
Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

Exercise sheet 07— Solutions
1 Sequence in Cats

def sequence[F[_], A](fas: List[F[A]])(using mf: Monad[F]): F[List[A]] =

fas.foldRight[F[List[A]]](mf.pure(Nil))((a, b) => a.map2(b)(_ :: _))

Here not much has changed from the lecture. The only difference is that the implementation is
no longer on the Monad trait, but receives the Monad for F as parameter. Therefore the monad
instance has to be named when calling pure.

2 Identity Monad

given Monad[Id] with

def pure[A](x: A): Id[A] = x

def flatMap[A, B](fa: Id[A])(f: A => Id[B]): Id[B] = f(fa)

This encoding for the identity monad may be a bit confusing, but is pretty elegant. The type alias
defines Id[A] to be the same as A. This way, methods like pure and flatMap can be implemented
very simply

• pure lifts an A into an F[A]. But as F[A] = A, it can just return the input unchanged.

• flatMap usually has to unwrap the A. As the value packed in an Id is identical to the Id
itself, the value can be passed to the function f directly.

3 Monad Laws
a)

We want to show that both formulations of the associativity law are equivalent:

flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))

compose(compose(f)(g))(h) == compose(f)(compose(g)(h))

As a reminder, this is how we defined compose:

def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] =

a => flatMap(f(a))(g)

We start from the compose formulation and work our way to the flatMap formulation. First we
replace the outer compose calls in the compose formulation with flatMap calls, according to the
above definition.

1



Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

a => flatMap(compose(f)(g)(a))(h) == a => flatMap(f(a))(compose(g)(h))

Then we do the same for the inner compose calls.

a => flatMap((b => flatMap(f(b))(g))(a))(h) == a => flatMap(f(a))(b => flatMap(g(b))(h))

We simplify the left side. We can see, that the inner lambda, which takes a b, is called directly
with a. So we replace b with a and eliminate the inner lambda that way.

a => flatMap(flatMap(f(a))(g))(h) == a => flatMap(f(a))(b => flatMap(g(b))(h))

Now we have lambdas of the form a => ... on both sides. We remove those. Then we replace
f(a) on both sides with x. This is not a problem, as f was not restricted in any way, i.e. it can
produce any arbitrary x.

flatMap(flatMap(x)(g))(h) == flatMap(x)(b => flatMap(g(b))(h))

We now have our original formulation, except for the names. So we replace: g 7→ f, h 7→ g and
b 7→ a and get:

flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))

�

b)

We want to show that the formulations of the identity laws using compose and flatMap are
equivalent:

//left identity

compose(f)(pure) == f

flatMap(x)(pure) == x

//right identity:

compose(pure)(f) == f

flatMap(pure(y))(f) == f(y)

We first look at the left identity:

We first add a variable for the passed in value. As functions are the same iff they return the
same value for the same call, this is not a problem.

compose(f)(pure)(y) == f(y)

Now we replace compose with flatMap, just like in exercise a).

2



Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

(a => flatMap(f(a))(pure))(y) == f(y)

As before, we can replace the lambda’s a by y, as the lambda is called directly with y.

flatMap(f(y))(pure) == f(y)

Similar to the previous exercise, we substitute a function call with its result:

flatMap(x)(pure) == x

Now let’s look at the right identity:

We again add a variable for the passed in value:

compose(pure)(f)(y) == f(y)

Then we replace compose by flatMap.

(a => flatMap(pure(a))(f))(y) == f(y)

The passed y again replaces the anonymous a.

flatMap(pure(y))(f) == f(y)

�

c)

We have to show that the following equations hold for the Some as well as the None part of the
Option monad:

flatMap(x)(pure) == x

and

flatMap(pure(y))(f) == f(y)

• Left Identity with None:

flatMap(None)(Some(_)) == None

Based on the implementation of flatMap, we know that calling it on None returns None

again.

• Left Identity with Some:

3



Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

flatMap(Some(y))(Some(_)) == Some(y)

Based on the implementation of flatMap, y is ”unpacked”. Then it is wrapped back into
a Some using pure.

Some(y) == Some(y)

• For the right identity we don’t need a case analysis, as the variable y is a non-monadic
value that is lifted into the monad.

flatMap(Some(y))(f) == f(y)

f(y) == f(y)

Similar to left identity with Some, a flatMap on a Some (which we get from pure) simply
unwraps the contained value.

4 Monad Combinators
a)

There is not much to explain to the following solutions, they result from following the types.

• flatten via flatMap:

def flattenViaFlatMap[F[_],A](ffa: F[F[A]])(using Monad[F]): F[A] =

ffa.flatMap(identity)

• flatMap via flatten and map:

def flatMapViaFlattenAndMap[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B]

=↪→
fa.map(f).flatten

• compose via flatten and map:

def composeViaFlattenAndMap[F[_],A,B,C](afb: A => F[B])(bfc: B => F[C])(using

Monad[F]): A => F[C] =↪→
a => afb(a).map(bfc).flatten

b)

• flatten via compose:

def flattenViaCompose[F[_],A](ffa: F[F[A]])(using Monad[F]): F[A] =

compose(identity[F[F[A]]])(identity[F[A]]).apply(ffa)

• map via compose and pure:

4



Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

def mapViaCompose[F[_],A,B](fa: F[A])(f: A => B)(using mf: Monad[F]): F[B] =

compose(identity[F[A]])(a => mf.pure(f(a))).apply(fa)

• flatMap via compose:

def flatMapViaCompose[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B] =

compose(identity[F[A]])(f).apply(fa)

5


	Exercise sheet 07— Solutions
	Sequence in Cats
	Identity Monad
	Monad Laws
	Monad Combinators


