
12 — Parser Combinators
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2020

Lehrstuhl für Informatik VI, Uni Würzburg

1

Functional parsers

We learned lots of abstractions in the last weeks.

In this lecture, we will look at a more practical example and implement functional
Parsers. We will see, how we can use our abstractions from before for that.

2

Types of parsers

So we have some data format we want to parse. What approaches could we use?

Existing parser: if there is one, use it.
Very simple format: maybe String.split("\n") is enough?
Regexes: enough for some formats, but fragile and limited
Parser generated from grammar: Commonly used, difficult to debug and reuse
Handwritten Recursive Parser: most flexible and always possible, but tedious

3

Parser combinators

A functional approach to parsing are parser combinators. We model parsers as
functions for small parts of the text, that can be composed into larger parsers
with various combinators.

We will look at designing a library for this top-down, starting with the Algebra.

4

Basic operations

We start with the smallest unit we will parse, a character. We want a parser that
can recognize a given character:

def char(c: Char): Parser[Char]

This method shall create a parser for a given char. The type Parser[A] will
represent a parser which gives us an A when run on some input.

5

Running a parser

We said we want to represent parsers as functions. We need some string as input
and produce a value of the result type:

String => A

But we want small parsers that we can compose, so most parsers will only
process a part of the input.

6

Parsers as functions

Let’s return the remaining input from our function. And while we are at it, we will
also add error handling:

enum ParseResult[+A]: // similar to Either
case Fail(remain: String, error: String) extends ParseResult[Nothing]
case Done(remain: String, result: A)

So we can define our signature for running a parser:

trait Parser[+A]:
def parse(input: String): ParseResult[A]

7

A simple identity law

We can define a simple law regarding parse for the character parser. If we input a
single character’s string representation, parsing it with a char parser should
return the same char, without more input remaining:

char(c).parse(c.toString) == Done(remain = "", result = c)

8

String parser

We probably also want a parser that can read more than one character, without
concatenating lots of character parsers. Let’s add a String parser:

def string(s: String): Parser[String]

It has a similar law:

string(s).parse(s) == Done(remain = "", result = s)

9

Regex parser

For good measure, we also add a parser matching against a regex. We could also
implement most of that functionality via combinators, but that’s cumbersome if
we don’t need the parts of the regex.

def regex(r: Regex): Parser[String]

10

String parser

We can now write parsers recognizing strings:

string("a").parse("abc") == Done(remain = "bc", result = "a")

Just parsing constant strings is something we can also do with the startsWith
method. Let’s think about what operations we would like to make the parsers
more useful.

11

Combinators

What if we want to recognize, if one of two strings is there? We add a combinator
representing an “or” operation to our Parser:

def | [B>:A](pb: Parser[B]): Parser[B]

We can use it like this:

val orParser = string("a") | string("b")
orParser.parse("all") == Done("ll", "a")
orParser.parse("ball") == Done("all", "b")

12

Combinators

Another commonly needed functionality is repetition of some matched pattern.
So we want to add a combinator, that applies a parser until it doesn’t match the
remainder anymore, and then returns all matches.

We add such a combinator to our Parser:

def many: Parser[List[A]]

We can apply it to any parser:

orParser.many.parse("abbabcd") == Done("cd", List("a", "b", "b", "a", "b"))

13

Combinators

⌨

Another combinator we would like is chaining several parsers after each other. In
parser libraries the operator ~ is commonly used for that:

def ~[B](next: => Parser[B]): Parser[(A, B)]

A usage example with some parsers of type Parser[String]:

val keyValueParser = keyword ~ whitespace ~ value

What would be the type of this parser?

Parser[((String, String),String)]

14

Combinators

Another combinator we would like is chaining several parsers after each other. In
parser libraries the operator ~ is commonly used for that:

def ~[B](next: => Parser[B]): Parser[(A, B)]

A usage example with some parsers of type Parser[String]:

val keyValueParser = keyword ~ whitespace ~ value

What would be the type of this parser?
Parser[((String, String),String)]

14

Typeclasses for our parser

⌨

We can now parse strings into parts that are also strings, but usually we’ll want
something else. For example, if we have a parser that accepts digits, we probably
want a numeric value.

We are given a digit parser (accepting any number of digits 0-9), returning the
digits as a string.

def digits: Parser[String]

We’d like a Parser[Int] instead. Which typeclass could we implement for
Parser to help us here?

15

Typeclasses for our parser

⌨

We want a Functor to provide us with map:

def int: Parser[Int] = digits.map(_.toInt)

Are there more typeclasses, that would be useful for our Parser? Let’s think
about Monad. What parsers would a flatMap method allow us to write, that map
could not?

def flatMap[A, B](fa: Parser[A])(f: A => Parser[B]): Parser[B]

16

Typeclasses for our parser

As flatMap allows us to use a different Parser based on the result of a previous
one, we can use it to parse context sensitive grammars.

This allows us to parse more complex languages. For example, we could have a
file format with type annotations for values. Depending on the type annotation,
we use another parser to parse the value.

Let’s look at an example.

17

Typeclasses for our parser

We first parse a string, and then, depending on its content, we either parse the
next token as an int or as a string:

val typedValue: Parser[Either[Int, String]] =
for

kw <- string("int") | string("string") // parse the datatype
_ <- whitespace // separate type and value
value <- if kw == "int" then int.map(Left(_)) // parse as int

else regex(".*".r).map(Right(_)) // parse as string
yield value // keep only value

typedValue.parse("int 34") == Done("", Left(34))
typedValue.parse("string 34") == Done("", Right("34"))

18

Typeclasses for our parser

⌨

To get a monad for Parser, we need an implementation for pure:

def pure[A](a: A): Parser[A]

How should the parser returned by pure behave?

It should return the given value without consuming any input, i.e.

Monad[Parser].pure(a).parse(s) == Done(s, a)

19

Typeclasses for our parser

To get a monad for Parser, we need an implementation for pure:

def pure[A](a: A): Parser[A]

How should the parser returned by pure behave?

It should return the given value without consuming any input, i.e.

Monad[Parser].pure(a).parse(s) == Done(s, a)

19

Intermediate summary

Let’s look at what we have until now:

char(c) match the character c
string(s) match the string s
regex(r) match the regular expression r
digits match numeric digits
p1 | p2 try p1, if it doesn’t match try p2
p1 ~ p2 return tupled result of p1 and p2 if both match
p.many apply p repeatedly and return a list of matches
p.map(f) run the parser and transform its result
p.flatMap(f) run the parser and change further parsing based on its result
pure(a) returns a without consuming input

Which of these are primitive, i.e. can’t be implemented via the others?

Note: string can be built via regex, but implementing it directly is more efficient and easier

20

Intermediate summary

Let’s look at what we have until now:

char(c) match the character c
string(s) match the string s
regex(r) match the regular expression r
digits match numeric digits
p1 | p2 try p1, if it doesn’t match try p2
p1 ~ p2 return tupled result of p1 and p2 if both match
p.many apply p repeatedly and return a list of matches
p.map(f) run the parser and transform its result
p.flatMap(f) run the parser and change further parsing based on its result
pure(a) returns a without consuming input

Which of these are primitive, i.e. can’t be implemented via the others?

Note: string can be built via regex, but implementing it directly is more efficient and easier 20

Adding more combinators

Our combinator many matches any number of occurences, including zero.

Write a combinator many1, which matches at least one element and returns a
NonEmptyList!

https://go.uniwue.de/fp19-git / Parsers.scala⌨

def many1[A](p: Parser[A]): Parser[NonEmptyList[A]] =

21

https://go.uniwue.de/fp19-git

Adding more combinators

Our combinator many matches any number of occurences, including zero.

Write a combinator many1, which matches at least one element and returns a
NonEmptyList!

def many1[A](p: Parser[A]): Parser[NonEmptyList[A]] =
(p ~ p.many).map((h, t) => NonEmptyList(h,t))

21

Algebraic API design

You may have noticed, that we added lots of functions to our API, but we never
wrote any of the implementations for our primitives.

This way of designing an API helps uncoupling the representation of our data
types from the algebra. We could keep everything else we implement private. As
long as we fulfill the laws of our algebra, the implementation doesn’t matter to
the user.

Of course we still need an implementation somewhere, so we will take a look at it
next.

22

Implementing our Parser API

Parsers as functions

We said in the beginning, that we want to see parsers as functions from String to
some output. Our Parser trait has exactly one method:

trait Parser[+A]:
def parse(input: String): ParseResult[A]

which allows implementing it by giving a function literal matching the signature:

def string(s: String): Parser[String] =
input =>

if input.startsWith(s) then Done(input.substring(s.length), s)
else Fail(input, s"expected \"$s\"")

The regex parser is pretty similar.

23

Combinator implementations

The parser monad:

given Monad[Parser] with
def pure[A](a: A): Parser[A] = input => Done(input, a)

extension [A](fa: Parser[A])
def flatMap[B](f: A => Parser[B]): Parser[B] =
input => fa.parse(input) match

case Done(rest, a) => f(a).parse(rest)
case Fail(rest, msg) => Fail(rest, msg)

24

Combinator implementations

A pattern you will sometimes see in Scala libraries using operators (like our |, ~)
is that the implementations are written as named methods, while the operator
methods (either also a on the trait or as extensions) then delegate to these. This
makes the intent of the operators clearer for people new to the library.

def | [B >: A](pb: Parser[B]): Parser[B] = Parser.or(this, pb)

def ~ [B](next: => Parser[B]): Parser[(A, B)] = Parser.andThen(this, next)

non-essential 25

Combinator implementations

So what do the actual implementations look like?

def or[A](p1: Parser[A], p2: Parser[A]): Parser[A] =
input =>

p1.parse(input) match
case Done(rest, out) => Done(rest, out)
case Fail(_, _) => p2.parse(input)

Apply the left parser first. If it matches, just return its result. If it doesn’t, discard
its error and continue with the right parser.

Actual parser libraries may have a more complex implementation to allow for
better error handling. Here we only get the error message from the second
parser if none of them matches.

26

Combinator implementations

def andThen[A, B](pa: Parser[A], next: => Parser[B]): Parser[(A, B)] = for
a <- pa
b <- next

yield (a,b)

We combine both parsers using a for-comprehension. This uses our monad in
the background, it is equivalent to:

pa.flatMap(a => next.map(b => (a,b)))

So if the first parser parses something sucessfully, the second one is called with
the remaining input and then both results are put into a tuple. If the first one
fails, the second one isn’t run at all (similar to Either).

27

Combinator implementations

def many[A](pa: Parser[A]): Parser[List[A]] = (
for

a <- pa
tail <- many(pa)

yield a :: tail
) | summon[Monad[Parser]].pure(Nil)

Our many combinator works recursively. We first match the given parser p once
and then match many(p) again. We prepend the result of p to the list created by
the recursive many(p) parser.

Our recursion needs some stopping condition, but this is included in the
for-comprehension: if p fails to match, the recursive call won’t happen. But we
only want to stop matching when this happens, not return a Fail to outside. So
we turn a failure from the comprehension into an empty list.

28

Using the parsers

So we’ve learned a lot about the API of our parsers, but haven’t seen them used
on some more practical example. Let’s parse a contact list:

case class Contact(name:String, address: Address, phone: Option[Phone])
case class Address(street: String, number: Int, postCode: Int, city: String)
case class Phone(prefix: String, suffix:String)

Our input format will look like this:

Max Mustermann
Hublandstraße 123, 97074 Würzburg
01234/555555

The phone line may be missing, so our phone field is an Option. To make it
easier, we assume that the street name does not contain spaces.

29

Address parsing

We start with the address:

def address: Parser[Address] =

Implement this parser, so that it parses the address line of our format:

address.parse("Hublandstraße 123, 97074 Würzburg") ==
Done("", Address("Hublandstraße", 123, 97074, "Würzburg"))

You may use any parsers and combinators we defined until now. Additionally
these two are given:

val whitespace = regex(raw"\h+".r) // matches all whitespace
val word = regex(raw"\S+".r) // matches everything but whitespace

https://go.uniwue.de/fp19-git / ContactParser.scala⌨ 30

https://go.uniwue.de/fp19-git

Address parsing — Solution

def address: Parser[Address] =
for

street <- word
_ <- whitespace
number <- int
_ <- string(",") ~ whitespace
postCode <- int
_ <- whitespace
city <- word

yield Address(street, number, postCode, city)

31

Contact parsing: Optional parser

After this, the phone number parser itself is pretty straigtforward:

def phone: Parser[Phone] =
for

prefix <- digits
_ <- char('/') // or string("/")
suffix <- digits

yield Phone(prefix, suffix)

But for parsing our contact, the phone number may be absent. We could write a
parser specifically for optional phone numbers, but optional parts seem like a
more common problem. We should create a combinator that turns a Parser[A]
into a Parser[Option[A]].

def opt[A](p: Parser[A]): Parser[Option[A]] =

https://go.uniwue.de/fp19-git / ParsersExtra.scala⌨ 32

https://go.uniwue.de/fp19-git

Contact parsing: Optional parser

def opt[A](p: Parser[A]): Parser[Option[A]] =
p.map(Some(_)) | summon[Monad[Parser]].pure(None)

or using the syntax extensions from the cats library

def opt[A](p: Parser[A]): Parser[Option[A]] =
p.map(Some(_)) | None.pure[Parser]

33

Contact parsing

With two more helpers for dealing with line breaks:

val toLineEnd: Parser[String] = regex(raw"\V+".r)
val newline: Parser[String] = regex(raw"\v".r)

we can now combine everything to get our Parser[Contact]:

def contact: Parser[Contact] =
for

name <- line // read until newline
_ <- newline
addr <- address
phone <- opt((newline ~ phone).map(_._2))

yield Contact(name, addr, phone)

In the last for-line, we parse a newline and a phone number and make the whole
thing optional (so if there is no phone number, we also don’t need a newline).

34

Libraries

Parser combinators are a common concept in functional programming, and there
are various Scala libraries implementing them. Here is a small selection (with
Github repo names):

scala/scala-parser-combinators previously part of the standard library, now
separate but still used

tpolecat/atto based on cats typeclasses, our combinators are a subset of this
library’s API

lihaoyi/fastparse parser library focused on speed

35

	Implementing our Parser API

