
Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

Exercise sheet for lecture 10—
Traversable Functors

1 map via traverse
Implement map via traverse for arbitrary traversable functors. This proves, that Traverse is
an extension of Functor and that traverse is a generalization of map.

def mapViaTraverse[F[_],A,B](fa: F[A])(f: A => B)(using Traverse[F]): F[B] = ???

Hints

• Use the Traverse type class from cats.

• Note, that map doesn’t take an Applicative as a using parameter. But to use traverse

inside of map an Applicative is required. Choose a fitting Applicative instance yourself.
You can use any of the ones shown in the lecture and exercise sheets as well as those in
Cats.

• Note that every monad is also an applicative functor.

2 Traverse instance for binary trees
The binary trees from the earlier exercise sheets are, surprise surprise, traversable functors.

a) Implement a Traverse instance for binary trees. In Cats, a Traverse instance needs im-
plementations of foldLeft, foldRight and traverse. You can copy the first two from the
Foldable instance (watch out for calling them correctly, or you’ll get an endless recursion!).
For traverse, a non tail-recursive solution is sufficient.

b) Think about, how sequence behaves on trees, like seen for other types in the lecture.

3 Accumulating with State
a) Using the function mapAccum introduced in the lecture, we can finally write a reverse

function, which can reverse every traversable functor. Implementieren this function for
arbitrary Traverse.

Hints: For this function, a stack is required. Luckily, a List is a stack and we’ve seen in
the lecture, how to turn any Traversable into a list with toList.

def reverse[F[_],A](fa: F[A])(using Traverse[F]): F[A] = ???

The function should fulfill the following law:

reverse(x).toList ::: reverse(y).toList == reverse(y.toList ::: x.toList)

b) Use mapAccum to implement a general version of foldLeft for the Traverse trait. This
implementation is pretty similar to toList. But instead of using a list as accumulator, a
B is used for accumulation with help from the function f.



Einführung in die Funktionale Programmierung - SoSe 2021 10 Traversable Functors

def foldLeftViaMapAccum[F[_],A,B](fa: F[A], z: B)(f: (B, A) => B)(using

Traverse[F]): B = ???↪→


	Exercise sheet for lecture 10— Traversable Functors
	map via traverse
	Traverse instance for binary trees
	Accumulating with State


