Exercise sheet 07- Solutions

1 Sequence in Cats

```
def sequence[F[_], A](fas: List[F[A]])(using mf: Monad[F]): F[List[A]] =
    fas.foldRight[F[List[A]]](mf.pure(Nil))((a, b) => a.map2(b)(_ :: _))
```

Here not much has changed from the lecture. The only difference is that the implementation is no longer on the Monad trait, but receives the Monad for F as parameter. Therefore the monad instance has to be named when calling pure.

2 Identity Monad

```
given Monad[Id] with
    def pure[A](x: A): Id[A] = x
    def flatMap[A, B](fa: Id[A])(f: A => Id[B]): Id[B] = f(fa)
```

This encoding for the identity monad may be a bit confusing, but is pretty elegant. The type alias defines $\operatorname{Id}[A]$ to be the same as A. This way, methods like pure and flatMap can be implemented very simply

- pure lifts an A into an $F[A]$. But as $F[A]=A$, it can just return the input unchanged.
- flatMap usually has to unwrap the A. As the value packed in an Id is identical to the Id itself, the value can be passed to the function f directly.

3 Monad Laws

a)

We want to show that both formulations of the associativity law are equivalent:

```
flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))
```

```
compose(compose(f)(g))(h) == compose(f)(compose(g)(h))
```

As a reminder, this is how we defined compose:

```
def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] =
    a => flatMap(f(a))(g)
```

We start from the compose formulation and work our way to the flatMap formulation. First we replace the outer compose calls in the compose formulation with flatMap calls, according to the above definition.

```
a => flatMap(compose(f)(g)(a))(h) == a => flatMap(f(a))(compose(g)(h))
```

Then we do the same for the inner compose calls.
a => flatMap((b => flatMap(f(b))(g))(a))(h) == a => flatMap(f(a))(b => flatMap(g(b))(h))

We simplify the left side. We can see, that the inner lambda, which takes ab, is called directly with a. So we replace b with a and eliminate the inner lambda that way.

```
a => flatMap(flatMap(f(a))(g))(h) == a => flatMap(f(a))(b => flatMap(g(b))(h))
```

Now we have lambdas of the form a => ... on both sides. We remove those. Then we replace $f(a)$ on both sides with x. This is not a problem, as f was not restricted in any way, i.e. it can produce any arbitrary x.

```
flatMap(flatMap(x)(g))(h) == flatMap(x)(b => flatMap(g(b))(h))
```

We now have our original formulation, except for the names. So we replace: $\boldsymbol{g} \mapsto \mathrm{f}, \mathrm{h} \mapsto \mathrm{g}$ and $\mathrm{b} \mapsto \mathrm{a}$ and get:

```
flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))
```


b)

We want to show that the formulations of the identity laws using compose and flatMap are equivalent:

```
//left identity
compose(f)(pure) == f
flatMap(x)(pure) == x
//right identity:
compose(pure)(f) == f
flatMap(pure(y))(f) == f(y)
```

We first look at the left identity:
We first add a variable for the passed in value. As functions are the same iff they return the same value for the same call, this is not a problem.

```
compose(f)(pure)(y) == f(y)
```

Now we replace compose with flatMap, just like in exercise a).

```
(a => flatMap(f(a))(pure))(y) == f(y)
```

As before, we can replace the lambda's a by y, as the lambda is called directly with y.

```
flatMap(f(y))(pure) == f(y)
```

Similar to the previous exercise, we substitute a function call with its result:

```
flatMap(x)(pure) == x
```

Now let's look at the right identity:
We again add a variable for the passed in value:

```
compose(pure)(f)(y) == f(y)
```

Then we replace compose by flatMap.

$$
(a \quad=>~ f l a t M a p(p u r e(a))(f))(y)==f(y)
$$

The passed y again replaces the anonymous a.

$$
\text { flatMap(pure }(y))(f)==f(y)
$$

c)

We have to show that the following equations hold for the Some as well as the None part of the Option monad:

```
flatMap(x)(pure) == x
```

and

```
flatMap(pure(y))(f) == f(y)
```

- Left Identity with None:

```
flatMap(None)(Some(_)) == None
```

Based on the implementation of flatMap, we know that calling it on None returns None again.

- Left Identity with Some:

```
flatMap(Some(y))(Some(_)) == Some(y)
```

Based on the implementation of flatMap, y is "unpacked". Then it is wrapped back into a Some using pure.

```
Some(y) == Some(y)
```

- For the right identity we don't need a case analysis, as the variable y is a non-monadic value that is lifted into the monad.

```
flatMap(Some(y))(f) == f(y)
f(y)== f(y)
```

Similar to left identity with Some, a flatMap on a Some (which we get from pure) simply unwraps the contained value.

4 Monad Combinators

a)

There is not much to explain to the following solutions, they result from following the types.

- flatten via flatMap:

```
def flattenViaFlatMap[F[_],A](ffa: F[F[A]])(using Monad[F]): F[A] =
    ffa.flatMap(identity)
```

- flatMap via flatten and map:

```
def flatMapViaFlattenAndMap[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B]
\hookrightarrow =
    fa.map(f).flatten
```

- compose via flatten and map:

```
def composeViaFlattenAndMap[F[_],A,B,C](afb: A => F[B])(bfc: B => F[C])(using
MMonad[F]): A => F[C] =
    a => afb(a).map(bfc).flatten
```

b)

- flatten via compose:

```
def flattenViaCompose[F[_],A](ffa: F[F[A]])(using Monad[F]): F[A] =
    compose(identity[F[F[A]]])(identity[F[A]]).apply(ffa)
```

- map via compose and pure:

```
def mapViaCompose[F[_],A,B](fa: F[A])(f: A => B)(using mf: Monad[F]): F[B] =
    compose(identity[F[A]])(a => mf.pure(f(a))).apply(fa)
```

- flatMap via compose:

```
def flatMapViaCompose[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B] =
    compose(identity[F[A]])(f).apply(fa)
```

