
Einführung in die Funktionale Programmierung - SoSe 2021 03 Handling Errors

Exercise sheet for lecture 03
In this exercise we deal with handling errors without exceptions, using Option and Either. We
will use the implementation of those from the standard library. You can find the signatures of
the methods you should implement, as well as some given implementations, in the git repository
at https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets.

1 Standard deviation
Using flatMap we can create algorithms, whose calculations have several sections that could
each fail. The calculation stops, as soon as the first error occurs, because None.flatmap(f)

immediately returns None without calling f.

Implement the function standardDeviation using flatMap!

Let the mean of a sequence of numbers be m. Then the standard deviation is the square root
of the mean of math.pow(x-m, 2) for every x in the sequence. Use the mean function from the
lecture, which returns an Option[Double]. You can use math.sqrt to calculate the square root.

def standardDeviation(xs: List[Double]): Option[Double] = ???

2 sequence and traverse for Option
In this exercise you will implement the functions sequence and traverse, which were shown in
the lecture, in several different ways.

The goal is to practice using folds and maps and to see how different functions can be imple-
mented ”‘in terms of each other”’. Here are once again the signatures of sequence and traverse

for Option

def sequence[A](a: List[Option[A]]): Option[List[A]] = ???

def traverse[A, B](a: List[A])(f: A => Option[B]): Option[List[B]] = ???

a) Implement sequence using foldRight and map2!

b) Implement traverse using explicit pattern matching and map2 without using sequence!

c) Implement traverse using foldRight and map2!

d) Implement sequence using traverse!

The function map2 combines two Option objects (or similar) into one object1:

def map2[B,R](optB: Option[B])(f: (A,B) => R): Option[R] =

for

a <- this

b <- optB

yield f(a, b)

1slightly different in the template, as the standard library doesn’t define map2 on Option

https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets


Einführung in die Funktionale Programmierung - SoSe 2021 03 Handling Errors

3 sequence and traverse for Either
In this exercise you have to implement sequence and traverse for Either. The functions don’t
differ much from the ones you know from Option.

def sequence[E, A](es: List[Either[E, A]]): Either[E, List[A]] = ???

def traverse[E, A, B](as: List[A])(f: A => Either[E, B]): Either[E, List[B]] = ???

a) Implement sequence first, then traverse using sequence as seen with Option in the lecture!

b) Now implement traverse first and then sequence using traverse as in exercise 2!

4 Accumulating errors
The following example shows an application of map2, in which the function mkPerson checks the
passed name as well as the age, before creating a valid Person.

case class Person(name: Name, age: Age)

case class Name(value: String)

case class Age(value: Int)

import Either.{Left, Right}

def mkName(name: String): Either[String, Name] =

if name == "" then Left("Name is empty.")

else Right(Name(name))

def mkAge(age: Int): Either[String, Age] =

if age < 0 then Left("Age is out of range.")

else Right(Age(age))

def mkPerson(name: String, age: Int): Either[String, Person] =

mkName(name).map2(mkAge(age))(Person(_, _))

a) In this implementation, map2 can only return one error. How could the datatype Either

be modified, to allow map2 to return all errors?

b) Why can flatMap never collect errors (and thus no implementation of map2 based on
flatMap)?


	Exercise sheet for lecture 03
	Standard deviation
	sequence and traverse for Option
	sequence and traverse for Either
	Accumulating errors


