Einfiihrung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

Exercise sheet for lecture 10—
Traversable Functors

1 map via traverse
Implement map via traverse for arbitrary traversable functors. This proves, that Traverse is
an extension of Functor and that traverse is a generalization of map.

def mapViaTraverse[F[_],A,B](fa: F[A])(f: A => B)(using Traverse[F]): F[B] = 7?2

Hints

Use the Traverse type class from cats.

Note, that map doesn’t take an Applicative as a using parameter. But to use traverse
inside of map an Applicative is required. Choose a fitting Applicative instance yourself.
You can use any of the ones shown in the lecture and exercise sheets as well as those in
Cats.

Note that every monad is also an applicative functor.

2 Traverse instance for binary trees
The binary trees from the earlier exercise sheets are, surprise surprise, traversable functors.

)

b)

Implement a Traverse instance for binary trees. In Cats, a Traverse instance needs im-
plementations of foldLeft, foldRight and traverse. You can copy the first two from the
Foldable instance (watch out for calling them correctly, or you’ll get an endless recursion!).
For traverse, a non tail-recursive solution is sufficient.

Think about, how sequence behaves on trees, like seen for other types in the lecture.

3 Accumulating with State

a)

Using the function mapAccum introduced in the lecture, we can finally write a reverse
function, which can reverse every traversable functor. Implementieren this function for
arbitrary Traverse.

Hints: For this function, a stack is required. Luckily, a List is a stack and we’ve seen in
the lecture, how to turn any Traversable into a list with toList.

def reverse[F[_],A](fa: F[A])(using Traverse[F]): F[A] = 22?

The function should fulfill the following law:

reverse(x).toList ::: reverse(y).tolList == reverse(y.tolList ::: x.tolList)

Use mapAccum to implement a general version of foldLeft for the Traverse trait. This
implementation is pretty similar to toList. But instead of using a list as accumulator, a
B is used for accumulation with help from the function f.



Einfiihrung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

def foldLeftViaMapAccum[F[_],A,B](fa: F[A], z: B)(f: (B, A) => B)(using
7 Traverse[F]): B = 777



	Exercise sheet for lecture 10— Traversable Functors
	map via traverse
	Traverse instance for binary trees
	Accumulating with State


