
11 - Illegal States
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2023

Lehrstuhl für Informatik VI, Uni Würzburg

1

Overview

In this lecture, let’s look at a few techniques to helps us make our programming
more robust. Unlike the former lectures, this might be a bit more Scala specific.

• Make illegal states unrepresentable
• Force compiler errors on model changes
• Introduce new types
• Forgo boolean blindness

2

Making illegal states unrepresentable

(shamelessly stolen adapted from Scott Wlaschin’s “Designing With Types”)

Let’s take a look at the following case class:

final case class Contact(
name: String,
mail: EmailContactInfo,
address: PostalContactInfo,

)

Seems reasonable. We require every contact to have both types of addresses. But
what if our business rule is that each contact has to have a postal or an email
address?

3

https://fsharpforfunandprofit.com/series/designing-with-types/

Making illegal states unrepresentable

Et voilà!

final case class Contact(
name: String,
mail: Option[EmailContactInfo],
address: Option[PostalContactInfo],

)

Done. This was easy!

But does this describe our business rule?

No it doesn’t it is now possible have
neither, which violates our business rule.

Let’s try to fix that!

4

Making illegal states unrepresentable

Et voilà!

final case class Contact(
name: String,
mail: Option[EmailContactInfo],
address: Option[PostalContactInfo],

)

Done. This was easy!

But does this describe our business rule? No it doesn’t it is now possible have
neither, which violates our business rule.

Let’s try to fix that!

4

Making illegal states unrepresentable

The solution:

enum ContactInfo:
case OnlyMail(info: EmailContactInfo)
case OnlyPostal(info: PostalContactInfo)
case Both(

mail: EmailContactInfo,
postal: PostalContactInfo

)

final case class Contact(
name: String,
info: ContactInfo

)

This models our business rule exactly.

5

Making illegal states unrepresentable

Note that it is now impossible to write code that compiles and violates the
business rule.

There is no need to do any unit test for this rule.

It could be said that our model is now much more complicated than the original.
And that’s true. It’s on you to decide whether the gain is worth it. Here are two
things to think about:

• The old model was either wrong, incomplete or did require you and every
other programmer to keep the rule in their heads.

• Our business rule is really that complex. This is an inherent complexity and
it won’t go away. Either we have to keep it in our heads, document and test it
or model it correctly.

It’s a trade-off.

6

Making illegal states unrepresentable

Okay, let’s look at another example. We want to write a software like Gitlab to
manage multiple code repositories.

A repository has a name, a creation date. It has normal users, which may commit
to it. It also has administrators which are the only ones who may change
permissions, add new administrators, remove users, create branches, delete the
project and so on.

We model it like that:

final case class Repository(
projectName: String,
creationDate: Instant,
admins: List[User],
users: List[User],

)

Whats wrong here?
7

Making illegal states unrepresentable

We might run into serious trouble if the last admin leaves. Since they are the only
ones who can do a bunch of stuff and the only ones who can promote new
admins, the last admin leaving basically locks the project.

How could we change our model to make it impossible to have no admins in the
project?

final case class Repository(
projectName: String,
creationDate: Instant,
admin1: User,
admins: List[User],
users: List[User],

)

This isn’t bad. Now there is no way to create a repository with no admin in it. Can
we do better?

8

Making illegal states unrepresentable

We might run into serious trouble if the last admin leaves. Since they are the only
ones who can do a bunch of stuff and the only ones who can promote new
admins, the last admin leaving basically locks the project.

How could we change our model to make it impossible to have no admins in the
project?

final case class Repository(
projectName: String,
creationDate: Instant,
admin1: User,
admins: List[User],
users: List[User],

)

This isn’t bad. Now there is no way to create a repository with no admin in it. Can
we do better?

8

Making illegal states unrepresentable

We can’t do better with regard to modeling the business rules. We are already
spot on. We can do a little better with regard to simplifying our code.

Let’s try to factor out the “at least one”-part:

final case class NonEmptyList[A](head: A, tail: List[A])

Now we can write our model like this:

final case class Repository(
projectName: String,
creationDate: Instant,
admins: NonEmptyList[User],
users: List[User],

)

9

Making illegal states unrepresentable

We can’t do better with regard to modeling the business rules. We are already
spot on. We can do a little better with regard to simplifying our code.

Let’s try to factor out the “at least one”-part:

final case class NonEmptyList[A](head: A, tail: List[A])

Now we can write our model like this:

final case class Repository(
projectName: String,
creationDate: Instant,
admins: NonEmptyList[User],
users: List[User],

)

9

Making illegal states unrepresentable

This has two advantages:

• we only have to learn about NonEmptyList once and when we see it, the
meaning should be immediately obvious to us, even without looking at other
fields of our case class.

• we can define a lot of useful type classes for NonEmptyList which we get
for free when we use it. Traverseable is such an example.

As a side note: We can get a MonoidK[List] for concatenating lists. Is the same
true for NonEmptyList?

No, because we can’t create an empty list and therefore have no zero value.

10

Making illegal states unrepresentable

This has two advantages:

• we only have to learn about NonEmptyList once and when we see it, the
meaning should be immediately obvious to us, even without looking at other
fields of our case class.

• we can define a lot of useful type classes for NonEmptyList which we get
for free when we use it. Traverseable is such an example.

As a side note: We can get a MonoidK[List] for concatenating lists. Is the same
true for NonEmptyList?

No, because we can’t create an empty list and therefore have no zero value.

10

Forcing compiler errors on model changes

Let’s move on.

What if want to add two other contact methods like home and work phone
numbers to our contact from the previous example?

We would have to encode that with 15 enum cases. That seems a bit excessive.
And it is. Let’s go back to our original design for a moment:

final case class Contact(
name: String,
mail: Option[EmailContactInfo],
address: Option[PostalContactInfo],

)

11

Forcing compiler errors on model changes

final case class Contact(
name: String,
mail: Option[EmailContactInfo],
address: Option[PostalContactInfo],

)

Here is a function to work on that data structure:

def getReport(c: Contact): String =
s"${c.name} -- ${c.mail.getOrElse("n/a")} -- ${c.address.getOrElse("n/a")}"

12

Forcing compiler errors on model changes

But this leaves us with a new problem. Let’s change our model to include the
new types of addresses:

final case class Contact(
name: String,
mail: Option[EmailContactInfo],
address: Option[PostalContactInfo],
homePhone: Option[HomePhoneContactInfo],
workPhone: Option[WorkPhoneContactInfo],

)

Sadly, our old function is now buggy! And still compiles.

def getReport(c: Contact): String =
s"${c.name} -- ${c.mail.getOrElse("n/a")} -- ${c.address.getOrElse("n/a")}"

Can we do better?

13

Forcing compiler errors on model changes

We can.

enum ContactInfo:
case EmailContactInfo(dummy: String)
case PostalContactInfo(dummy: String)
case HomePhoneContactInfo(dummy: String)
case WorkPhoneContactInfo(dummy: String)

final case class Contact(
name: String,
infos: NonEmptyList[ContactInfo],

)

This also solves our initial problem of having to have at least one contact info.

How does our report function look like now?

14

Forcing compiler errors on model changes

def getReport(c: Contact): String =
s"${c.name} -- " + c.infos.toList.map({

case EmailContactInfo(d) => s"mail $d"
case PostalContactInfo(d) => s"postal $d"
case HomePhoneContactInfo(d) => s"home phone $d"
case WorkPhoneContactInfo(d) => s"work phone $d"

}).mkString(", ")

This is much better. Whenever we add a new contact info to our list of possible
info types we break our program, thanks to exhaustiveness checks.

15

Forcing compiler errors on model changes

The lesson:

• Write your model in a way which breaks compilation on incompatible model
changes

• We don’t fear breaking our programs as long as we do it at compile time.
Never fear, our types are here!

16

Introducing new types

And now for something completely different.

final case class Config(
user: String,
path: String,
host: String,
retries: Int,
port: Int,

)

def readUser: Either[Throwable, String]
def readPath: Either[Throwable, String]
def readHost: Either[Throwable, String]
def readPort: Either[Throwable, Int]
def readRetries: Either[Throwable, Int]

def readAll: Either[Throwable, Config] =
(readUser, readPath, readHost, readPort, readRetries)

.mapN(Config.apply) // mapN is similar to map2, just more arguments

Where’s the problem?
17

Introducing new types

The problem is that retries and port are used in the wrong order when
passed to Config in the mapN call.

This was only possible because they both have the type Int. But should they?

18

Introducing new types

There are (at least) two very good reasons why retries and port should not be
of type Int

• Both variables can be assigned to each other, though a port and the number
of retries are obviously not the same thing. This is a strong indication that
something is amiss.

• Both of them really have constraints that Int doesn’t have. A port number
should be within the range of valid ports, while the number of retries should
never be negative.

We want to fix the first point first. And to keep things simple, we will only
concentrate on the port.

19

Introducing new types

So we want port and retries to have different types, but the underlying type is
still an integer. To represent this, we can use an opaque type alias:

opaque type Port = Int
object Port:
def apply(i: Int): Port = i

This works like a normal type alias, but outside its definition scope (i.e. in this
case outside the Port object), it is treated like a completely separate,
incompatible type. To get a Port value, we now need to use the apply method
explicitly:

val http: Port = Port(80)
// would not compile:
// val http: Port = 80

20

Introducing new types

On to our second problem: Restricting the port range.

As we said, any code outside the Port object has to go through the Port.apply
method, we can add any necessary restrictions there:

opaque type Port = Int
object Port:
def apply(i: Int): Option[Port] =

if i > 0 && i <= 65535 then Some(i) else None

We now return an Option, that only contains valid ports, so no code outside the
object can create a Port with an invalid integer value.

21

Introducing new types

We can make it even better for compile time constants by throwing a compile
time error:

opaque type Port = Int
object Port:
def apply(i: Int): Option[Port] =

if i > 0 && i <= 65535 then Some(i) else None
import scala.compiletime.*
inline def checked(inline i: Int): Port =

inline if i > 0 && i <= 65535 then i
else error("Port not in range: " + codeOf(i))

//val a: Port = Port.checked(-1)
// ↑ Compile time error

22

Introducing new types

opaque type Port = Int
object Port:
def apply(i: Int): Port = i

final case class Config(
user: String,
path: String,
host: String,
retries: Int,
port: Port,

)
//def readAll: Either[Throwable, Config] =
// (readUser, readPath, readHost, readPort, readRetries)
// .mapN(Config.apply) // mapN is similar to map2, just more arguments

Now our readAll function doesn’t compile anymore \o/

23

Introducing new types

Where does this leave us?

Whenever you have two sets of values which have the same type but are very
different semantically, create a new type to wrap them.

If you also require the validation of constraints before creating the type, this is
known as the Smart Constructor Pattern.

It might seem overkill, but there is a good chance this habit will save you a lot of
headache down the road.

24

Introducing new types - other languages

How about doing this in other languages?

Opaque type aliases are becoming more common in programming languages.
Sometimes they are also called newtypes. E.g. Rust and Haskell both have
equivalent constructs.

What if your favorite typed language doesn’t have them? An alternative is to use
a wrapper type (like a case class or similar).
This comes with more trade-offs: you usually have a runtime overhead for
wrapping and there are more pitfalls with making it safe, e.g. you must remember
to prevent inheriting, make sure no default constructor exists, prevent any
standard language methods to modify the class, etc.

25

Forgoing boolean blindness

Let’s take a look at two code examples:

def age: Option[Int] = ???
if age.nonEmpty then transformSomehow(age.get)
else someValue

def getList: List[Int] = ???
if getList.size > 2 then transformSomehow(getList(1))
else someValue

In both cases, we reduce the information we have to a boolean. And this boolean
has no direct connection to whether the expressions guarded by it are now valid
or not. It’s only that we as the programmer know that being nonempty means
that we can call get.

Throwing away information in that way is called boolean blindness. The general
principle goes beyond booleans though and there are many examples of it.

26

Forgoing boolean blindness

We already know how to do better. Use pattern matching:

def age: Option[Int] = ???
age match
case Some(a) => transformSomehow(a)
case None => someValue

def getList: List[Int] = ???
getList match
case _::x::_ => transformSomehow(x)
case _ => someValue

In both of those cases we use pattern matching to extract the value and treat the
value itself as a proof that it’s there.

Let’s look at two examples which aren’t so obvious.

27

Forgoing boolean blindness

Regex matching. Java style

val name: Pattern = Pattern.compile("(\\w+), (\\w+)")
def getFirstAndLastName(s: String): Option[(String, String)] =
val matcher = name.matcher(s)
if matcher.matches then Some((matcher.group(1), matcher.group(2)))
else None

Scala style

val Name = "(\\w+), (\\w+)".r
def getFirstAndLastName(s: String): Option[(String, String)] =

s match
case Name(last, first) => Some((last, first))
case _ => None

28

Forgoing boolean blindness

Regex matching. Java style

val name: Pattern = Pattern.compile("(\\w+), (\\w+)")
def getFirstAndLastName(s: String): Option[(String, String)] =
val matcher = name.matcher(s)
if matcher.matches then Some((matcher.group(1), matcher.group(2)))
else None

Scala style

val Name = "(\\w+), (\\w+)".r
def getFirstAndLastName(s: String): Option[(String, String)] =
s match

case Name(last, first) => Some((last, first))
case _ => None

28

Forgoing boolean blindness

What happens if I want to filter and map?

def allStreetsWrong(l: List[Person]): List[String] =
l.filter(_.address.nonEmpty).map(_.address.get.street)

Using filter+map, we can’t do it in one step:

def allStreetsHow(l: List[Person]): List[String] =
l.map(_.address match {

case Some(a) => a.street
case None => ??? // what to do here?

})

29

Forgoing boolean blindness

We can use flatMap to not throw information away between the two calls:

def allStreetsRight(l: List[Person]): List[String] =
l.flatMap(_.address match {

case None => Nil
case Some(a) => a.street :: Nil

})

Here, the information that there is an address is never lost.

30

Forgoing boolean blindness

To sum up:

Whenever you use an unsafe function because you think you need to, try if you
can come up with a solution which doesn’t loose the information you need to
forgo the calling of the unsafe method.

31

