Einfiihrung in die Funktionale Programmierung - SoSe 2021 11 Modelling and Recaps

Exercise sheet 11— Solutions

1 Modelling a wallet (old exam question)

final case class Wallet(
amountMoney: Int,
numberOfDocuments: Int,

)
// --- later ---
def transformWallet(w: Wallet): Wallet =
if w == null then
changeWallet(w)
else
throw new RuntimeException('"no wallet");

Possible improvements:

e amountMoney and numberOfDocuments can easily be mixed up, because they have the same
type. A solution could be to introduce a currency type (which also helps with multiple
currencies and similar...).

e We never use null. If our input should be able to be possibly empty, use Option.

e “Boolean blindness” — Inside the if branches, it isn’t obvious anymore, which one was
the positive and which one the negative branch. Using explicit pattern matching (e.g on
Option) or higher order functions of the used type (e.g. map) makes this more clear (the
code actually has a bug: changeWallet is called, if the wallet is null)

e We never use exceptions. If it is possible, that the operation fails, use Either for fail-fast
behaviour or Validated for accumulation of errors.

One possible improved version:

case class Money(amount: Int, currency: String)

final case class Wallet(
amountMoney: Money,
numberOfDocuments: Int,

)

// --- later ---

def transformWallet(w: Option[Wallet]): Either[String, Wallet] =
w.map(changeWallet).toRight("no wallet")

2 Modelling a customer (old exam question)
2.1 Type “Customer”

final case class NonEmptyList[A](head: A, tail: List[A])
enum Customer:

case Private(name: String, phoneNumber: Option[String])
case Business(name: String, phoneNumber: NonEmptyList[String])



Einfiihrung in die Funktionale Programmierung - SoSe 2021 11 Modelling and Recaps

2.2 Possible problem

Name and phone number are of the same type, even though they describe fundamentally different
concepts. It would be better, to use a separate type for the phone number, which can also check
the validity.

3 Recap: Parametricity (old exam question)

def p2[A,B,C,D](a: A, b: B)(f: (A,B) == C, g: (A,C) => D): D =
g(a, f(a,b))

The explanation is also the solution for exercise part b):

As the types are variable, no operations beside the given ones can be executed. There is no
possibility to instantiate the variable types C and D. As a D has to be returned, it has to be
created using the given functions.

4 Recap: Lazy Evaluation (old exam exercise)

4.1 Strict parameters vs. call-by-name vs. lazy val
Strict parameters are always evaluated exactly once before executing the method body.

Call-by-Name parameters are only evaluated, if the evaluation of the method body reaches
a usage point of them. The result is then not cached, so that a call-by-name parameter
may be evaluated several times.

lazy val is only evaluated when the value is actually used, like call-by-name, but the evaluation
result is stored, so that it is calculated at most once.

4.2 Early-Stopping for foldRight

We are given the following function signature:

def foldRight[B](z: B)(f: (A, B) => B): B = this match
case Cons(x, xs) => f(x, xs.foldRight(z)(f))
case Nil => z

To change it to allow for early stopping, we only have to modify the signature, making some
parameters call-by-name:

def foldRightLazy[B](z: => B)(f: (A, => B) => B):B = this match
\\ ... same ...

As the recursive call is in the second parameter to f, it can be prevented by making this
parameter call-by-name. Now the call only happens, if the given function uses it. This way the
function itself can decide, if the recursion should continue. The z is not required to be call-
by-name to allow for this behaviour, but this way it is also only calculated, if the fold iterates
through the whole list.

A solution without using laziness is also possible, but it requires more changes. Instead of
deciding in the given function, if we should continue calculation, we pass a separate function



Einfiihrung in die Funktionale Programmierung - SoSe 2021 11 Modelling and Recaps

for that. This function takes the current element and returns an Option of the result type. If
it is empty, we continue with the calculation. But if it contains a value, we return that without
recursing further.

def foldRightLazy[B](z: => B)(p: A => Option[B])(f: (A, B) => B): B = this match
case Cons(x, xs) => p(x) match
case None => f(x, xs.foldRight(z)(p)(f))
case Some(res) => res
case Nil => z

4.3 foldRight — Calls

These are calls matching the two solutions presented above, which multiply the elements in the
list and on encountering a 0 abort and return 0 directly:

intList.foldRightLazy(1)((a, b) => if a == 0 then 0 else a * b

intList.foldRightLazy(1)(if 1 == 0 then Some(0) else None)(_ * _)



	Exercise sheet 11— Solutions
	Modelling a wallet (old exam question)
	Modelling a customer (old exam question)
	Type "Customer"
	Possible problem

	Recap: Parametricity (old exam question)
	Recap: Lazy Evaluation (old exam exercise)
	Strict parameters vs. call-by-name vs. lazy val
	Early-Stopping for foldRight
	foldRight — Calls



