
Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

Exercise sheet 10— Solutions
1 map via traverse

def mapViaTraverse[F[_],A,B](fa: F[A])(f: A => B)(using Traverse[F]): F[B] = ???

As mentioned in the lecture, traverse is equivalent to map followed by sequence. traverse

expects a function, that returns an Applicative, so we need to modify our function passed to
map accordingly.

As map’s signature does not require an Applicative, we can choose an arbitrary one, as long as
we can get the value out of it afterwards (as traverse gives us the resulted wrapped inside the
Applicative).

For this use case, Id is an obvious choice:

fa.traverse(f(_).pure[Id])

(The notation x.pure[F] is a cats shorthand for Applicative[F].pure(x))

This way, traverse gives us an Id[F[B]], which is identical to F[B].

But every other Applicative mentioned in the lecture is also usable, for example List:

fa.traverse(f(_).pure[List]).head

2 Traverse instance for trees
2.1 Implementation

given Traverse[Tree] with

import fp06.given

import fp06.Tree.*

def traverse[G[_],A,B](fa: Tree[A])(f: A => G[B])(using Applicative[G]): G[Tree[B]] =

fa match

case Leaf(a) => f(a).map(Leaf(_))

case Branch(left, right) => left.traverse(f).map2(right.traverse(f))(Branch(_, _))

def foldLeft[A, B](fa: Tree[A], b: B)(f: (B, A) => B): B =

summon[Foldable[Tree]].foldLeft(fa, b)(f)

def foldRight[A, B](fa: Tree[A], lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =

summon[Foldable[Tree]].foldRight(fa, lb)(f)

In our traverse implementation, we first look at the passed tree. If it is a Leaf, we got a value
which we can call f with. We get a G[B] back, but need a G[Tree[B]], so we wrap the value in
the Applicative into a Leaf using map.

1



Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

If we have a Branch instead, we call traverse recursively for both subtrees, which gives us two
G[Tree[B]]. We can combine those into a Branch inside G again using map2.

As said, we can reuse the implementations of the foldable instance from the sixt exercise sheet.
We import the givens from the fp06 package and use summon[Foldable[Tree]] to get the in-
stance, on which we can then call foldLeft and foldRight respectively. Of course copying the
code would also be possible.

2.2 Behaviour of sequence

Let’s first think abount the behaviour of sequence for a Tree[List[Int]], i.e. using the sequence
method of the List traverse instance. We have a tree, which has Lists in its leaves:

1 2 3

4 5

We flip that using sequence: (x: Tree[List[Int]]).sequence → List[Tree[Int]]

1 3

4

1 3

5

2 3

4

2 3

5

So we get a list of trees, which have the same stucture as the original tree. For all leaves with
multiple elements we get a tree each with every possible combination with the other leaves (so
in total as many trees as the product of all list lengths, here 2 · 1 · 2 = 4).

What about the other direction, i.e. (x: List[Tree[Int]]).sequence → Tree[List[Int]]?
Here an example, two trees in a list:

1 2

3

4 5

6

As we want to have a single tree in the end, sequence has to combine them. This happens
by replacing the leaves of the first tree with the structure of the second tree. The leaves then
contain a list with the value from the replaced leaf in the first tree and the value at that position
in the second tree, so basically the path through the tree. This results in the following larger
tree:

2



Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

1 4 1 5

1 6

2 4 2 5

2 6 3 4 3 5

3 6

Something similar happens, if we flip a nested tree with sequence umkehren. In the following
image we see a tree (white nodes), which has a tree with integers in every leaf (colored nodes),
so the type is Tree[Tree[Int]]:

[…]a […]b

[…]c

a

1

2 3

b

4 5

c

6 7

8

Similar to sequence on List[Tree[Int]], the stucture of the first (i.e. here the leftmost) tree
can be found at the root, the structure of the second one in place of the first tree’s leaves, the
third tree’s structure in place of the second’s leaves and so on.

The leaves of the last tree then conain a tree as their element, which has the stucture of the
previously outer tree. This tree’s elements are the numbers which were leaves in the colored
trees on the path to this leaf:

3



Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

1 4
6

1 4
7

1 4
8

1 5
6

1 5
7

1 5
8

2 4
6

2 4
7

2 4
8

2 5
6

2 5
7

2 5
8

3 4
6

3 4
7

3 4
8

3 5
6

3 5
7

3 5
8

3 Accumulating with State
3.1 reverse

As a reminder, the implementation of mapAccum:

def mapAccum[F[_]:Traverse,S,A,B](fa: F[A], s: S)(f: (S,A) => (S,B)): (S,F[B]) =

fa.traverse(a => State(s => f(s, a))).run(s).value

As lists already implement reverse and we can convert every Traverse into a list, we use this
to set our starting value for the accumulation: the list of elements in reverse order.

In the function, which we pass to mapAccum, we ignore the current element of our traversable
functor, we only need the traversable for keeping its structure. We get the values from the
reversed list. From that list we return the head as value and the tail as new state. We therefore
use the reversed list as a stack, from which we take elements one by one and put them in the
position that fa determines:

def reverse[F[_],A](fa: F[A])(using Traverse[F]): F[A] =

mapAccum(fa, fa.toList.reverse)((l, _) => (l.tail, l.head))._2

Here a step-by-step example with a tree. On the left the call, in the table the single steps, on
the right the result:

reverse


1 2

3



A S B

– 3 2 1 –
1 2 1 3
2 1 2
3 ∅ 1 3 2

1

At the beginning of the call, our state is the list of all leaf values in reversed order. In the forst
step the A passed to the function is the value from the node on the outer left. This value is
ignored, but instead the first value from the stack (S) is used. We continue this, until we have
traversed all leaves.

4



Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

3.2 foldLeft via mapAccum

def foldLeftViaMapAccum[F[_]:Traverse,A,B](fa: F[A], z: B)(f: (B, A) => B): B =

mapAccum(fa, z)((s, a) => (f(s, a), ()))._1

Similar to the toList implementation in the lecture, we don’t need the value in F that mapAccum
produces in the end, but our state S. Therefore we always return unit, as we did in toList.

We set the starting value for our state to the value z passed to foldLeft. In the anonymous
function we then set this to the result of the function f passed to foldLeft.

5


	Exercise sheet 10— Solutions
	map via traverse
	Traverse instance for trees
	Implementation
	Behaviour of sequence

	Accumulating with State
	reverse
	foldLeft via mapAccum



