
10 — Traversable Functors
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2023

Lehrstuhl für Informatik VI, Uni Würzburg

1

Traversable Functors

Typeclass hierarchy

Monoid

Functor

Applicative

Monad

Traverse

Foldable

Recap: Applicatives

We introduced the abstraction of applicative functors:

• defined by pure and either ap or map2
• less powerful than Monads: cannot remove a layer of their type constructor
• All monads are applicative functors

Reasons for this abstraction:

• Some applicatives cannot be monads (we saw Validated)
• Applicatives can be composed, monads (in general) can’t.

2

Sequence and traverse without List?

We found the applicative functor abstraction by noticing that sequence (and
traverse) did not directly depend on flatMap.

Let’s look at their signatures in Applicative[F[_]] again:

def sequence[A](fas: List[F[A]]): F[List[A]]
def traverse[A,B](fas: List[A])(f: A => F[B]): F[List[B]]

Can these only work with List?

3

Exercise: Implement sequence for maps

Implement sequence for maps inside the Applicative trait:

def sequenceMap[K,V](m: Map[K, F[V]]): F[Map[K,V]]

Hints:

• The template contains the sequence implementation for lists.
• foldRight on Map gives (K,V) tuples to its function.
• To add an entry to a map, use map + ((key, value)).

https://go.uniwue.de/fp19-git SequenceMap.scala⌨ 4

https://go.uniwue.de/fp19-git

Exercise: Implement sequence for maps — Solution

def sequenceMap[K,V](m: Map[K, F[V]]): F[Map[K,V]] =
m.foldRight(pure(Map.empty[K,V])){

//function is given a (K,F[V]) tuple and the F[Map[K,V]] accumulator
case ((k, fv), acc) => acc.map2(fv)((map, v) => map +((k, v)))

}

5

Traversable Functors

We call types that can be traversed traversable functors. As there are lots of
them, we define a new type class:

trait Traverse[F[_]]:
def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]]

def sequence[G[_]: Applicative, A](fga: F[G[A]]): G[F[A]]

Compare to previous signatures:

• List replaced by variable F.
• Other type G must still be applicative (defined before on Applicative
trait).

6

Meaning of sequence

def sequence[G[_]: Applicative, A](fga: F[G[A]]): G[F[A]]

Sequence swaps nested F and G. What does that mean for different types?

• List[Option[A]] => Option[List[A]]: returns None if any element
of list is None, else list wrapped in Some (see monad lecture)

• Map[K, Option[V]] => Option[Map[K, V]]: returns None if any
value in the map is None, else map wrapped in Some

• Option is traversable too:
Option[List[A]] => List[Option[A]]: returns a list with a single
None if the original Option is None, else List with all elements wrapped in
Some

7

Traversable Functors in the hierarchy

Typeclass hierarchy

Monoid

Functor

Applicative

Monad

Traverse

Foldable

How powerful is traverse?

def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]]

traverse is equivalent to a map operation, followed by sequence, and we can
provide a default implementation with them.

But it is also possible to implement map via traverse, which makes Traverse
a functor!

8

Traverse as Functor

trait Traverse[F[_]] extends Functor[F]:
def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]] =

sequence(map(fa)(f))

def sequence[G[_]: Applicative, A](fga: F[G[A]]): G[F[A]] =
traverse(fga)(identity)

/** can be implemented using traverse */
extension [A](fa: F[A]) def map[B](f: A => B): F[B] = ??? // => Exercise sheet

This means, an instance of Traverse only needs to implement either traverse
or sequence and map

9

Traverse can provide more

Let’s define a type, that throws away its parameter:

type ConstInt[A] = Int

We can use this, when a type constructor is expected, e.g. for G in traverse

def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]]

this results in

def traverse[A, B](fa: F[A])(f: A => Int): Int

Does this signature remind you of any function or structure we have seen before?

⌨ 10

Traverse can provide folds

This is similar to foldMap:

def traverse[A, B](fa: F[A])(f: A => Int): Int

def foldMap[A, M](as: F[A])(f: A => M)(M: Monoid[M]): M

And we can implement foldMap via traverse! But we need an applicative for
Const first.

11

An applicative for monoids

type Const[M, A] = M // like ConstInt, but with parameter instead of fixed int

def monoidApplicative[M](M: Monoid[M]) =
new Applicative[Const[M, _]]:

def pure[A](a: A): M = M.zero
extension [A](m1: M)
override def map2[B,C](m2: M)(f: (A, B) => C): M = M.combine(m1,m2)

As our Const throws away it’s second parameter, our applicative also never uses
the type parameters of its functions: the value passed to pure is ignored, so is
the function passed to map2.

12

Traverse with Foldable

This lets us implement foldMap via traverse, and extend Foldable:

trait Traverse[F[_]] extends Functor[F] with Foldable[F]:
def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]] = ???
// ...
extension [A](as: F[A])

override def foldMap[B](f: A => B)(using mb: Monoid[B]): B =
traverse[Const[B,_], A, Nothing](as)(f)(monoidApplicative(mb))

Type parameters for traverse:

• G[_] = Const[M,_]: Evaluates to M for any passed parameter
• A: same meaning for both, type of elements in our traversed object.
• B = Nothing: Const throws away its parameter. Therefore all uses of B are
meaningless.

13

Traverse is functor and foldable

We’ve seen that the traverse function is powerful enough to implement
Functor and Foldable with it.

Notably, Foldable cannot extend Functor, as you can not write a map in terms
of a fold in general, although it is possible for specific foldable data structures.

So what kind of generalized functions does Traverse allow us to write?

14

Traversals with State

A useful method also found in the standard library for several types is
zipWithIndex. This takes a traversable data structure and adds an index to
each element by tupling. Example:

List(
"Here",
"are",
"some",
"elements"

): List[String]

→ zipWithIndex →

List(
("Here", 0),
("are", 1),
("some", 2),
("elements", 3)

): List[(String, Int)]

By using the State applicative functor, we can keep some iteration state, like the
current index, during a traversal.

15

Implementing zipWithIndex

Idea:

1. Define a function: For an element of type A, we create a State monad, that
• takes an Int as state
• returns a tuple of the element and that int as its result (type (A, Int))
• returns the int + 1 as the new state

This has type State[Int, (A, Int)]
2. we call traverse, passing an F[A] and our function from step 1.
This results in a State[Int, F[(A, Int)]]

3. we run this state with 0 as start value (first index)
4. The result is a tuple (lastIndex + 1 ,fWithIndices), because

State.run also always returns the next state.

16

Implementing zipWithIndex — Step 1

1. Define a function: For an element of type A, we create a State monad, that
• takes an Int as state
• returns a tuple of the element and that int as its result (type (A, Int))
• returns the int + 1 as the new state

(a: A) => for
i <- State.get[Int] // get the passed in state, save it in i
_ <- State.set(i + 1) // set the new state to i + 1

yield (a, i) // return the A together with the passed in index

Another way of writing the same function:

(a:A) => State((i: Int) => (i+1, (a,i)))

17

Implementing zipWithIndex — Step 2

2. we call traverse, passing an F[A] and our function from step 1.
This results in a State[Int, F[(A, Int)]]

traverse(fa)(// fa: F[A]
(a: A) => for // A => State[Int, (A, Int)]

i <- State.get[Int]
_ <- State.set(i + 1)

yield (a, i)
)

18

Implementing zipWithIndex — Step 3

3. we run this state with 0 as start value (first index)

traverse(fa)(
(a: A) => for

i <- State.get[Int]
_ <- State.set(i + 1)

yield (a, i)
).run(0) // start with index 0

19

Implementing zipWithIndex — Step 4

4. The result is a tuple (lastIndex + 1 ,fWithIndices), because
State.run also always returns the next state.
We only care about our indexed F.

def zipWithIndex[A](fa:F[A]): F[(A,Int)] =
traverse(fa)(

(a: A) => for
i <- State.get[Int]
_ <- State.set(i + 1)

yield (a, i)
).run(0)._2

If we’re using the cats library, we could also use runA instead of run for the
same result.

20

Implementing toList

With a similar approach, we can write a generic toList: We keep a list as state
(starting with an empty list) and append each element as a state change. Our
State monads can be of type State[List[A],Unit], because we don’t need
intermediate results.

def toList[A](fa:F[A]): List[A] =
traverse(fa)(

(a: A) => for
as <- State.get[List[A]] // keep list as state
_ <- State.set(a :: as) // prepend each element

yield ()
).run(Nil) // start with empty list

._1 // state at the end is list of elements

.reverse // but in reverse order

21

Factoring out

Compare our two methods:

def zipWithIndex[A](fa:F[A]): F[(A,Int)] =
traverse(fa)(

(a: A) => for
i <- State.get[Int]
_ <- State.set(i + 1)

yield (a, i)
).run(0)._2

def toList[A](fa:F[A]): List[A] =
traverse(fa)(
(a: A) => for

as <- State.get[List[A]]
_ <- State.set(a :: as)

yield ()
).run(Nil)._1.reverse

These look pretty similar. And so do lots of traversals with state. Let’s factor out
the common part.

22

Mapping with Accumulator

What we are doing is like mapping, while passing an accumulator to our function.
Therefore we define a function mapAccum, which looks similar to map, but with
an accumulator of type S added to any other value:

// map [A,B](fa: F[A]) (f: (A) => (B)): F[B]
def mapAccum[S,A,B](fa: F[A], s: S)(f: (S,A) => (S,B)): (S, F[B]) =
traverse(fa)((a: A) => for

s1 <- State.get[S] // get the state
(s2, b) = f(s1, a) // get map result and new state
_ <- State.set(s2) // store new state

yield b // yield map result
).run(s) // run with start state

23

Using mapAccum

def zipWithIndex[A](fa: F[A]): F[(A,Int)] =
mapAccum(fa, 0)((s, a) => (s + 1, (a, s)))._2

def toList[A](fa :F[A]): List[A] =
mapAccum(fa, List.empty[A])((s, a) => (a::s, ()))._1.reverse

This has also similarities with folding, additionaly saving a value for every
recursion step. In fact, toList could also be written with a fold. On the exercise
sheet, you’ll implement foldLeft with mapAccum.

24

Fusing traversals

We’ve already seen ways to combine several traversals of a data structure into
one, e.g. LazyList combines several operations in one pass by using lazy
evaluation

On a former task sheet we saw how we can combine Applicatives with
product. We can use this to fuse two traversals into one pass.

25

Exercise: Implement fuse

Implement fuse using applicative functor products. It should traverse fa a
single time and collect the results of both given functions at once.

def fuse[G[_],H[_],A,B](fa: F[A])(f: A => G[B], g: A => H[B])
(using G: Applicative[G], H: Applicative[H])
: (G[F[B]], H[F[B]]) =

Hint: you may have to specify the type parameters in your call: traverse[[b]
=>> (G[b],H[b]), A, B](...)
Also, you’ll have to specify the applicative explicitly.

https://go.uniwue.de/fp19-git Fuse.scala⌨ 26

https://go.uniwue.de/fp19-git

Exercise: Implement fuse — Solution

def fuse[G[_],H[_],A,B](fa: F[A])(f: A => G[B], g: A => H[B])
(using G: Applicative[G], H: Applicative[H])
: (G[F[B]], H[F[B]]) =

traverse[[b] =>> (G[b],H[b]), A, B](fa)(
a => (f(a), g(a)))(Applicative.product(using G, H)

)

• traversal function: apply both given functions, pack in tuple
• Applicative: product of G and H (tupled combination)

27

	Traversable Functors
	Traversable Functors in the hierarchy

