
Einführung in die Funktionale Programmierung - SoSe 2021 04 Laziness

Exercise sheet for lecture 04—
Laziness

1 Old friends
There exist many functions for LazyList that you already know from before.

Implement map, filter, append and flatMap, each using foldRight inside the enum. Part of
this exercise is to write the signatures yourself. The implementations of these methods works
very similar to the ones you already know. The signature for append is provided:

def append[B >: A](b: => LazyList[B]): LazyList[B] = ???

Hint: Use the smart constructors from the companion object.

2 takeWhile
In this exercise you will implement the function takeWhile in three different ways. takeWhile

is basically the opposite of dropWhile, it returns all elements from the start of a LazyList, for
which a given predicate returns true. As soon as the function find’s the first element, for which
the predicate returns false, it stops.

You can use the following provided signature to implement it in the LazyList enum.

def takeWhile(p: A => Boolean): LazyList[A] = ???

a) Implement takeWhile on LazyList using explicit pattern matching!

b) Implement takeWhile using foldRight!

c) Implement takeWhile using unfold!

3 tails
Implement the function tails via unfold (and append if necessary)!

For a given LazyList, tails returns a LazyList of all suffixes, i.e. all sublists we can get by re-
moving elements from the beginning, starting with the original LazyList. For example, if we have
LazyList(1,2,3), tails would produce the resul LazyList(LazyList(1,2,3), LazyList(2,3),

LazyList(3), LazyList()).

The signature of tails on the LazyList enum looks like this:

def tails: LazyList[LazyList[A]] = ???


	Exercise sheet for lecture 04— Laziness
	Old friends
	takeWhile
	tails


