ! = ⁄$ %…
– … the most probably outcome is

• Maximum-Likelihood Estimate (“MLE“ or “ML method“)
– Given outcome (',), ')…
– …maximum-likelihood estimate is ! =
– This value of ! “best explains the observed outcome.“
– This value of ! makes the outcome ”least surprising.”

Maximum-Likelihood Estimation
Predictions versus Estimates

(),),)).

⁄+ %.

• Model? Parameter? Outcome?

• Most probable outcome
– Given a path in a road network …
– … what is the most probable GPS trajectory to observe? (Noisy.)

• Maximum-Likelihood Estimate (MLE)
– Given the observed GPS trajectory (noisy) …
– … what is the most likely path through the road network?
– “Which path through the network best explains the

observed GPS trajectory?“

Maximum-Likelihood Estimation
Maximum-Likelihood Map Matching?

Ма́рков Chains

Андре́й Ма́рков
1856 - 1922

Георгій Вороний
1868 - 1908

Бори́с Делоне́
1890 - 1980

Wacław Sierpiński
1882 - 1969

Пафну́тий Чебышёв
1821 - 1894

Маrkov Chains

Voronoi
1856 - 1922

Delaunay
1890 - 1980

Sierpinski
1882 - 1969

Chebyshev
1821 - 1894

Markov
1856 - 1922

• Sequence of random variables !", !$, !%, …
• Markov Property:

Pr !)*" !+ = -+, !+."= -+.", … , !" = -"]
= Pr !+*" !+ = -+]

• “Given the present,
the future is independent of the past.”

• Represent as Pr[!"], Pr[!$|!"], Pr !% !$,…

Markov Chains

• Possible states ! = #$%%&, (&)&%

• Pr[-. = (&)&%] = 0.3
• Pr -. = #$%%& = 0.7

• Pr -34. = (&)&% -3 = (&)&%] = 0.7
• Pr -34. = #$%%& -3 = (&)&%] = 0.3
• Pr -34. = (&)&% -3 = #$%%&] = 0.2
• Pr -34. = #$%%& -3 = #$%%&] = 0.8

Markov Chains
Example

• Possible states ! = #$%%&, (&)&%

• Pr[-. = (&)&%] = 0.3
• Pr -. = #$%%& = 0.7

Markov Chains

Sonne Regen

0.8 0.7
0.2

0.3

Pr -3 = #$%%& ?

Example

• Possible states ! = #$%%&, (&)&%

• Pr[-. = (&)&%] = 0.35
• Pr -. = #$%%& = 0.65

Markov Chains

Sonne Regen

0.8 0.7
0.2

0.3

Pr -4 = (&)&% ?

Example

• Markov Chain
– At every 0me step, it has a certain state

• But the states are hidden
– We cannot “see” its state

• Emission (“output”)
– At every 0me step, get an observa-on
– Probability distribu0on depends on state
– Emission at each step is independent

Hidden Markov Models

Map Matching!

Using maximum likelihood es5ma5on

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

2. Suche Menge von Kandidatenpunkten
)"$, … ,)"' , wobei)"* der nächste Punkt

auf #"* zu !" ist.

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

2. Suche Menge von Kandidatenpunkten
)"$, … ,)"' , wobei)"* der nächste Punkt

auf #"* zu !" ist.

3. Bewerte jeden Kandidatenpunkt)"* mit
einer Wahrscheinlichkeit +)"*

+)"* = 1
2/0 #

1
2 34,54

6 7

897 (Normalverteilung)
0 = 20 m

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

2. Suche Menge von Kandidatenpunkten
)"$, … ,)"' , wobei)"* der nächste Punkt

auf #"* zu !" ist.

3. Bewerte jeden Kandidatenpunkt)"* mit
einer Wahrscheinlichkeit +)"*

4. Bewerte jedes Paar aufeinander
folgender Kandidatenpunkte mit einer
Übergangswahrscheinlichkeit

,)"-$. ,)"/ = 1 !"-$, !"
123456726-8963)"-$. ,)"/

Länge des kürzesten Weges von
)"-$. nach)"/ im Straßennetz

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

2. Suche Menge von Kandidatenpunkten
)"$, … ,)"' , wobei)"* der nächste Punkt

auf #"* zu !" ist.

3. Bewerte jeden Kandidatenpunkt)"* mit
einer Wahrscheinlichkeit +)"*

4. Bewerte jedes Paar aufeinander
folgender Kandidatenpunkte mit einer
Übergangswahrscheinlichkeit
,)"-$. ,)"/

Map Matching
1. Für jeden GPS-Punkt !" suche Menge

von Kandidatenkanten #"$, … , #"' , die
(teilweise) innerhalb eines Kreises mit
Radius (um !" liegen.

2. Suche Menge von Kandidatenpunkten
)"$, … ,)"' , wobei)"* der nächste Punkt

auf #"* zu !" ist.

3. Bewerte jeden Kandidatenpunkt)"* mit
einer Wahrscheinlichkeit +)"*

4. Bewerte jedes Paar aufeinander
folgender Kandidatenpunkte mit einer
Übergangswahrscheinlichkeit
,)"-$. ,)"/

Ziel:
Wähle für jeden Punkt !" einen Kandidaten-
punkt)" aus der Menge)"$, … ,)"' , so dass

+)$ ⋅ ,)$,)1 ⋅ +)1 ⋅ ,)1,)2 ⋅ … ⋅ +)3

maximal ist.

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidaten-punkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Kandidatenmenge für !$

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Kandidatenmenge für !.

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Kandidatenmenge für !0

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Dummy-Knoten

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Jeder 4-5-Pfad steht für eine Lösung
des Map-Matching-Problems

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem

Definiere Kantenlängen:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

0 log + #$$ ⋅ - #$$, #.$
log + #0$

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem

Definiere Kantenlängen:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

0 log + #$$ ⋅ - #$$, #.$
log + #0$

Lösung:

Längster 4-5-Pfad

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem

Definiere Kantenlängen:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Lösung:

Längster 4-5-Pfad
Im Allgemeinen ist das Längste-Pfad-Problem NP-schwer!

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem

Definiere Kantenlängen:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Lösung:

Längster 4-5-Pfad Für gerichtete azyklische Graphen (DAGs) mit
6 Kanten und 7 Knoten ist das Längste-Pfad-Problem
in 8 6 + 7 Zeit lösbar!

Map Matching
Ziel:
Wähle für jeden Punkt !" einen Kandidatenpunkt #" aus der Menge
#"$, … , #"' , so dass

log + #$ ⋅ - #$, #.
+ log + #. ⋅ - #., #0

...
+ log + #23$ ⋅ - #23$, #2
+ log + #2

maximal ist.

Modellierung als Graphproblem

Definiere Kantenlängen:

4 5#$$

#$.

#$0

#.$

#..

#0$

#0.
#00

Lösung:

Längster 4-5-Pfad Für gerichtete azyklische Graphen (DAGs) mit
6 Kanten und 7 Knoten ist das Längste-Pfad-Problem
in 8 6 + 7 Zeit lösbar! Wie?

Map Matching
Aufgabe:
Finde längsten Pfad in gerichtetem azyklischen Graphen ! = ($, &; ℓ).

* +, = 0
for . = 2 to 0 // Berechne * +1 = Länge eines längsten +,-+1-Pfades
*(+1) = −∞
foreach +4: +4, +1 ∈ &
if * +1 < * +4 + ℓ +4, +1 then // ℓ +4, +1 = Länge der Kante +4, +1
* +1 = * +4 + ℓ +4, +1
9:;*;<;==>: . = ?

Lösung:
1. SorAere ! topologisch → Reihenfolge +,, … , +A, so dass für jede Kante (+4, +1) gilt ? < ..
2. Löse das Problem durch dynamische Programmierung:

