
Einführung in die Funktionale Programmierung - SoSe 2021 11 Diverses

Exercise sheet for lecture 11—
Diverses

1 Modelling a wallet (old exam question)
The following program has several problems. Point out 4 things, that are in contradiction to
the principles presented in the lecture and give possible solutions for each.

final case class Wallet(

amountMoney: Int,

numberOfDocuments: Int,

)

// --- later ---

def transformWallet(w: Wallet): Wallet =

if w == null then

changeWallet(w)

else

throw new RuntimeException("no wallet");

2 Modelling a customer (old exam question)
a) Model a type Customer, that describes the following business logic as accurately as possible:

a customer is either a private or a business customer. Both have a name. Business
customers are required to have at least one phone number. A private customer on the
other hand is only allowed to have at most one phone number. Phone numbers and names
are stored as String.

Model the “at least one” requirement as its own type and use it.

b) What problem can occur when using the types specified in the business logic and how
would you solve it?

3 Recap: Parametricity (old exam question)
Given the following function signature:

def p2[A,B,C,D](a: A, b: B)(f: (A, B) => C, g: (A, C) => D): D

a) Give an implementation for the function based only on the types, which returns a valid
value.

b) Why is the signature sufficient here to make assertions about the function’s behaviour, as
long as the implementation behaves referentially transparent (i.e. doesn’t throw exceptions
etc.)?

4 Recap: Lazy Evaluation (old exam exercise)
a) Explain the difference in evaluation for strict parameters, by-name parameters and lazy

vals.

b) The fold methods for List always iterate through the the whole list. In some cases this
leads to unneccessary calculations, e.g. when multiplying ints we could stop when one is a



Einführung in die Funktionale Programmierung - SoSe 2021 11 Diverses

0. Change the following implementation of List.foldRight, such that early stopping the
iteration is possible:

def foldRight[B](z: B)(f: (A, B) => B): B = this match {

case Cons(x, xs) => f(x, xs.foldRight(z)(f))

case Nil => z

}

c) Give a call for this foldRight method, which multiplies a list of Ints and directly returns
0 when encountering a 0, without iterating through the rest of the list.


	Exercise sheet for lecture 11— Diverses
	Modelling a wallet (old exam question)
	Modelling a customer (old exam question)
	Recap: Parametricity (old exam question)
	Recap: Lazy Evaluation (old exam exercise)


