
Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

Exercise sheet for lecture 07—
Monads

In this exercise we deal with monads and their laws. You can find the signatures of the methods
shown below, as well as predefined implementations, in the Git repository at https://gitlab2.
informatik.uni-wuerzburg.de/intro-to-fp/tasksheets.

1 Sequence in Cats
Implement the function sequence for any monadic type. We already saw an implementation for
Option and Either.

def sequence[F[_], A](fas: List[F[A]])(using Monad[F]): F[List[A]] = ???

Use the Monad type class from Cats as well as foldRight and map2 for your implementation.

2 Identity Monad
Sometimes it is helpful to use functions defined for monads on types, which are not ”‘wrapped”’
in a monadic type. For this we create a pseudo type, resp. a type alias, which converts simple
types into type constructors.

type Id[A] = A

Attention, this type is not identical to the one from the lecture. There we used a
case class, here a type alias.

Implement a Monad instance for Id. The function tailRecM is provided.

tailRecM

In Cats, a monad instance has to provide an implementation of the function tailRecM in addition
to the functions known from the lecture. This function implements stack safe recursive calls to
flatMap. This implementation detail allows to ensure for all monads, that functions based on
recursive flatMap calls, which are pretty common in practice, don’t cause StackOverflowErrors
when they are implemented using tailRecM, as long as tailRecM is tail recursive for the monad
instance. You can find details in the docs

3 Monad Laws
a) Proof, that the following formulations of the associativity law for monads (based on

flatMap on the one hand, based on compose on the other) are equivalent:

flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))

compose(compose(f)(g))(h) == compose(f)(compose(g)(h))

The idea is to reshape one of the formulations into the other. Remember how compose was
implemented.

https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets
https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets
https://typelevel.org/cats/faq.html#tailrecm


Einführung in die Funktionale Programmierung - SoSe 2021 07 Monads

b) Proof that the formulations of the identity laws are equivalent. Use a similar appoach as
in exercise a).

compose(f, pure) == f

compose(pure, f) == f

flatMap(x)(pure) == x

flatMap(pure(y))(f) == f(y)

c) Proof that the identity laws (in their flatMap formulation) hold for the Option monad.

4 Monad Combinators
In the lecture, monads were introduced with the ”‘minimal set of monad combinators”’ flatMap
and pure. We’ll learn two more such sets, which are sufficient for the existence of a monad.
Use the functions from Cats’ Monad type class for pure, map, flatten and flatMap. An own
implementation is provided for compose.

a) pure, map and flatten

Implement the function flatten via flatMap. flatten removes one layer of nesting from
a nested monadic type.

def flattenViaFlatMap[F[_], A](ffa: F[F[A]])(using Monad[F]): F[A] = ???

Now implement flatMap and compose via flatten and map.

def flatMapViaFlattenAndMap[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B]

= ???↪→
def composeViaFlattenAndMap[F[_],A,B,C](afb: A => F[B], bfc: B => F[C])(using

Monad[F]): A => F[C] = ???↪→

b) pure and compose

We’ve seen that we can define compose in terms of flatMap in the lecture. But what about
the other way round?

Implement flatMap, flatten and map using pure and compose.

def flattenViaCompose[F[_],A](ffa: F[F[A]])(using Monad[F]): F[A] = ???

def mapViaCompose[F[_],A,B](fa: F[A])(f: A => B)(using Monad[F]): F[B] = ???

def flatMapViaCompose[F[_],A,B](fa: F[A])(f: A => F[B])(using Monad[F]): F[B] = ???


	Exercise sheet for lecture 07— Monads
	Sequence in Cats
	Identity Monad
	Monad Laws
	Monad Combinators


