
7 — Monads
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2020

Lehrstuhl für Informatik VI, Uni Würzburg

1



The Functor (Recap - Don’t do it again)

https://go.uniwue.de/fp19-git / FunctorOption.scala⌨

Implement the Functor for Option.

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

Solution:

given Functor[Option] with
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] =
fa match
case None => None
case Some(a) => Some(f(a))

2

https://go.uniwue.de/fp19-git


The Functor (Recap - Don’t do it again)

Implement the Functor for Option.

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

Solution:

given Functor[Option] with
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] =
fa match

case None => None
case Some(a) => Some(f(a))

2



The Functor (Recap)

We can now define functions purely in terms of functor.

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

/* map, but also keep old value */
def fproduct[B](f: A => B): F[(A, B)] =
fa.map(a => (a, f(a)))

extension [A,B](fab: F[(A, B)])
/* split a functor with a tuple */
def unzip: (F[A], F[B]) =
(map(fab)(_._1), map(fab)(_._2))

Both of these functions “just work” as long as there is a map method.

3



Motivating Example (Parsers)

This is a real example from my company.

We need to parse a schedule to control when the lights go on (and off) in gyms.

+ MO 08:00
- MO 14:00
+ MO 16:00
- MO 22:00
+ DI 08:00
- DI 14:00
+ DI 16:00
- DI 22:00
+ MI 08:00
- MI 14:00
+ MI 16:00
- MI 22:00
+ DO 08:00
- DO 14:00

+ DO 16:00
- DO 22:00
+ FR 08:00
- FR 14:00
+ FR 16:00
- FR 22:00
+ SA 08:00
- SA 14:00
+ SA 16:00
- SA 22:00
+ SO 08:00
- SO 14:00
+ SO 16:00
- SO 22:00

4



Motivating Example (Parsers)

And here’s the code:

def parse(s: String) =
(list <* endOfInput).parseOnly(s)

def list: Parser[List[Entry]] =
entry.sepBy(string("\n"))

def entry: Parser[Entry] = for
dir <- direction
_ <- ws
day <- weekDay
_ <- ws
hours <- int
_ <- string(":")
minutes <- int

yield Entry(dir, day, hours, minutes)

def direction: Parser[Boolean] =
string("+").as(true) <+>
string("-").as(false)

def weekDay: Parser[DayOfWeek] = List(
("MO", DayOfWeek.MONDAY),
("DI", DayOfWeek.TUESDAY),
("MI", DayOfWeek.WEDNESDAY),
("DO", DayOfWeek.THURSDAY),
("FR", DayOfWeek.FRIDAY),
("SA", DayOfWeek.SATURDAY),
("SO", DayOfWeek.SUNDAY)

).foldMap({ case (s, d) =>
string(s).as(d)})

def ws: Parser[Unit] =
horizontalWhitespace.many1.void

5



Motivating Example (Parsers)

What have we seen here?

• The for comprehension isn’t part of the parser library
• The <* operator is not part of the parser library
• The as method is not part of the parser library
• The <+> operator is not part of the parser library
• The .void method is not part of the parser library
• The .foldMap method is not part of the parser library

All those methods and operators come from the Monad and Alternative type
classes. Which means you can write a large portion of your program without
having to learn special combinators for the Parser data type.

6



Motivating Example (Probability)

We want to do a small RPG simulation.

We have two players. Both players first do an attack roll, the one who rolls higher
can hit the other. The player who hits then rolls an attack and subtracts that from
the hitpoints of the other player. Here are the hit and damage dice:

Attack Damage
Player1 1W3 + 1W2 2W3 + 2
Player2 1W6 + 1 4

We want to simulate who of the players wins, given some initial hit points for
both players.

7



Motivating Example (Probability)

Here’s the game state:

final case class State(hp1: Int, hp2: Int):
def hitFirst(dmg: Int): State = copy(hp1 = hp1 - dmg)
def hitSecond(dmg: Int): State = copy(hp2 = hp2 - dmg)
def winner: Option[Boolean] =

if hp1 <= 0 then Some(false)
else if hp2 <= 0 then Some(true)
else None

8



Motivating Example (Probability)

And here’s the simulation:

def fight(s: State): Prob[Boolean] =
for

oneHits <- playerOneHits

newState <-
if oneHits then
for dmg <- rollDamage1
yield s.hitSecond(dmg)

else
for dmg <- rollDamage2
yield s.hitFirst(dmg)

result <- newState.winner match
case Some(w) => w.pure[Prob]
case None => fight(newState)

yield result

def playerOneHits =
(rollHit1, rollHit2).mapN(_ >= _)

def rollHit1 = for
r1 <- dice(3)
r2 <- dice(2)

yield r1 + r2

def rollHit2 =
dice(6).map(_ + 1)

def rollDamage1 =
rollMupltiple(2, 3).map(_ + 2)

def rollMupltiple(n: Int, d: Int) =
List.fill(n)(dice(d))
.sequence.map(_.sum)

def rollDamage2 =
4.pure[Prob]

9



Motivating Example (Probability)

And this is the output:

false -> 0.4284250023956541, true -> 0.5715749976043474

What have we seen here?

• The for comprehension isn’t part of the prob library
• The .mapN method is not part of the prob library
• The .map method is not part of the prob library
• The .sequence method is not part of the prob library

All those methods and operators come from the Monad and Traversable type
classes. Which means you can write a large portion of your program without
having to learn special combinators for the Prob data type.

10



Monads

Typeclass hierarchy

Monoid

Functor

Applicative

Monad

Traverse

Foldable



The Monad

The functor abstraction we saw last week is great and it let’s us abstract over a
lot of data structures.

But there are also a lot of functions we can’t write when we are given only a
functor instance. One example is combining multiple values F[A], F[B], …
into a single F.

Let’s introduce a more powerful abstraction: the monad.

trait Monad[F[_]]:
def pure[A](a: A): F[A]

extension [A](fa: F[A])
def flatMap[B](f: A => F[B]): F[B]

With a monad we can lift an expression into the monad (pure).

We can also combine the current monad together with a function which takes its
value and yields a new monadic value to get a new monad (flatMap). 11



The Monad

⌨

Monads are strictly more powerful than functors. How would we prove that?

12



The Monad

https://go.uniwue.de/fp19-git MonadFunctor.scala⌨

Monads are strictly more powerful than functors. How would we prove that?

def functorFromMonad[F[_]](using m: Monad[F]): Functor[F] = new Functor[F]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B] =

We prove it by providing a function which gives us a Functor for every type for
which we know it’s a Monad.

Solution:

def functorFromMonad[F[_]](using m: Monad[F]): Functor[F] = new Functor[F]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B] =
fa.flatMap(a => m.pure(f(a)))

13

https://go.uniwue.de/fp19-git


The Monad

Monads are strictly more powerful than functors. How would we prove that?

def functorFromMonad[F[_]](using m: Monad[F]): Functor[F] = new Functor[F]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B] =

We prove it by providing a function which gives us a Functor for every type for
which we know it’s a Monad.

Solution:

def functorFromMonad[F[_]](using m: Monad[F]): Functor[F] = new Functor[F]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B] =
fa.flatMap(a => m.pure(f(a)))

13



The Monad — Exercise: map2

https://go.uniwue.de/fp19-git MonadFunctor.scala⌨

But is a monad powerful enough to let us combine multiple values inside F?

Go back to the code and implement the map2 function.

extension [A](fa: F[A])
// ...
def map2[B, C](fb: F[B])(f: (A, B) => C): F[C] = ???

Solution:

def map2[B, C](fb: F[B])(f: (A, B) => C): F[C] =
fa.flatMap(a => fb.flatMap(b => pure(f(a, b))))

14

https://go.uniwue.de/fp19-git


The Monad — Exercise: map2

But is a monad powerful enough to let us combine multiple values inside F?

Go back to the code and implement the map2 function.

extension [A](fa: F[A])
// ...
def map2[B, C](fb: F[B])(f: (A, B) => C): F[C] = ???

Solution:

def map2[B, C](fb: F[B])(f: (A, B) => C): F[C] =
fa.flatMap(a => fb.flatMap(b => pure(f(a, b))))

14



The Monad

Which data structures we already encountered are monads?

• Option
• Either
• List (and other collections like LazyList, Vector, ...)
• Parser
• Prob

15



The Monad

Which data structures we already encountered are monads?

• Option
• Either
• List (and other collections like LazyList, Vector, ...)
• Parser
• Prob

15



The Monad — Exercise: sequence

https://go.uniwue.de/fp19-git MonadFunctor.scala⌨

We have seen sequence pop up at various places. For example to transform a
list of potential errors (List[Either[E, A]]) into either an error or a list of
values (Either[E, List[A]]).

Sequence can be implemented for any monad.

Go back to the code and add the function

extension [A](fas: List[F[A]])
def sequence: F[List[A]] = ???

You may use map2 from our monad, and foldRight on List (courtesy of the
standard library).

Solution:

extension [A](fas: List[F[A]])
def sequence: F[List[A]] =

fas.foldRight(pure(List.empty[A]))((a, b) => a.map2(b)(_::_))
// ↑ or Nil: List[A]

16

https://go.uniwue.de/fp19-git


The Monad — Exercise: sequence

We have seen sequence pop up at various places. For example to transform a
list of potential errors (List[Either[E, A]]) into either an error or a list of
values (Either[E, List[A]]).

Sequence can be implemented for any monad.

Go back to the code and add the function

extension [A](fas: List[F[A]])
def sequence: F[List[A]] = ???

You may use map2 from our monad, and foldRight on List (courtesy of the
standard library). Solution:

extension [A](fas: List[F[A]])
def sequence: F[List[A]] =

fas.foldRight(pure(List.empty[A]))((a, b) => a.map2(b)(_::_))
// ↑ or Nil: List[A] 16



The Monad

Sequencing does very different things for different monads.

Option List[Option[A]] -> Option[List[A]]. Yields either an empty
option or a list of all the values.

Either List[Either[E, A]] -> Either[E, List[A]]. Yields either
the first error or a list of all the values.

List List[List[A]] -> List[List[A]]. Creates the Cartesian
product of all the lists.

Parser List[Parser[A]] -> Parser[List[A]]. Parses all the items in
sequence.

Prob List[Prob[A]] -> Prob[List[A]]. Creates a probability
distribution of a list.

17



The Monad Laws

Now that we know a bit about monads, let’s talk laws.

A monad has to obey two laws:

• The associative law
• The identity law

Let’s take them one by one.

18



The Monad Laws

Look at those two programs

val progA: Option[Order] = for
name <- getName
price <- getPrice
quantity <- getQuantity

yield Order(Item(name, price), quantity)

val progB: Option[Item] = for
name <- getName
price <- getPrice

yield Item(name, price)

val progC: Option[Order] = for
item <- progB
quantity <- getQuantity

yield Order(item, quantity)

We expect them to be equal. In both cases, the result of progA and progC
should be the same.

19



The Monad Laws

But they don’t expand to the same code

val progA: Option[Order] =
getName.flatMap(name =>
getPrice.flatMap(price =>
getQuantity.map(quantity =>

Order(Item(name, price), quantity))))

val progC: Option[Order] =
getName.flatMap(name =>
getPrice.map(price =>

Item(name, price))).flatMap(i =>
getQuantity.map(quantity =>

Order(i, quantity)))

For example, we have one map call on the left side, but two on the right side. This
is a problem.

20



The Monad Laws

To ensure that both of the code examples discussed just now always behave the
same, every monad has to follow the associative law:

x.flatMap(f).flatMap(g) == x.flatMap(a => f(a).flatMap(g))

21



The Monad Laws

We can prove that this law holds for Option, for example, by applying the
substitution model given to us by referential transparency.

x.flatMap(f).flatMap(g) == x.flatMap(a => f(a).flatMap(g))

For None:
None.flatMap(f).flatMap(g) == None.flatMap(a => f(a).flatMap(g))

None.flatMap(g) == None
None == None

22



The Monad Laws

We can prove that this law holds for Option, for example, by applying the
substitution model given to us by referential transparency.

x.flatMap(f).flatMap(g) == x.flatMap(a => f(a).flatMap(g))

For Some(v):
Some(v).flatMap(f).flatMap(g) == Some(v).flatMap(a => f(a).flatMap(g))

f(v).flatMap(g) == (a => f(a).flatMap(g))(v)
f(v).flatMap(g) == f(v).flatMap(g)

23



The Monad Laws

So the associative law holds for Option. It is not clear, though, that this is an
associative law at all.

Associativity laws for an operator ⊕ normaly take the form

a⊕ (b⊕ c) == (a⊕ b)⊕ c)

which looks quite different from

x.flatMap(f).flatMap(g) == x.flatMap(a => f(a).flatMap(g))

24



The Monad Laws

We can look at it through the lens of function composition.

Instead of functions of the type A => B we look at functions of the type A =>
F[B], where F is a monad.

Those functions are called Kleisli Arrows and they can be composed like normal
functions as long as we have a monad instance for F.

With that in mind, we can restate our associative law this way:

compose(f, compose(g, h)) == compose(compose(f, g), h)

25



The Monad Laws

https://go.uniwue.de/fp19-git MonadFunctor.scala⌨

Let’s try to implement compose.

Go back to the code and add the function

def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] = ???

Note that we have two parameter lists here. They are only here to aid type
inference, but the function is equivalent to the theoretical compose function
above. You should be able to implement it just by using flatMap

Solution:

def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] =
a => f(a).flatMap(g)

26

https://go.uniwue.de/fp19-git


The Monad Laws

Let’s try to implement compose.

Go back to the code and add the function

def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] = ???

Note that we have two parameter lists here. They are only here to aid type
inference, but the function is equivalent to the theoretical compose function
above. You should be able to implement it just by using flatMap

Solution:

def compose[A, B, C](f: A => F[B])(g: B => F[C]): A => F[C] =
a => f(a).flatMap(g)

26



The Monad Laws

The other law was the identity law, which can be stated as follows:

• flatMap(x)(pure) == x
• flatMap(pure(y))(f) == f(y)

or, alternatively

• compose(f, pure) == f
• compose(pure, f) == f

27



What Does “Monad” Mean?

It’s hard to describe what a monad really is, because monads don’t have shared
funcationality. They can pass state along, do error handling, build cartesian
products or do nothing at all.

They are described purely by an algebraic interface with laws:
A monad is an implementation of one of the minimal sets of monadic
combinators, satisfying the laws of associativity and identity.

The “minimal set of monad combinators” we used are flatMap and pure, but
there are others.

28



What Does “Monad” Mean?

https://go.uniwue.de/fp19-git MonadId.scala⌨

We already have seen many monads which do different things. Now let’s look at a
monad which doesn’t do anything:

final case class Id[A](value: A)

Implement the monad instance for Id

Solution:

given Monad[Id] with
def pure[A](a: A): Id[A] = Id(a)

extension [A](fa: Id[A])
def flatMap[B](f: A => Id[B]): Id[B] = f(fa.value)

29

https://go.uniwue.de/fp19-git


What Does “Monad” Mean?

We already have seen many monads which do different things. Now let’s look at a
monad which doesn’t do anything:

final case class Id[A](value: A)

Implement the monad instance for Id Solution:

given Monad[Id] with
def pure[A](a: A): Id[A] = Id(a)

extension [A](fa: Id[A])
def flatMap[B](f: A => Id[B]): Id[B] = f(fa.value)

29



What Does “Monad” Mean?

The only way to really understand what monads are and what they are good for is
to use many of them.

You will learn something new many times.

30



Summary

We have seen:

• What a monad is (laws and signatures)
• That sequence and map2 work for every monad
• That Either, Option, List, Prob, Parser and Id are all monads, even
though they do comletely different things

• What kleisli arrows are and how to compose them

31



From @impurepics / impurepics.com
31

https://impurepics.com/posts/2020-09-13-talking-monads.html

	Monads

