Einfiihrung in die Funktionale Programmierung - SoSe 2021 09 Algebraic View On Monads

Exercise sheet 09— Solutions

1 Stack-Based Calculator

The methods in this task are very simple. All we need to know is that we have to return a value of
type Calc[X] = State[List[Int], X]. But we never create a value of that type ourselfs directly.
All we do is use methods which give us a value of the correct type and the we use those values
in for comprehesions.

def push(nr: Int): Calc =

for

stack <- get

_ <- set(nr :: stack)
yield nr

To implement push we just ask for the current state via get while specifying the type. Then we
prepend the given argument to the state and save it via set.

def pop: Calc =
for
stack <- get
_ <- set(stack.drop(1))
yield stack.headOption.getOrElse(0)

The method pop is very similar. Instead of prepending we just drop, though. Since we might run
into an empty stack we need to handle that so we just do getOrElse 0 to yield 0 as a default.

def add: Calc =

for

a <- pop

b <- pop

c <- push(a + b)
yield c

The method add consists only of combinators. We don’t use get and set directly at all. This
happens quite often when you use some monadic abstraction to solve a problem. You build your
own custom DSL and the original monad fades into the background and you work only with
your DSL.

def mul: Calc =
pop.flatMap(a => // a <- pop
pop.flatMap(b => // b <- pop
push(a * b)))

Same as before, only the operator changed.

2 Candy Machine
There a quite a few ways to solve this task. We started with building an update method which

gets some input and a machine and returns a new machine.

Einfiihrung in die Funktionale Programmierung - SoSe 2021 09 Algebraic View On Monads

private def update(input: Input)(machine: Machine): Machine =
(input, machine) match
case (Coin, Machine(_, candies, coins)) if candies > 0 =>
Machine(locked = false, candies, coins + 1)
case (Turn, Machine(false, candies, coins)) =>
Machine(locked = true, candies - 1, coins)
case (_, m) =>m

This function implements the requirements from the task sheet very succinctly. The first case
makes sure the machine is always unlocked when someone enters coins as long as there are
candies left.

The second case is matched when the nob is turned. Note that we match on false to make sure
to only go into this case when the machine is not locked.

In all other casees the machine stays as is. Using this function now makes it very easy to
implement simulateMachine:

def simulateMachine(inputs: List[Input]): State[Machine, (Int, Int)] =
inputs.traverse(input => modify(update(input))) // State[Machine, List[Unit]]
.flatMap(_ => get.map(m => (m.coins, m.candies)))

The hartest part to understand surely is inputs.traverse(input => modify(update(input))).
Here we use the list of inputs and turn every input into a State-transition. The input is passed
to update, which turns update (formerly (Input, Maschine) => Maschine) int a function of
type Maschine => Maschine. modify is defined in Cats and takes a S => S and turns it into
a State[S, Unit], which ask for the state, transforms it and then saves it again. Would we
have used map instead of traverse we would have gotten a value of type List[State[Maschine,
Unit]] as a result. But since we used traverse the types get swapped and we get a value of
type State[Maschine, List[Unit]].

Now we just need to call get and yield coins and candies.

3 Applicative Filtering
3.1 filterA

The implemenation is short but a lot is going on:

def filterA[F[_],A](1l: List[A])(p: A => F[Boolean])(using AF: Applicative[F]): F[List[A]]
— _

1.foldRight[F[List[A]]](AF.pure(Nil))((a, fas) =>
p(a).map2(fas)((incl, b) => if incl then a :: b else b))

First things first: The signature is rather simple. We work inside a F[_] which we know to be
a Applicative (using Applicative[F]).

Within the method we start with foldRight with two parts:
1. The accumulator element used is just an empty list inside of F, i.e. of type F[List[A]].

2. The fold function gets an element of the original list in a as well as the entries already
created in fas. a of type A gets turned into a F[Boolean] via p(a).

Einfiihrung in die Funktionale Programmierung - SoSe 2021 09 Algebraic View On Monads

Then we use map2 to unpack p(a) and fa and bind it to incl and t. Inside the function
we check whether incl is true and if so prepend the a to the list. Otherwise we leave the
list unchanged. Since foldRight works from back to front, the list in F[_] is already in
the right order even though we prepend instead of append.

3.2 powerset

The implemention is straight forward:

def powerset[A](l: List[A]): List[List[A]] =
filterA(l)(_ => List(false, true))

Of course, the question is: Why does this work?

It works because List models the effect of multiple values. It splits the computation into multiple
paths. One with true and one with false.

This means that for each element there are two paths to take. One in which the element is inside
the resulting list and the other path in which it is not part of that list. This way, all possible
lists are generated. The empty list is the result of the computation in which every element has
been filtered out. The list containing all the elements is generated the opposite way. All the
other lists are somewhere in between.

3.3 Trees
1
2
3
{1,2,3} {1,2} {1,3} {1} {2,3} {2} {3} {3

List(1, 2, 3).filterA[Tree](_ => Branch(Leaf(false), Leaf(true)))

Just as a list a tree modles multiple values two. It has a richer inner structure though and keeps
it. Each inner node reprensents a fork in the road. To the left is the path with the element in
the list, to the right the path without. As is expected, the list with all elements is on the far
left, the list without any elements on the far right.

	Exercise sheet 09— Solutions
	Stack-Based Calculator
	Candy Machine
	Applicative Filtering
	filterA
	powerset
	Trees

