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Exercise sheet 06— Solutions
1 Typeclass Instances for Binary Trees
a) SemigroupK for binary trees

Assuming we had a Monoid instance for our binary trees, what would the zero element look like?
We don’t have a representation for an empty tree. Our zero would be either a Branch or a Leaf,
but neither is suitable as a zero element:

• If we used leafs as zero, we could no longer store values in our tree.

• If we used branches as zero, there would no longer be a tree.

So we cannot define a monoid for our binary trees. But we can define a semigroup, which has
an associative combine operation like monoid, but no neutral element for that operation. As we
want to join trees independently from the contained type, we use SemigroupK.

A naive solution would be to simply combine two trees with a Branch:

given SemigroupK[Tree] with

override def combineK[A](x: Tree[A], y: Tree[A]): Tree[A] = Branch(x, y)

But this operation is not associative! We can see that in the following example:

Tree A:

a1 a2

Tree B:

b1 b2

Tree C:

c1 c2

Here we have three trees. For an associative operator <+> (an alias for combineK in cats) the
following must hold:

A <+> (B <+>C) = (A <+>B) <+>C

Our naive solution does not fulfill this law. The result of A <+> (B <+>C) is:

a1 a2

b1 b2 c1 c2

If we put the parentheses like this (A <+>B) <+>C the result differs:
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a1 a2 b1 b2

c1 c2

One way to get a better implementation fulfilling associativity is to always append the second
tree at the last Leaf element of the first tree. To do this combineK has to walk the tree recursively:
if the tree to which we are appending is a branch, we recursively append to the right subtree.
When we reach a leaf we insert a new branch.

given SemigroupK[Tree] with

def combineK[A](x: Tree[A], y: Tree[A]): Tree[A] =

x match

case Branch(l, r) => Branch(l, r <+> y)

case leaf => Branch(leaf, y)

a1

a2

b1 b2

A <+>B

b1

b2

c1 c2

B <+>C

a1

a2

b1

b2

c1 c2

(A <+>B) <+>C = A <+>(B <+>C)

b) Functor for binary trees

The map function for a binary tree has to apply the given f to all leaf nodes. To do that, we
call map recursively if we encounter a branch:

given Functor[Tree] with

def map[A, B](fa: Tree[A])(f: A => B): Tree[B] =

fa match

case Leaf(value) => Leaf(f(value))

case Branch(left, right) => Branch(left.map(f), right.map(f))
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c) Foldable for binary trees

When folding binary trees, we also have two instead of one recursive call, similar to map. When
encountering a branch in foldLeft, we first fold the left subtree and pass the result as starting
value for the right subtree’s fold. When we reach a leaf, we apply the function. In foldRight

we do the same, but with swapped left and right.

given Foldable[Tree] with

def foldLeft[A, B](fa: Tree[A], b: B)(f: (B, A) => B): B =

fa match

case Leaf(a) => f(b, a)

case Branch(left, right) => right.foldLeft(left.foldLeft(b)(f))(f)

def foldRight[A, B](fa: Tree[A], lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =

fa match

case Leaf(a) => f(a, lb)

case Branch(left, right) => left.foldRight(right.foldRight(lb)(f))(f)

Like described in the exercise text, the presence of the Eval wrapper can be ignored in the
solutoion, it behaves transparently. But when calling foldRight, we have to provide it.

You can see an example of using foldRight in the toList method, which we already saw in the
lecture. Here the version adapted for Cats, using Eval:

import Eval.*

def toList[F[_],A](fa: F[A])(using Foldable[F]): List[A] =

fa.foldRight[List[A]](now(Nil))((h, t) => now(h :: t.value)).value

The method now is required to wrap the values in Eval (and causes strict evaluation).

The single recursive calls then are as follows (only new starting values shown, ∅ = Nil):

1

2

C a

3

t s

1 .foldRight(∅)

2 .foldRight( 3 .fR(∅))

2 .foldRight( t .fR( s .foldRight(∅)))

2 .foldRight( t .fR({s}))

2 .foldRight({t,s})

C .foldRight( a .fR({t,s}))

C .foldRight({a,t,s})

{C,a,t,s}

2 Monoid Isomorphisms
We are given two Monoids (A,⊕, zA) and (B,�, zB), as well as an invertable function f : A → B.
We also know, that applying f to the result of A’s operator has the same result as applying it to
both operands and then using B’s operator to combine them. Also, f maps the neutral element
of A to the neutral element of B. In mathematical notation:

• ∀x, y ∈ A : f(x⊕ y) = f(x)� f(y),

• f(zA) = zB.
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We now want to generate zB and �, i.e. the monoid for B, from the monoid of A and the
function f .

Based on the above instructions, the solution for zB is simple, it is f(zA).

For deriving � we use the fact that f is invertable. Therefore x = f(f−1(x)). Let x′ = f(x).
Then from our requirements for f we get:

x′ � y′ = f(f−1(x′)⊕ f−1(y′))

The imap function receives a monoid for A, as well as the function f and its inverse as g, this is
enough to implement it following the above equation:

def imap[A, B](f: A => B, g: B => A)(using Monoid[A]): Monoid[B] = new Monoid[B]:

def empty: B = f(Monoid[A].empty)

def combine(x: B, y: B): B = f(g(x) |+| g(y))

Our g converts a B into A, so we can use A’s monoid for combining the values. Then we use f
to convert the result back into a B.

We now want to use this to create a monoid for our simple Box class, if the contained type has
a monoid. Therefore Box[A] corresponds to B from before. As function for converting an A to
a Box[A], we pass Box’s constructor to imap, for the other direction we pass a function that
returns the value attribute of Box.

given boxMonoid[A](using Monoid[A]): Monoid[Box[A]] = imap(Box[A], _.value)

Cats includes an implementation of imap already, it can be found on the typeclass Invariant.
So we also could simply delegate to that:

def imap[A, B](f: A => B, g: B => A)(using Monoid[A]): Monoid[B] =

cats.Invariant[Monoid].imap(Monoid[A])(f)(g)
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