Einfiihrung in die Funktionale Programmierung - SoSe 2023 02 Functional Data Structures

Exercise sheet for lecture 02

In the Git repository (https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets)
you can find templates for the exercise sheets. These include already discussed code from the
lecture (e.g. the List type), as well as function signatures given in the sheet. The repo also
contains a build.sbt file with preconfigured compile options. Using that file, you can import
the repository as a project into your favorite Editor (with LSP support) or IDE.

In the lecture, we looked at the functional data structure List. You can find the implementation
in the file fp02/List.scala in the template repo.

1 dropWahile

In the lecture we saw a function named drop, which removes the first n elements of a list.

Implement the function dropWhile, which removes elements from the beginning of the list, as
long as the given boolean function returns true for them. Use pattern matching and recursion.

def dropWhile(f: A => Boolean): List[A] = 2??

2 Folds — step by step
In the lecture the execution of a call to foldRight was traced step by step.

a) What does this trace look like, if we use foldLeft instead?

Cons(1, Cons(2, Cons(3, Nil))).foldLeft(0)((x, y) => X + V)

b) The following call to foldRight increments every element in the list 1 by 1 and creates a
new list from that. Trace the execution step by step.

val 1 = Cons(1, Cons(2, Nil))
1.foldRight(Nil: List[Int])((h, t) => Cons(h + 1, t))

3 reverse
Implement the function reverse, which returns the list in reverse order. Use foldLeft. Think
about which initial accumulator has to be given to foldLeft to build a list from.

def reverse: List[A] = ?2?


https://gitlab2.informatik.uni-wuerzburg.de/intro-to-fp/tasksheets

Einfiihrung in die Funktionale Programmierung - SoSe 2023 02 Functional Data Structures

4 append
Implement the function append, which concatenates this list with another one, i.e. appends the
given list to this one, using foldRight.

def append[AA >: A](r: List[AA]): List[AA] = ?22?

You can find an Implementation using pattern matching and manual recursion in the template.

5 map, filter and flatMap

map

Implement the function map using foldRight. This function modifies every element in the list
while keeping the structure of the list. In the lecture, two example applications for this function
were shown.

def map[B](f: A => B): List[B] = ?2?

//Example 1: double all values
List(1,2,3).map(_ * 2) == List(2,4,6)

//Example 2: result type can be different
List(1,2,3).map(_.toString) == List("1", "2", "3")

Hint: You've seen a special case of the implementation of map in an earlier exercise on this
sheet.

filter

Implement the function filter as seen in the lecture. This function returns a new list, which
only contains those elements, for which the given boolean function returns true.

def filter(p: A => Boolean): List[A] = 22?

//Example: only keep odd numbers
List(1,2,3,4,5,6).filter(_ % 2 == 1) == List(1,3,5)

flatMap

The function flatMap is similar to map, but the function passed into it returns a list of elements.
The returned lists are concatenated into a single list.

def flatMap[B](f: A => List[B]): List[B] = 2??
//Example: for each number, add it multiplied by 10 to the list

List(1,2,3).flatMap(i => List(i, i1 * 10)) == List(1, 10, 2, 20, 3, 30)

Use foldRight and append to implement flatMap.



Einfiihrung in die Funktionale Programmierung - SoSe 2023 02 Functional Data Structures

6 zip

The functions in the zip family combine multiple lists in various ways.

a) Implement a function zipAdd, which takes to lists of integers and creates a new list by
adding corresponding elements in the lists. For example zipAdd(List(1,2,3), List(4,5,6))
results in the new list List(5,7,9)

Implement this function in the companion object!

b) Generalize the function zipAdd to zipWith, so that it isn’t limited to integer lists and
adding, but takes the operation as a parameter.

Implement this function directly in the List enum. (Beware: not simple!)
Think about the required signatures for each function and write them yourself.

If the two lists aren’t the same length, the zip functions should stop at the end of the shorter
one, so that the resulting list also has the length of the shorter input list.

Hint: Use pattern matching and recursion. For pattern matching multiple elemns, you can
combine them into a tuple (a,b) and match on that. For example, using integers instead of
lists:

val a = 2
val b = 4

(a,b) match
case (x,y) => /* x == 2, y == 4 */

7 Parametricity
Implement the following functions in the file Parametricity.scala

Implement the functions curry uncurry, which convert functions taking two parameters into
nested functions taking one parameter (and the other way round)

def curry[A,B,C](f: (A,B) => C): A => (B => C) = 22?

def uncurry[A,B,C](f: A => (B => C)): (A, B) => C = 222

Hint: Because of the generic definition and choice of type parameters, there is basically only
one way to implement these.



	Exercise sheet for lecture 02
	dropWhile
	Folds — step by step
	reverse
	append
	map, filter and flatMap
	zip
	Parametricity


