8 — Applicative Functors

Einfuhrung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2020

Lehrstuhl fur Informatik VI, Uni Wiirzburg

A note on syntax

In the previous lectures, we defined extension methods on our type classes to
make them more comfortable to use (we can use them, as if they were methods

defined on our objects).

Sometimes, e.g. for proofs, it may be more suitable to call them like a normal
function taking all operands as parameters. We can do this with extensions too.
For the extension method on the left, the calls on the right are equivalent:

a.method(b)

extension (a: A)
method(a)(b)
0 = ?2?2?
deif melredBe) o // if on a typeclass instance F:
F.method(a)(b)

Terminology: effect

Type constructors like Option, List, Either, etc. are often called effects,
because they augment values with “extra” capabilities like possible absence
(Option), multiplicity (List), etc.

This is not to be confused with side effects (= violation of referential
transparency).

For the ones that have a monad instance, we also call them monadic effects.

Limitations of Monads

While monads and functors let us chain operations in the context of their effect
using flatMap and map, there are program flows they can’t express.

As an example, we will look at E1ther and its inability to accumulate errors. We
will then see an alternative to Either, that can accumulate errors but cannot have
a monad instance.

(Not) Accumulating Errors with Either

A common use case is form validation. Say we have a form with three fields. Each
field has a method to check it for valid input:

def validName(s:String): Either[String, String] = 2?22
def validBirthdate(s:String): Either[String, LocalDateTime] = ??2?
def validPhone(s:String): Either[String, Phone] = ??7?

We would like to check all fields and report all errors to the user at once.

for
name <- validName(field1l)
date <- validBirthdate(field2)
phone <- validPhone(field3)

yield CheckedForm(name, date, phone)

But if validName returns a Left, the other two methods are not even called.

Limitations of Monads

Maybe another combinator can help? map2 and its extensions to higher numbers
should evaluate all validations:

map3(
validName(field1),
validBirthdate(field2),
validPhone(field3)
)(CheckedForm(_, _, _))

Using map3 all three methods are always called, but if we implement it via
flatMap, it has the same result. It's not possible to accumulate without breaking
monad laws.

mapN on Either

Could we implement map2/3/... for Either, so that it does accumulate errors?

extension [E, Al(a: Either[E, A])
def map2[B, Cl(b: Either[E, B])(f: (A, B) => C) : Either[E, C] = 2?27

mapN on Either

Could we implement map2/3/... for Either, so that it does accumulate errors?

extension [E, Al(a: Either[E, A])
def map2[B, Cl(b: Either[E, B])(f: (A, B) => C) : Either[E, C] = 2?27

The signature requires us to return an Either, whose error type is a supertype of
the inputs’ error types. We can’t combine two Es into one without additional
knowledge about them.

Validated to the rescue

It looks like we will need a different type for accumulating errors. We will call it
Validated:

enum Validated[+E, +A]:
case Valid(a: A)
// Invalid stores at least one error and possibly more
case Invalid(head: E, tail: List[E])

Note: In Cats, Validated looks a bit different, it let's you control what structure is used to

accumulate errors. It differs in implementation, but usage is similar.

Validated.map2

We can now have an implementations of map2/3/.../N for Validated, which
accumulate errors. An expanded example of our form validation from before:

import java.time.=*
import java.time.format.=*

def validName(name: String): Validated[String, String] =
if name.nonEmpty then Valid(name)
else Invalid("Name cannot be empty", Nil)

def validBirthdate(birthdate: String): Validated[String, LocalDateTime] =
try
Valid(LocalDateTime.parse(birthdate))
catch
case _:DateTimeParseException =>
Invalid("Birthdate must be in YYYY-MM-DD format", Nil)

def validPhone(phoneNumber: String): Validated[String, String] =
if phoneNumber.matches("[0-9]1{10}") then Valid(phoneNumber)
else Invalid("Phone number must be 10 digits", Nil)

Validated.map2

So returning a single error looks just like with Either. But combining them with
map3 will keep all errors:

case class CheckedForm(name: String, date: LocalDateTime, phone: String)

def validwebForm(
name: String, birthdate: String, phone: String
): Validated[String, CheckedForm] =
map3(
validName(name),
validBirthdate(birthdate),
validPhone(phone)
)(CheckedForm(_,_,_)) // same call signature as for Either

// if all fields are invalid, would return:
Invalid("Name cannot be empty",
List("Birthdate must be in YYYY-MM-DD format",
"Phone number must be 10 digits"))

Can Validated be a Monad?

This achieves what we wanted. But can we also make it a Monad, while keeping
the accumulation? We'd need a flatMap implementation for a given E (pure is
simply the constructor for a Valid):

def flatMap[A,B](fa: Validated[E,A])(f: A => Validated[E,B]): Validated[E,B]

"

Can Validated be a Monad?

This achieves what we wanted. But can we also make it a Monad, while keeping
the accumulation? We'd need a flatMap implementation for a given E (pure is
simply the constructor for a Valid):

def flatMap[A,B](fa: Validated[E,A])(f: A => Validated[E,B]): Validated[E,B]

Not possible, because our function requires an A for generating the next error
— can't produce another error, if we already have one.

But map2 can do more than a Functor, so we want something between Functor
and Monad.

"

Applicative Functors

Typeclass hierarchy

[Monoid]

(Functor) (Foldable

—

[Applicative]

A

[Monad]

map2 without flatMap

We defined map2 in terms of flatMap in the Monad lecture:

def map2[B, CI(fb: F[B])(f: (A, B) => C): F[C] =
fa.flatMap(a => fb.flatMap(b => pure(f(a, b))))

But we've justseen that there are types, for which we cannot define a flatMap
function, that gives map2 the desired behavior. So we should define a typeclass,
that has map2 but not flatMap.

12

Methods for Applicative

As our hierarchy slide already showed, that typeclass is called Applicative.
What methods beside map2 should it provide?

There are some methods we defined for all monads, e.g. sequence and
traverse on the exercise sheet. One possible solution doesnt need flatMap,
but only map2 and pure:

def sequence[A]l(fas: List[F[A]]): F[List[A]] =
fas.foldRight[F[List[A]]](pure(Nil))((a, b) => a.map2(b)(_::_))

So requiring pure allows us to provide those for Applicative too.

13

Several (but not all) of the monad combinators can be implemented in terms of
map2, without using flatMap directly. And we also do not need flatMap to
implement map2.

We'll look at another combinator, named ap, which is equally powerful as map2
(i.e. we can implement one of both and derive the other from it). It applies a
function inside an Applicative F to a value also inside an F:

def ap[A,BI(ff: F[A => B])(fa: F[A]): F[B]

The Applicative typeclass

As we saw in the hierarchy, an Applicative is also a Functor. So we can create the
following trait for our typeclass, with pure plus one of map2 or ap as its minimal
sets of combinators:

trait Applicative[F[_]] extends Functor[F]:
def pure[Al(a: A): F[A]

def apl[A,Bl(ff: F[A => B])(fa: F[A]l): F[B]
extension [A](fa: F[A])
def map2[B,C](fb: F[B])(f: (A, B) => C): F[C]

def map[B](f: A => B): F[B]

note: map is inherited, added here for clarity

15

Exercise: Deriving a Functor

Before we implement our applicative for Validated, we will show, that we can
derive map from ap and map2

Given pure and either ap or map2
def ap[A,B](ff: F[A => B])(fa: F[A]): F[B]

extension [A](fa: F[A])
def map2[B,Cl(fb: F[B])(f: (A, B) => C): F[C]

implement map in terms of them:

def map[B](f: A => B): F[B]

B3 https://go.uniwue.de/fpl19-git Applicative.scala 16

https://go.uniwue.de/fp19-git

Exercise: Deriving a Functor — Solution

Comparing ap with map, our signatures look very similar, ap just has the function
wrapped inside F.

Wrapping things in F is exactly what pure does:

extension [A](fa: F[A]) def map[B](f: A => B): F[B]
ap(pure(f))(fa)

Using map2 looks similar:

extension [A](fa: F[A]) def map[B](f: A => B): F[B]
pure(f).map2(fa)((ff, a) => ff(a))

We don’t even need to pass a useful second value in map2:

extension [A](fa: F[A]) def map[B](f: A => B): F[B] =
pure(()).map2(fa)((_, a) => f(a))

Exercise: Using ap for map2

B

We also said, that map2 and ap are equally powerful. Implement map2 in terms
of pure and ap:

extension [A](fa: F[A])
def map2[B,C](fb: F[BI)(f: (A, B) => C): F[C]

Hint: You can use f.curried to turn a function f: (A,B) => Cinto a curried
function A => (B => C).And remember, how we mapped a single F:

extension [A](fa: F[A]) def map[Bl(f: A => B): F[B] =
ap(pure(f))(fa)

https://go.uniwue.de/fpl19-git Applicative.scala 18

https://go.uniwue.de/fp19-git

Exercise: Using ap for map2 — Solution

extension [Al(fa: F[A])
def map2[B,C](fb: F[BI)(f: (A, B) => C): F[C] =
ap(
ap(pure(f.curried))(fa) // returns F[B => C]
)(fb) // apply the returned function to F[B], to get F[C]

map3, map4, .. can also be implemented with the same pattern by nesting ap
calls:

def map3[A,B,C,D]I(fa: F[A]l, fb: F[B], fc: F[C])(f: (A, B, C) => D): F[D] =
ap(ap(ap(pure(f.curried))(fa))(fb))(fc)

We can also implement ap using map2, so they are equally powerful:

def ap[A,B](ff: F[A => B])(fa: F[A]): F[B] =
ff.map2(fa)((f, a) => f(a))

20

Exercise: Implement an Applicative for Validated

enum Validated[+E, +A]:
case Valid(a: A)
// Invalid stores at least one error and possibly more
case Invalid(head: E, tail: List[E])

With all those methods in place, we now only need pure and either ap or map2
for an Applicative instance. Implement one for Validated, that accumulates
errors. Note that a failure always has at least one error in head, further errors
accumulate in tail.

given [E]: Applicative[[a] =>> Vvalidated[E,a]] with
def pure[Al(a: A) = valid(a)
// add map2 or ap here

B3 https://go.uniwue.de/fpl9-git Validated.scala 2

https://go.uniwue.de/fp19-git

Exercise: Implement an Applicative for Validated — Solution

extension [A](fa: Validated[E,A])
override def map2[B,C](fb: Validated[E,B])(f: (A,B) => C) =
(fa, fb) match
case(Valid(a), Vvalid(b)) => Vvalid(f(a,b))
case(Invalid(h1l, t1), Invalid(h2,t2)) => Invalid(h1, t1 ++ (h2 :: t2))
case(Invalid(h,t), _) => Invalid(h,t)
case(_, Invalid(h,t)) => Invalid(h,t)

Implementing ap instead of map2 nearly identical:

override def ap[A,B](ff: Validated[E,A => B])(fa: Validated[E,A]) =
(ff, fa) match
case(Vvalid(f), valid(a)) => valid(f(a))
// ... Invalid cases identical

22

Monads are Applicatives

As we can provide map2 via flatMap, we can make Monad[F] a subtype of
Applicative[F]:

trait Monad[F[_]] extends Applicative[F]:
// pure is inherited now, and we can't provide a default

extension [A]l(fa: F[A])
def flatMap[B](f: A => F[B]): F[B]

// default implementations via flatMap

def ap[A,BI(ff: F[A => B])(fa: F[A]): F[B] = 2?22

extension [A](fa: F[A])
override def map2[B,C](fb: F[B])(f: (A, B) => C): F[C] = 2?27
override def map[B](f: A => B): F[B] = 2?2

oo

A minimal implementation only needs to override pure and flatMap (or
compose or both flatten and map, see the previous exercise sheet).
23

Difference between monads and applicative functors

We've seen several minimal sets of combinators for monads (Monad laws can be
stated in terms of them):

- pure and flatMap
- pure and compose

- pure, map and flatten (see last exercise)

pure and map2/ap are not enough to implement any of the others, can we give a
reason for that?

24

Applicative less powerful

Consider flatten[A](ffa: FLF[A]]l): F[A]
It removes one layer of F.

Applicative can only add a layer with pure and work inside F with map2 / ap.

= We cannot implement flatten in terms of pure and map2 / ap. The same
reasoning can be used for flatMap and compose.

25

Extra capabilities of monads

So what can we do with a Monad, that we can’t do with an applicative? An
example:

val F: Applicative[Option] = ??2?

??? // department by employee name
??? // salary by employee name

val depts: Map[String,String]
val salaries: Map[String,Double]

val o: Option[String] =
F.map2(depts.get("Alice"))(salaries.get("Alice"))(
(dept, salary) => s"Alice in $dept makes S$salary per year"

)

All lookups returning Option are independent here, and are combined
afterwards.

26

Extra capabilities of monads

But what if we have queries returning Option, that depend on another Option?

val F: Applicative[Option] = ???

27?7

val idsByName: Map[String, EmployeelID]
val depts: Map[EmployeeID, String]
val salaries: Map[EmployeeID, Double]

???

777

val o: Option[String] =
idsByName.get("Bob").flatMap { id =>
F.map2(depts.get(id))(salaries.get(id))(
(dept, salary) => s"Bob in Sdept makes $salary per year")

Queries for salary and department depend on id, which is also queried from a
map and so may be missing too.

The flatMap in the highlighted line cannot be expressed using methods from
Applicative. 27

Difference between monads and applicatives — variants

Some variants of stating the difference between monads and applicatives:

- Applicative computations have fixed structure and only sequence effects,

monadic computations may choose structure dynamically based on previous
effects.

- Applicative constructs context-free computation, Monad allows for
context-sensitivity.

- Monad makes effects first class; may be generated at ,interpretation” time
instead of ahead of time by the program.

28

Advantages of applicative functors

Why write code that uses Applicative instead of the more powerful Monad?
Simple, we know types that have an Applicative but cannot have a Monad, like
Validated. But every Monad is also an Applicative. Also, applicative functors
compose, which monads (in general) don’t (details later).

If code can be written using Applicative only, it could e.g. be changed from
fail-fast to error-accumulating, simply by passing another type.

Therefore it is preferable to implement combinators like sequence with the
lowest amount of combinators possible, to get better reusability through fewer
dependencies.

29

Applicative Laws

Laws for applicative functors

What laws should our functions obey?

Of course we expect applicative functors to obey the identity and composition
laws for functors:

map(v)(id) == v
map(map(v)(g))(f) == map(v)(f compose g)

This implies some laws for applicative functors, if we want to be able to
implement map via ap or map2 and pure.

30

Laws for map2

Laws for Applicatives — map2

The laws for map2 are:

- left identity
- right identity

- associativity

We start with looking at an implementation of map via map2.

31

Laws for Applicatives — Left and right identity

extension [A](fa: F[A]) def map[B](f: A => B): F[B] =
map2(pure(()))(fa)((_, a) => f(a))

This definition is arbitrary, swapping pure and fa still obeys functor laws:

extension [A](fa: F[A]) def map[B](f: A => B): F[B] =
map2(fa)(pure(()))((a, _) => f(a))

map2 of some fa with pure and a function that ignores the pure side preserves
structure of fa. We call these left and right identity laws:

fa //left identity
fa //right identity

>
>

map2(pure(()))(fa)((_,a)
_)

a)
map2(fa)(pure(()))((a, a)

32

Laws for Applicatives — Associativity

def map3[A,B,C,D](fa: F[A], fb: F[B], fc: F[C])(f: (A, B, C) => D): F[D] =

We implemented map3 via ap, but also possible via combining successively with
map2. The associativity law for applicative functors tells us, that result of

combining fa and fb first and then fc should yield same result as combining fb
and fc first.

We want something similar to the associativity laws we know from monoids and
monads:

a |+l (b |+] c)
compose(f, compose(g, h))

(a |+] b) |+] ¢
compose(compose(f, g), h)

33

Laws for Applicatives — Associativity

We use the following helper methods to define associativity:

- product merges two F by tupling.

def product[A,B](fa: F[A], fb: F[B]): F[(A,B)] =
fa.map2(fb)((_,_))

- assoc just turns nesting of tuples around:

def assoc[A,B,Cl(p: F[(A, (B, €))1): F[((A, B), O] =
map(p){ case (a, (b, c)) => ((a, b), c) }

With these, the associativity law is:

product(product(fa, fb), fc) == assoc(product(fa, product(fb, fc)))

34

Laws for ap

The laws for ap are very abstract. We will skip them in the lecture, and they will
not be exam relevant. The slides are here if you are interested.

The important lesson that you should remember is:
ap behaves like normal function application, but inside an applicative functor.

non-essential 35

Laws for Applicatives — Identity

map(v)(id) == v
map(map(v)(g))(f) == map(v)(f compose g)

extension [A](fa: F[A]) def map[Bl(f: A => B): F[B] =
ap(pure(f))(fa)

Looking at our implementation of map, we can conclude, that an identity law also

is required for ap:

ap(pure(id))(v) == v

non-essential 36

Laws for Applicatives — Composition

map(v)(id) == v
map(map(v)(g))(f) == map(v)(f compose g)

extension [A](fa: F[A]) def map[B](f: A => B): F[B] =
ap(pure(f))(fa)

The same goes for composition:

ap(fbc)(ap(fab)(fa)) == ap(ap(ap(pure(compose))(fbc))(fab))(v)

where compose is the same function compositon as in the map law.

non-essential 37

Laws for Applicatives — Homomorphism

The homomorphism law states, that it does not matter, if we apply a function to a
value before or after we put them into our applicative context:

ap(pure(f))(pure(a)) == pure(f(a))

non-essential 38

Laws for Applicatives — Interchange

The interchange law states, that function application is the same whether we use
ap to apply a function to a value in our Applicative or we use pure to lift normal
function application into applicative context:

ap(ff)(pure(x)) == ap(pure((f: A=>B) => f(x)))(ff)

fab hereisa F[A => B] and x is of type A.

with (f: A => B) => f(x) we define a function, that takes another function
and applies it to x.

non-essential 39

Composing Applicatives

Exercise: Applicative composition

We mentioned, that applicative functors compose. Let's create a compose
method for Applicatives:

def composel[F[_], G[_]11(
using F: Applicative[F], G: Applicativel[G]
): Applicative[[a] =>> F[G[al]] =

Reminder: We've already seen a similar signature for Functor. Here [a] => F[G[a]]] resultsina
type constructor that takes a single parameter, denoted by a in our type expression. We need a

type lambda here instead of writing F[G[_]1] because of the nesting (we'd be passing G[_] to

F[_1, instead of creating a nested constructor).

40

Exercise: Applicative product: pure

def compose[F[_1, G[_]I(
using F: Applicative[F], G: Applicativel[G]
): Applicative[[a] =>> F[G[all] = new Applicative[[a] =>> F[G[a]]]:
def pure[Al(a: A): F[G[A]] = 222

Implement pure.

B3 https://go.uniwue.de/fpl19-git Compose.scala 41

https://go.uniwue.de/fp19-git

Exercise: Applicative product: pure — Solution

We call pure on each Applicative, nesting them like our expected result:

def pure[Al(a: A) = F.pure(G.pure(a))

42

Exercise: Applicative product — Implement map2 or ap

override def ap[A,B](fgf: F[G[A => B]])(fga: F[G[A]]): F[G[B]] =

extension [A](fga: F[G[A]])
override def map2[B,C](fgb: F[G[B]])(f: (A, B) => C): F[G[C]] =
Implement either map2 or ap.

Hint: both start the same way. And remember that you can use both map2 and ap
from Fand G

B3 https://go.uniwue.de/fpl9-git Compose.scala 43

https://go.uniwue.de/fp19-git

Exercise: Applicative product — Solution

override def ap[A,B](fgf: F[G[A => B]])(fga: F[G[A]l]): F[G[B]] =
F.map2(fgf)(fga)((gf, ga) => G.ap(gf)(ga))

extension [A](fga: F[G[A]])
override def map2[B,C](fgb: F[G[B]1])(f: (A, B) => C): F[G[C]] =
F.map2(fga)(fgb)((ga, gb) => G.map2(ga)(gb)(f))

44

More composition

There are more possibilities to compose applicative functors. If F[_] and G[_]
are applicative functors, then (F[_1,G[_1) is too.

def product[F[_1, G[_]1(
using F: Applicative[F], G: Applicative[G]
): Applicative[[a] =>> (F[al,G[a]l)] =

This will be on an exercise sheet.

45

Monad composition

Composition is one thing that applicatives can do, but monads can't.

Suppose we wanted to implement flatMap for nested monads F and G. The
resulting signature would expect a function f: A => F[G[B]].

But flatMap on a F[G[A]] would expect a function G[A] => F[X]. While X
could be G[B], we can't use our function f, as we can’t “unwrap” the G[A].

So we can't implement a general composition for monads. There are ways to
combine monads, as long as one is fixed (e.g. we can compose any monad with
an Option inside it), which is a topic in the seminar.

46

We've seen today:

- how to accumulate multiple errors from fallible computations with Validated
- ..and why Either can’t do it, resp. why Validated can’t have flatMap

- the Applicative typeclass as something between Monads and Functors

- its operators ap and map2, which are equally powerful
- the laws for map2
- that Applicatives can compose by nesting them

47

	Applicative Functors
	Applicative Laws
	Laws for map2
	Laws for ap
	Composing Applicatives

