Einfiihrung in die Funktionale Programmierung - SoSe ZIRAlgebras and the Monoid Typeclass

Exercise sheet for lecture 05—
Algebras and the Monoid Typeclass

The topics of this exercise are algebras, their laws, and the type class Monoid. Die Signaturen
der in den Aufgaben geforderten Methoden sowie die vorgegebenen Implementierungen finden
Sie online unter https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets als
Git-Repository.

1 Monoid Instance for Functions
Implement an instance of Monoid for functions, using the following signature:

given functionMonoid[A,B](using B: Monoid[B]): Monoid[A => B]

Consider the required return type for combine and zero and how you can produce it.

”*Follow the types!”’

2 Word Count — Parallel parsing

This exercise is a bit more difficult or extensive, but a more concrete programming task, based
on section 10.4 from the book ”‘Fuctional Programming in Scala”’ by Paul Chiusano and Rinar
Bjarnason.

Task description:

Say we want to count the number of words in a String, a simple parsing task. One could iterate
though the String character by character, looking for whitespace and counting the number of
unbroken substrings there are. With such sequential parsing, the parser state would only need
to remember if the previously seen character was a whitespace.

Suppose we don’t want to do it just for a short string, but for a huge text file, maybe even too
large to fit into memory. In such a case, it would be useful to work with smaller parts of the
file in parallel. The idea would be to divide the file into chunks, handle several of those chunks
in parallel and combine the results. In that case, the parser’s state needs to be a bit more
complex, and we need a way to combine intermediate results, regardless of wether the current
chunk is at the start, the middle or the end of the file. That means, our combining step should
be associative.

Example: We look at a short sentence and imagine it being a large file:

"lorem ipsum dolor sit amet,

If we split a string about in the middle, it’s possible that we split a word apart. In this examle
we’d get "lorem ipsum do" and "lor sit amet, ". Inthe combination step, we’d like to prevent
the word dolor to be counted twice. Simply counting the words as Int seems to not be enough.
So we need a data structure, that can represents partial results with possibly divided words like
do and lor, and can remember the number of already seen full words like ipsum, sit and amet.

We could represent partial results of the word count as the following algebraic data type:


https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets

Einfiihrung in die Funktionale Programmierung - SoSe ZIRAlgebras and the Monoid Typeclass

enum WordCount:
case Stub(chars: String)
case Part(1lStub: String, words: Int, rStub: String)

A Stub is the most simple case, containing a possibly incomplete word. Such a Stub will never
contain whitespace, only real characters / partial words. A Part on the other hand stores the
number of seen complete words in words. The value 1Stub contains a partial word seen left of
the counted whole words, rStub one on the right of those words.

For example, if we count words in the string "lorem ipsum do", the result would be Part("lorem",
1, "do"), because we only have one word that is definitely complete. As there is no whitespace

left of lorem or right of do, we can’t be sure if they are complete words (remember, we don’t

know if the string is the start or end of the file), so they haven’t been counted yet. With "lor

sit amet, " (note the whitespace in the end) we’d get the result Part("lor", 2, "").

a)

Implement a Monoid instance for WordCount and make sure it fulfills the monoid laws. We
recomment to use pattern matching in combine.

given Monoid[WordCount] with
def zero = ?2?
def combine(a: WordCount, b: WordCount) = 2??

Think about, how to combine two Part objects, so that it results in the desired behaviour of
counting whole words, especially what happens with the rPart of the left Part and the 1Part of
the right Part.

b)

Use the monoid to implement a function, which counts words in a string by dividing it recursively
into substrings (of approximately same size) and counting the words in those substrings.

def count(str: String)(using WM: Monoid[WordCount]): Int

Hints:

e Here, using several internal helper functions in count can be useful. For example a func-
tion, that takes a single Char and returns a WordCount object. def wordCount(c: Char):
WordCount = ???

e To check if a character is a whitespace, you can use the .isWhitespace method.

o A string can be divided into substrings at a given position with .splitAt (returns a tuple
of two strings).

e In the next lecture, we’ll see a variant of fold specially for use with monoids, which handles
the recursion needed here, but in this exercise you’ll still have to do it manually.



	Exercise sheet for lecture 05— Algebras and the Monoid Typeclass
	Monoid Instance for Functions
	Word Count — Parallel parsing


