
Übung: Scala Syntax
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2020

Lehrstuhl für Informatik VI, Uni Würzburg

1

Basics

Before we begin

This introduction compares some concepts with Java, but knowledge in another
statically typed language should also be sufficient.

We use Scala 3, the current version of the language. Scala 2 is still widely used,
but for functional programming, version 3 has some big improvements, which we
heavily rely on.

For a more in depth introduction to the language, refer to the official
documentation at
https://docs.scala-lang.org/scala3/book/introduction.html or
the book “Programming in Scala” (Fifth Edition, earlier ones are for Scala 2).
In this tutorial, we only explain the parts we use in the lecture.

2

https://docs.scala-lang.org/scala3/book/introduction.html

Required software

For trying out Scala without installing, you can use
https://scastie.scala-lang.org/ (make sure, Scala 3 is selected in the
settings).

But for anything larger than single file exercises (e.g. the grade bonus exercises),
you should install Scala on your computer. There are different ways to do that
and different editors you can use, we will recommend some of them.

3

https://scastie.scala-lang.org/

Required Software - Command line tools

To install the command line tools, including the build tool sbt and the Scala
REPL (interactive Scala console), the easiest way is to use Coursier:

https://get-coursier.io/docs/cli-installation
Coursier also makes sure you have a JVM installed (Scala compiles to Java
Bytecode by default).

4

https://get-coursier.io/docs/cli-installation

Required Software - Editors

A language server named Metals exists for Scala, so you can get completion etc.
in any Editor supporting LSP. The one recommended by the developers is VSCode,
you can find the plugin here:
https://marketplace.visualstudio.com/items?itemName=
scalameta.metals
After installing, you can open a directory containing a build.sbt project
definition (a template is provided in the course materials). Select Import build
when prompted.

For other editors, see https://scalameta.org/metals.

5

https://marketplace.visualstudio.com/items?itemName=scalameta.metals
https://marketplace.visualstudio.com/items?itemName=scalameta.metals
https://scalameta.org/metals

Required Software - Using IntelliJ

If you prefer Intellij IDEA, you can install the Scala plugin from the plugin
marketplace.

Note that Intellij doesn’t use Metals, but implements its own Scala syntax parsing.
This may in some cases lead to code being marked as wrong, even if the code
compiles, or the other way round.

To open a project, open its build.sbt and select “Open as project” when
prompted.

6

Scala by Example

// comments

/* multiline
* comments */

/** documentation comments */
val x = 42

def abs(n: Int): Int =
if n < 0 then -n
else n

def formatAbs(x: Int) =
val msg = "The absolute value of %d is %d"
msg.format(x, abs(x))

@main def myProgram: Unit =
println(formatAbs(-42))

Let’s look at all the parts of this example. 7

Defining values

val x = 42

• Values can be declared with val. Values are like variables in math: they are
defined once and have a single value for a given scope1

• Type optional, inferred by compiler if not given (still static)
Type is written between name and equals sign: val x: Int = ...

• Mutable variables can be declared with var (avoid in FP. Our compiler
settings for the exercises will disallow it)

1like final variables in Java

8

Function definition

def abs(n: Int): Int =

• Function defined with keyword def
• types for parameters separated by colon, after parameter name
• return type of function after parameter list
• body of function is separated with equal sign and is an expression, i.e. some
code that results in a value.

•

9

Expressions

def abs(n: Int): Int =
if n < 0 then -n
else n

• In Scala, nearly everything 2 is an expression, i.e. results in a value, including
control structures like if.

• if evaluates to the result of the taken branch. Each branch is itself an
expression.

• last expression of the function is also the result of the function. No return
statement needed.

2Rule of thumb:
if it doesn’t introduce any names into the namespace (like declaring a new type or variable), it’s an
expression (there are exceptions to this, but none that we need during this lecture).

10

Significant indentation

def abs(n: Int): Int =
if n < 0 then -n
else n

def formatAbs(x: Int) =
val msg = "The absolute value of %d is %d"
msg.format(x, abs(x))

• In Scala 3, indentation is significant. Here, both lines below each def are
part of its body.

• Same goes for control structures, e.g. to have multiple lines in an if, indent
them to the same depth.

• The result of a block with multiple lines is the result of the last expression in
that block, e.g. in formatAbs the result of msg.format(...)

11

Function type inference

def formatAbs(x: Int) =
val msg = "The absolute value of %d is %d"
msg.format(x, abs(x))

• Return type of functions can be inferred, the compiler decides based on the
expression in the function body (use with caution). ⇒ result is the last

expression in the body

• msg.format returns String
⇒ body evaluates to String
⇒ return type of formatAbs inferred to String

• Caveat: compiler won’t check, if you return the right thing. Avoid return type
inference, especially for larger functions

12

Main functions

@main def myProgram(input: Int): Unit =
println(formatAbs(input))

• Main functions are where our program starts (like in C, Java, ...)
• Add @main before def to create a main function
• Main functions may take parameters (only basic types by default, e.g. strings
and ints), which can be passed when calling the program

13

Literals

Literals for basic types are mostly like in other C-like languages:

Integers 1, -1, Long: 12345678900L, Hex: 0xF4
Doubles 1.00, -2.609e11, Single-precision floats: 0.1f
Strings "Hello, World"

Booleans true, false

String interpolation can be enabled by prefixing a string literal with an s. This
allows to include values via $valname and arbitrary expressions in the string via
${expr}:

val interp = s"Hello, $name. You have ${messages.size} messages"

14

Packages and Classes

Packages and Imports

Packages work like in Java. You add all things in a file to a package by adding a
package line like package my.package.name at the top. If you come from
other languages, the equivalent is often called a module or namespace.

import works mostly like in Java. Some differences:

• „static“ imports don’t use any additional keyword
e.g. import scala.math.* allows using the abs function without prefix

• To import multiple elements from a package, use braces:

import my.package.{SomeClass, myFunction}

• For advanced features refer to Programming in Scala, Odersky et. al., Ch. 12

15

Classes

class Foo(val field: Int, internal: Boolean):

// functions and vals here

• Classes have a primary constructor:
• parameters in parentheses after class name
• each param has a name and type
• params only visible in class body by default. Add val/var to make them
public fields

• everything in class body (not in a def) is evaluated in constructor
• body can contain further instance function and value declarations
• to instantiate, use class name + parameters, e.g.:
val myFoo = Foo(7, true)

primary constructor

16

Case classes

case class Book(title: String, author: String, isbn: Long)

• Case classes simplify defining value types3

• All constructor parameters→ public immutable properties
(like declaring with val in normal class)

• Can be pattern matched (later in this lesson)
• Implicitly declares:

• hashCode, equals, toString
• several utility functions

With purely functional code, most if not all your classes will be case classes.

3like Java record or Python dataclass

17

Objects

object MyModule:
def foo(a: Int): Int = ???
val x = 3

• object creates singleton types (like a class, which only has one fixed
instance)

• Can be used to group functions and values together
• An object defined this way behaves just like objects created from classes
• e.g. calling a function on the object: MyModule.foo(5)
• You may define an object with the same name as a class. This is called the
companion object of a class. Beside grouping standalone functions related
to the class, it will be relevant when we learn about typeclasses.

18

Everything is objects

• In Scala every value is an object (even primitives like Int)
• Calling the functions from MyModule requires writing e.g.
MyModule.abs(-42) as it is a function call on object MyModule

• Calling functions on literals is possible: 1.toString == "1"

19

Traits

• A trait is similar to an interface in Java (and compiles to one)
• Most differences (e.g. can have state, different inheritance rules) not relevant
to this lecture

• Syntax for abstract functions: simply leave off everything starting at equals
sign

• We will use traits for typeclasses, which will be explained in a later lecture

20

Enums

In Scala, enum can define an enumeration like in Java, but can also be used for
algebraic data types (ADT).

• enumeration: set of fixed values, that the enum type can have, e.g.

enum Color:
case Red, Green, Blue

• each case is a value of type Color:

val myColor: Color = Color.Red

21

Enums

• ADT: set of case classes and objects, i.e. at least one of the enum cases has
parameters.

enum BottleContent:
case Juice(fruit: String)
case Water(sparkling: Boolean)
case Empty

• enum cases with parameters are used like case classes:

val appleJuice: BottleContent = BottleContent.Juice("apple")
val tapWater: BottleContent = BottleContent.Water(false)

• Enums define all their subtypes (you can’t add any later on). So we know,
that a variable of type BottleContent is always either an instance of
Juice or Water, or the Empty object.

22

Inheritance

non-essential

Class inheritance is rarely used in FP, we’ll use typeclasses instead in later
lectures. You won’t need the following often.

class Foo extends Bar with Bax with Qux

• (case) classes and objects can extend one class and any number of traits
• if extending a class, it must come first in extends clause
• traits can only extend traits

23

Operators in Scala

non-essential

• Operators are just “syntactic sugar” for functions in Scala
e.g 1 + 2 is the same as 1.+(2)
(calls a function + on the object 1 with parameter 2)

• Any function with a single parameter can be written using this infix notation
(no dot and parens)

• For functions with non-symbolic names, use sparingly (future Scala versions
will require function definition with infix keyword)

24

Pattern matching

Patterns

Case classes and objects can be used as patterns.

A pattern looks like calling the case class constructor, but may use unbound
variables.

val scalaBook = Book("Programming in Scala", "Odersky", 9780981531687L)

/* pattern: */ Book(t, a, i)

The variables t, a and i are unbound in the pattern. Matching scalaBook and
the pattern, these variables are bound to the fields title, author and book in
the book class.

25

Patterns

Case classes and objects can be used as patterns.

A pattern looks like calling the case class constructor, but may use unbound
variables.

val scalaBook = Book("Programming in Scala", "Odersky", 9780981531687L)

/* pattern: */ Book(t, a, i)

The variables t, a and i are unbound in the pattern. Matching scalaBook and
the pattern, these variables are bound to the fields title, author and book in
the book class.

25

Pattern matching

Patterns can be used in a match expression:

<var> match {
case <pattern> => <expression using pattern vars>
case <other pattern> => ...

}

The first matched case is evaluated, its value is the value of the match
expression. If no case matches, an error is thrown.

When matching on an enum, the compiler can warn on non-matched possibilities
in most cases (exhaustiveness check).

26

Pattern matching

A literal, e.g. a string, may also be used as a pattern. This is especially useful with
nesting patterns, e.g. Book(t, "Odersky", i) to match only if the matched
book has the author "Odersky".
Using _ instead of a variable or constant, a part of the pattern can be ignored
(matches anything, does not bind to a name).

An example using all these features:

scalaBook match
case Book(title, "Odersky", _) => s"Book ${title} is by Odersky"
case Book(title, _, _) => s"Book ${title} is by another author"
case _ => "Not a book"

27

Enums and matching

We’ve heard about enums earlier. These can help the compiler to check, if we
cover all cases. Here’s our enum from before:

enum BottleContent:
case Juice(fruit: String)
case Water(sparkling: Boolean)
case Empty

Remember that BottleContent’s only subtypes are the cases defined inside.

28

Enums and matching

Let’s use our enum in a match.

val bottle: BottleContent = ???
bottle match

case BottleContent.Juice(fruit) => s"You've got $fruit juice"
case BottleContent.Water(isSparkling) =>

val variant = if isSparkling then "sparkling" else "still"
s"You've got water, it is $variant"

The compiler will warn us, that we forgot to check for empty bottles:

[warn] -- [E029] Pattern Match Exhaustivity Warning: .../code/Enum.scala:24:2
[warn] 24 | bottle match
[warn] | ^^^^^^
[warn] | match may not be exhaustive.
[warn] |
[warn] | It would fail on pattern case: Empty

29

Enums and matching

Matching all cases will make the compiler happy:

bottle match
case BottleContent.Juice(fruit) => s"You've got $fruit juice"
case BottleContent.Water(isSparkling) =>

val variant = if isSparkling then "sparkling" else "still"
s"You've got water, it is $variant"

case BottleContent.Empty => "Your bottle is empty."

30

Scala’s Type System

Types

Let’s look at Scala’s type system, and especially parts that are relevant to FP.
Some basic points:

• Primitive types treated like objects syntactically (but are still value types)
• These are named like Java counterpart with uppercase initial letter
(e.g. Java int → Scala Int)

• Upper bound for all types: Any (includes primitives)
• Upper bound for reference types: AnyRef (=̂ Object)

31

Types: Tuples

• Several values can be grouped into a tuple by enclosing in parens
• Type of tuple is combination of type of parts

val myTuple: (String, Int, Boolean) = ("hello", 42, true)
// access members by underscore + 1-based index
myTuple._1 == "hello"
myTuple._2 == 42
myTuple._3 == true

• Common usages: intermediate results in chained calls, returning multiple
values from functions

• Tuples are immutable

32

Types: Unit

We’ve seen functions with type Unit used like void in Java. But every function in
Scala returns a value, so there must be a difference.

• A unit type is a type with only one value.
• Unit commonly regarded as a 0-tuple
• Value of type unit can be written as ()

33

Types: Nothing

• Nothing is a subtype of every other type (known as bottom type)
• As no object can be of all types at once, there is no value of type Nothing
• A function with this type does not return (i.e. has to throw an exception, loop
forever, etc.)

• Most useful in combination with type parameters, e.g. an empty list can have
element type Nothing. We’ll see why this is useful, when we look at
variance.

34

Types: Functions

One core concept used in functional programming are Higher Order Functions
(HOFs). They are functions that takes another function as parameter.

For this, we need to be able to declare parameters with function type, and ideally
function literals (lambdas).

35

Types: Functions

val f1: Int => Boolean = i => i < 3

• Function type denoted by (param types) => return type
• Function literal follows this syntax, (params) => expression

val f2: (Int,Int) => Int = (a,b) => a * b

• For multiple params, use parens

• Like in Java, single function trait can also be instantiated with function literal

36

Types: Functions

val f3: Int => Boolean = _ < 3

val f4: (Int,Int) => Int = _ * _

• If parameters are only referenced once in function body, shorthand notation
can be used

• Each underscore corresponds to one parameter, in order of occurrence
• Can cause unexpected compile errors when there is nesting involved. If in
doubt, use named parameters for more complex lambdas.

37

Types: Functions — Applying

Functions saved in a val can be used just like functions defined with def:

val f1: Int => Boolean = i => i < 3

if f1(45) then //...

val f2: (Int,Int) => Int = (a,b) => a * b

val i: Int = f2(2,3)

38

Type parameters

Scala supports type parameters for types and functions. These are written in
brackets after the type’s or function’s name:

trait Container[A]: // ...

case class Pair[A, B](first: A, second: B)

def applyFunction[A, B](input: A, f: A => B): B = f(input)

Parameters can be filled with concrete types, e.g.:

def handle(input: Pair[Int, String]): String = input.second

39

Type parameter inference

Type parameters can also be explicitly given when instantiating a parameterized
type or calling a parameterized function, but can be inferred most of the time:

case class Pair[A, B](first: A, second: B)

val strAndInt = Pair("Hi", 123) // A is String and B is Int

def applyFunction[A, B](input: A, f: A => B): B = f(input)

applyFunction(123, i => i.toDouble) // A is Int, B is Double
// or even
applyFunction(123, _.toDouble)

40

Higher order functions and multiple parameter lists

Function type parameters are usually put into a separate parameter list, as this
makes passing multiline functions easier4: parameter list with a single parameter
can be written in braces to allow line breaks.

def applyFunction[A, B](input: A)(f: A => B): B = f(input)

applyFunction(123) { i =>
val half = i / 2
half.toString

}

This is a curried function, if you call it with just the parameters of the first list, it
will return a function taking the remaining parameters.

4in older Scala, they were also needed for type inference

41

Advanced features

Advanced features

This tutorial only handles concepts we will need in the first few lectures. Some
advanced features of Scala will be explained in the lecture, when we need them.
This includes:

• Variance, which specifies how subtyping for parameterized types works
• Lazy evaluation, to compute things only when needed
• Extension functions for adding functionality to existing types
• Givens, a feature for handling function dependencies without passing them
around manually

• Higher kinded types, type parameters that take parameters themselves

42

	Basics
	Packages and Classes
	Pattern matching
	Scala's Type System
	Advanced features

