9 — An Algebraic View On More Monads

EinfUhrung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2020

Lehrstuhl fir Informatik VI, Uni Wirzburg

Recap: Algebras

Algebra
An algebra is one or more sets of values (types), together with functions
operating on values of those sets and a collections of axioms.

Always thinking about a monad at implementation level is cumbersome. If we
don’t want to write a new monad, knowing about its algebra should be enough.
We will look at some new monads in this lecture, without going into detail on how
they are implemented.

The Reader Monad

The Reader Monad

Let's imagine we have a very simple web server.

On every request, the framework gathers for us all the useful information
regarding that request:

final case class Request(
user: Option[Stringl,
locale: String,
route: String,
params: Map[String, List[Stringl],
now: LocalDateTime,

)

All we have to do is implement the trait Server:

trait Server:
def serve(r: Request): String

The Reader Monad

Let's look at a very simple implementation:

object Serverl extends Server:
def serve(r: Request): String = r.route match
case "/hello" => sayHello
case "/bye" => sayBye

def sayHello = "Hello!"
def sayBye = "Bye!"

This is cool, but we want more. We want to customize the messages depending on
time and user.

The Reader Mo

object Server2 extends Server:
def serve(r: Request): String = r.route match
case "/hello" => sayHello(r)
case "/bye" => sayBye(r)

def sayHello(r: Request): String =
val user = formatUser(r)
val time = formatTime(r)
s"Hello Suser, now is Stime"

def sayBye(r: Request): String =
val user = formatUser(r)
val time = formatTime(r)
s"Goodbye Suser, now is Stime"

def formatUser(r: Request): String = r.user.getOrElse("anonymous")
def formatTime(r: Request): String = r.now.toString

The Reader Monad

Now this works. We just pass the request down to every function which uses it.
But can we do better than manually passing the request around?

We could:

- Store the request in a global variable.
No way. Needs side effects, hides depedency.

- Store the request in a thread local variable.
Same problem, doesn’t work well with fibers and the like.
- Use a dependency injection framework.
Depending on the DI framework, has the same and/or other drawbacks.

It would be nice, if we could abstract over asking for some piece of data. Reader
Monad to the rescue!

The Reader Monad

Let's look at a new monad, the reader monad. Its type is Reader[-R, A] and it
represents a computation which needs an R to produce an A.

We will look at it purely in terms of its algebra. There is only one new operation:

def ask[R]: Reader[R, R]

This gives us a new Reader that takes an R and produces an R.

The Reader Monad

And since Reader is a monad, there are of course the monad operations:

def flatMap[A,B](fa: Reader[R,A])(f: A => Reader[R,B]): Reader[R,B]

def pure[A]l(a: A): Reader[R,A]

def map2[A,B,C](fa: Reader[R,A], fb: Reader[R,B])(f: (A,B) => C): Reader[R,C]
def map[A,B](fa: Reader[R,A])(f: A => B): Reader[R,B]

Note that they all operate on the second type parameter of the Reader only, i.e.
the produced value. The input always stays the same.

The Reader Monad

With only that in mind, you should be able to write:

def formatUser: Reader[Request, String] =

which should return the user name if there is one and "anonymous" otherwise.
Here's Reader’s only non-monad method and the Request class again:

def ask[R]: Reader[R, R]

final case class Request(
user: Option[Stringl],
locale: String,
route: String,
params: Map[String, List[Stringl],
now: LocalDateTime,

)

B3 https://go.uniwue.de/fpl9-git Readers.scala 9

https://go.uniwue.de/fp19-git

The Reader Monad

Solution:

def formatUser: Reader[Request, String] =
for
request <- ask[Request]
yield request.user.getOrElse("anonymous")

10

The Reader Monad

After that, it should be pretty easy to write:

def formatTime: Reader[Request, String] =

which should just invoke toString on the date and return that. Request being:

final case class Request(
user: Option[Stringl],
locale: String,
route: String,
params: Map[String, List[Stringl],
now: LocalDateTime,

)

B3 https://go.uniwue.de/fpl9-git Readers.scala 1

https://go.uniwue.de/fp19-git

The Reader Monad

Solution:

def formatTime: Reader[Request, String] =
for
request <- ask[Request]
yield request.now.toString

12

The Reader Monad

The real power comes when combining those monadic operations to form bigger
ones:

def sayBye: Reader[Request, String] =

which should just format the user, then the time, and then build a string like
s"Goodbye $user, now is $time". Request being:

final case class Request(
user: Option[String],
locale: String,
route: String,
params: Map[String, List[Stringl],
now: LocalDateTime,

)

B3 https://go.uniwue.de/fpl9-git Readers.scala 13

https://go.uniwue.de/fp19-git

The Reader Monad

Solution:

def sayBye: Reader[Request, String] =
for
user <- formatUser
time <- formatTime
yield s"Goodbye Suser, now is Stime"

Note that we didn’t need to mention the request at all, nor did we ask for it.

The Reader Monad

This allows us to express the whole server this way:

object Server3:
def serve: Reader[Request, String] = ask[Request].flatMap(r => r.route match {
case "/hello" => sayHello
case "/bye" => sayBye

b

def sayHello: Reader[Request, String] = for
user <- formatUser
time <- formatTime

yield s"Hello Suser, now is Stime"

for

def sayBye: Reader[Request, String]
user <- formatUser
time <- formatTime

yield s"Goodbye Suser, now is Stime"

def formatUser = ask[Request].map(_.user.getOrElse("anonymous"))
def formatTime = ask[Request].map(_.now.toString)
15

The Reader Monad

As a side note, let's see what the reader monad actually is:

case class Reader[-R, Al(run: R => A)

So our Reader actually encapsulates a simple function. All monadic operations
like map and flatMap are just function composition and don’t deal with a value
of type R at all but add transformations to the result of the run function.

To actually produce a value, we run the Reader’s function at the end, just do
readerValue.run(value) and it will produce the result from the input value.

The Reader Monad

The reader monad allows us to do dependency injection in a type safe way,
removes most of the boilerplate and hides no dependencies.

We can always ask for the value we need and never need to explicitly pass it
down to the functions we use.

The Writer Monad

The Writer Monad

Let's start with @ mathematical problem. Given the function

f(n){n/Q fn=0 (mod2)
3n+1 ifn=1 (mod 2).

it is conjectured that given any positive integer, taking that integer and
successively applying the function to it will always reach 1 after a finite number of

steps.

This is called the Collatz conjecture.

The Writer Monad

We can define the collatz depth of a number to be the number of successive
applications of the function needed to yield 1.

Now we want to find the smallest number which has at least a given collatz depth.
We can write this mostly by wrapping the formula from before in a recursion:

def collatzDepth(n: Int): Int =
if n == 1 then
0
else if n % 2 == 0 then
collatzDepth(n/2) + 1
else
collatzDepth(n = 3 + 1) + 1

def collatzSearch(start: Int, limit: Int): Int =
if collatzDepth(start) < limit then collatzSearch(start + 1, limit)
else start

The Writer Monad

This is simple. But what happens when we do not only want to know the number,
but also the calculations which have been needed to arrive at the solution?

We might want something like this.

testing 1

got 1, doing nothing
depth was 0

testing 2

got 2, halving

got 1, doing nothing
depth was 1

testing 3

got 3, tripling plus one
got 10, halving

got 5, tripling plus one
got 16, halving

got 8, halving

got 4, halving

got 2, halfing

got 1, doing nothing
depth was 7

returning 3

20

The Writer Monad

We can just go about and return a tuple of a log and the value instead of just the
value. The inner function would look like this:

def collatzDepth(n: Int): (List[String], Int) =

if n == 1 then
(List("got 1, doing nothing"), 0)

else if n % 2 == 0 then
val (way, depth) = collatzDepth(n/2)
(s"got Sn, halfing" :: way, depth + 1)

else
val (way, depth) = collatzDepth(n % 3 + 1)
(s"got Sn, tripling plus one" :: way, depth + 1)

21

The Writer Monad

The outer function would look like this:

def collatzSearch(start: Int, limit: Int): (List[Stringl, Int) =
val (way, depth) = collatzDepth(start)
if depth < limit then
val (way2, number) = collatzSearch(start + 1, limit)

(s"testing $start" :: way ++ (s"depth was Sdepth" :: way2), number)
else
(s"testing S$start" :: way ++ List(s"depth was Sdepth", s"returning $start"),
start)

22

The Writer Monad

Obviously, this is very hard to read and it is extremely error prone to get the order
of the log additions right.

Another monad to the rescue. The Writer Monad. Again, we look at it purely in
terms of its algebra.

23

The Writer Monad

When looking at Writer, we are looking at values of the type Writer[L, A]
where A, as always, is the type of the value produced by the computation and L is
a kind of log which can be written to while performing a computation.

Same as Reader, there is only one new operation, which is writing to the log:

def tell[L](l: L): wWriter[L, Unit]

And, of course, there are also the monad operations:

def pure[Al(a: A): Writer[L,A]

extension [A](fa: Writer[L,A])
def flatMap[Bl(f: A => Writer[L,B]): Writer[L,B]
def map2[B,C](fb: Writer[L,B])(f: (A,B) => C): Writer[L,C]
def map[B](f: A => B): Writer[L,B]

24

The Writer Monad

But beware:

given [L: Monoid]: Monad[[a] =>> Writer[L, a]] with

That means, that you can only get a Monad instance for a Writer as long as the
log type has a Monoid instance. This instance is needed to create an empty log
on pure and to combine several logs on flatMap.

25

The Writer Monad

Armed with that, try to implement the collatz depth function:

def collatzDepth(n: Int): Writer[List[String], Int] =

You can find the code for the old version in the repo.

B3 https://go.uniwue.de/fpl9-git Writers.scala 26

https://go.uniwue.de/fp19-git

The Writer Monad

Solution:

def collatzDepth(n: Int): Writer[List[String], Int] =
if n == 1 then
tell(List("got 1, doing nothing")).map(_ => 0)
else if n % 2 == 0 then
for
<- tell(List(s"got $n, halving"))
depth <- collatzbDepth(n/2)
yield depth + 1
else
for
<- tell(List(s"got $n, tripling plus one"))
depth <- collatzDepth(n * 3 + 1)
yield depth + 1

27

The Writer Monad

Now try to implement the collatz search function

def collatzSearch(start: Int, limit: Int): Writer[List[String], Int] =

Again, the code for the old version can be found in the repo.

B3 https://go.uniwue.de/fpl9-git Writers.scala 28

https://go.uniwue.de/fp19-git

The Writer Monad

Solution:

def collatzSearch(start: Int, limit: Int): Writer[List[String], Int] =

for

_ <- tell(List(s"testing S$start"))

depth <- collatzDepth(start)

_ <- tell(List(s"Depth was Sdepth"))

result <- if depth < limit then collatzSearch(start + 1, limit)

else tell(List(s"Returning $start")).map(_ => start)

yield result

29

The Writer Monad

Now, lets take a quick look at what a Writer really is:

final case class Writer[L, Al(v: (L, A))

It's nothing more than a wrapper around a tuple of a log together with a value.
That means, to extract the value of an Writer, all we have to do is

writerValue.v._2. And to get the log, all we have to do is
writerValue.v._1.

30

Handling Mutable State

Mutable State

Until now, we avoided mutable state, because it breaks referential transparency.
But some things are much easier to express using mutable state, for example a
pseudorandom number generator (PRNG).

We will now see, how we can encapsulate mutable state in a purely functional,
and therefore referentially transparent way.

31

Stateful Random Numbers

Let's take a simple, stateful example:

val r = new Random
println(r.nextDouble)
println(r.nextDouble)

Which gives us:

0.1555342604626314
0.7087659049981789

Which is clearly not functional. How do we proof that?

32

Stateful Random Numbers

Apart from seeing it directly we could write two programs:

val r = new Random val r = new Random
println(r.nextDouble == r.nextDouble) val a = r.nextDouble
println(a == a)

Which gives us:
false true

So by extracting an expression into a variable, we have changed the meaning of
our program. This proofs that this expression is not purely functional.

33

Stateful Random Numbers

Why is this bad?

def rollDie: Int =
val r = new Random
r.nextInt(6)

This implementation of a dice with numbers 1-6 has a bug. But it's not easily
reproducible.

def rollDie(r: Random): Int =
r.nextInt(6)

Dependency injection to the rescue! But still hard to reproduce, because you
have to generate a new Random for every test and then throw it away again.

34

Stateful Random Numbers

Let's change course and try to do it without side effects.

trait RNG:
def nextInt: (RNG, Int)

Which lets us write code like

val rl: RNG = ??? // a possible implementation follows later
val (r2, i1) = rl.nextInt
val (r3, i2) = r2.nextInt
val (r4, 13) = r3.nextInt

Instead of relying on implicit state changes, we never mutate state and explicitly
pass the new state along.

35

Stateful Random Numbers

Before we start addressing the obvious problem that it is extremely tedious to
pass this state along manually, let’s create a simple RNG implementation’.

case class Simple(seed: Long) extends RNG:
def nextInt: (RNG, Int) =
val newSeed = (seed * OX5DEECE66DL + OxBL) & OXFFFFFFFFFFFFL
val nextRNG = Simple(newSeed)
val n = (newSeed >>> 16).toInt
(nextRNG, n)

Important facts:

- has a seed which is its state

- doesn't mutate its seed but generates a new seed for the next RNG

"This is basically the approach and constants java.util.Random uses

36

Stateful Random Numbers

We can now implement various random generators based on the RNG trait:

def nonNegativeInt(rng: RNG): (RNG, Int) =
val (r, i) = rng.nextInt
(r, if 1 < 0 then -(i + 1) else i)

def double(rng: RNG): (RNG, Double) =
val (r, i) = nonNegativeInt(rng)
(r, i / (Int.MaxValue.toDouble + 1))

def boolean(rng: RNG): (RNG, Boolean) =
val (r, i) = rng.nextInt
(r, i %2 == 0)

All have in common, that they receive a RNG state, and return a new RNG state
together with their result.

37

We said we don’'t want to pass the state around all the time. Similarly to Reader
and Writer, we want a structure, that handles the state keeping for us.

We will use the State monad, whose type is State[S, A]. Like Reader, it
represents a computation, that needs some S to generate an A.

The difference is, that Reader[R,A] only combines computations that all use
the same R, our State[S,A] also combines computations that can change the
value of S (but not its type).

38

The State Monad

The operations for state are the following functions:

def get[S]: State[S, S]
def set[S]l(s: S): State[S, Unit]

And of course the monad functions:

def pure[Al(a: A): State[S,A]

extension [A](fa: State[S,Al])
def flatMap[B](f: A => State[S,B]): Statel[S,B]
def map2[B,C](fb: State[S,B])(f: (A,B) => C): State[S,C]
def map[B](f: A => B): State[S,B]

Note that again, like with Reader, none of the functions are allowed to change the
type of the state, it stays S. But we can change the value using set(newState).

39

Wrapping the RNG

Let's wrap RNG in a State monad:

def randomInt: State[RNG, Int] =
for
rng <- get[RNG]
(rng2, i) = rng.nextInt
_ <- set(rng2)
yield i

This doesn’t look much better than manual passing of the state yet. But our
derived functions become much simpler:

def nonNegativeInt: State[RNG, Int] =
for i <- randomInt
yield if i < 0 then -(i + 1) else i

40

Exercise: Chaining states

The power of the state monad becomes apparent, when doing several state
actions on the same state in sequence.

Implement the following function, which returns a random tuple of three ints:

def threeInts: State[RNG, (Int, Int, Int)] =

Remember that State handles all passing around of the RNGs for you.

B3 https://go.uniwue.de/fpl9-git Randoms.scala ®

https://go.uniwue.de/fp19-git

Exercise: Chaining states

Solution:

def threelInts: State[RNG, (Int, Int, Int)] =
for
a <- randomInt
b <- randomInt
c <- randomInt
yield (a,b,c)

42

State: Under the hood

So, what does our State monad actually look like?

case class State[S,+A](run: S => (S, A))

It wraps a function that takes the current state and returns the next state and an
output. Our monad combinators are doing exactly what we did when we manually
threaded the state through all calls, hiding this passing for us.

Like with Reader, we only compose functions. To produce the results, we call
run with the initial state in the end.

43

	The Reader Monad
	The Writer Monad
	Handling Mutable State

