
6 — Foldables and Functors
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2023

Lehrstuhl für Informatik VI, Uni Würzburg

1

General monoid folding

Last time we looked at monoids. We already noticed, that their parts fit the
required parameters for folds.

We will take a closer look at folding with monoids and see a third fold beside
foldLeft and foldRight only for monoids.

2

Exercise: General monoid folding

Last lecture we saw the method to fold a list with a monoid:

def combineAll[A](as: List[A])(using m: Monoid[A]): A =
as.foldLeft(m.zero)(m.combine)

If we don’t have a monoid instance for the type, we can map to a monoidal type
first. But can it be done in a single iteration?

Implement foldMap with a single foldLeft (no map and combineAll)

def foldMap[A,B](as: List[A])(f: A => B)(using m: Monoid[B]): B

https://go.uniwue.de/fp19-git Foldable.scala⌨ 3

https://go.uniwue.de/fp19-git

Exercise: General monoid folding — Solution

def foldMap[A,B](as: List[A])(f: A => B)(using m: Monoid[B]): B =
as.foldLeft(m.zero)((b, a) => m.combine(b, f(a)))

4

Fold associativity

Recall: difference between left and right fold is associativity

Right fold:

op

a op

b op

c z

op(a, op(b, op(c, z)))

Left fold:

op

op

op

z a

b

c

op(op(op(z, a), b) ,c)

5

Folding with monoids

val words = List("Lorem", "Ipsum", "Dolor")
// words: List[String] = List(Lorem, Ipsum, Dolor)
val s = words.foldRight(stringMonoid.zero)(stringMonoid.combine)
// s: String = "LoremIpsumDolor"
val t = words.foldLeft(stringMonoid.zero)(stringMonoid.combine)
// t: String = "LoremIpsumDolor"

Because of associativity and identity laws of monoids, foldLeft and foldRight have
same result:

// left fold right fold
(("" + "Lorem") + "Ipsum") + "Dolor" == "Lorem" + ("Ipsum" + ("Dolor" + ""))

6

Balanced fold

With monoids, which are associative, a balanced fold is possible too:

op

op

a b

op

c d

op(op(a, b), op(c, d))

• can be parallelized
• can be more efficient, if cost of op is proportonal to size of arguments (e.g.
string concatenation)

7

Balanced foldMap

def foldMapBalanced[A,B](as: Vector[A])(f: A => B)(using m: Monoid[B]): B =
if as.length == 0 then

m.zero
else if as.length == 1 then

f(as(0))
else

val (left, right) = as.splitAt(as.length / 2)
m.combine(foldMapBalanced(left)(f), foldMapBalanced(right)(f))

We use Vector here, because it has more effiecient splitting and length
operations.

This implementation is not parallelized, but we would only have to change the
last line to have the recursive calls in different threads to do so (e.g. using
Future, out of scope here).

8

Abstracting folds

Typeclass hierarchy

Monoid

Functor

Applicative

Monad

Traverse

Foldable

Abstracting folds

We have seen several structures, that can be folded:

• Lists
• LazyLists
• Vectors
• Option (we can treat it like a list with at most one element)
• (in the exercise we’ll have another one: Trees)

Given e.g. a structure of ints that we want to sum up:

ints.foldRight(0)(_ + _)

type of ints irrelevant for us, only existence of foldRight.

9

Foldable

We can find the common parts between all our foldable structures. As the
signatures of the folds themselves don’t even contain the type they work on any
more, we can copy them unchanged:

trait Foldable[F[_]]:
extension [A](as: F[A])

def foldRight[B](z: B)(f: (A,B) => B): B

def foldLeft[B](z: B)(f: (B,A) => B): B

def foldMap[B](f: A => B)(using mb: Monoid[B]): B =
foldLeft(mb.zero)((b, a) => mb.combine(b, f(a)))

def combineAll(m: Monoid[A]): A =
foldLeft(m.zero)(m.combine)

Here, F[_] denotes a type constructor (more on next slide).

10

Higher kinded types

The parameter definition of F[_] means, F is not a concrete type, but a type
constructor taking one argument.

We already know values have types. But types also have types, which are called
kinds. Kinds basically tell us, what kind and amount of types have to be provided
to get to a concrete type. Some examples of kinds:

Example Kind
Concrete type String, List[Int] ∗
TC, one param List, Option ∗ → ∗
TC, two params Either ∗ → ∗ → ∗
TC, takes TC as param Foldable (∗ → ∗) → ∗

Kinds with arrows are similar to functions, but on the type level.

11

Higher kinded types

Foldable can take a type constructor of kind ∗ → ∗ as parameter, which in Scala
is a type with one type parameter: (Note: no brackets after List)

given Foldable[List] with
// ...

As seen in fold signatures, F can be used with parameters:

trait Foldable[F[_]]:
extension [A](as: F[A])

def foldRight[B](z: B)(f: (A,B) => B): B

Implementation for List would have a List[A] as the type on which
extensions are added.

Foldable is a type constructor that takes a type constructor as parameter, a.k.a.
higher-order type constructor or higher-kinded type (cf. higher order function).

12

Higher kinded types

With this, we can add a modified higher-kind version of our monoid:

trait MonoidK[F[_]]:
def zero[A]: F[A]
def combine[A](f1: F[A], f2: F[A]): F[A]

which allows us to have a single instance for types like List or Option, where
the element type is not important for combine and zero, e.g. for Option:

given MonoidK[Option] with
def zero[A]: Option[A] = None
def combine[A](o1: Option[A], o2: Option[A]): Option[A] = o1 orElse o2

The variant from last time generated one instance per element type, so this is
better.

13

Exercise: Using Foldable

We already defined foldLeft and foldRight for List, etc., so creating the
Foldable instances is not that interesting. So let’s try to use the typeclass
instead!

Write a method that can turn any foldable data structure into a list. Think about
how the signature of this method should look.

Hint: the method will need two type parameters of different kinds.

Hint: we’ve already seen the implementation in the lecture on lists.

https://go.uniwue.de/fp19-git Foldable.scala⌨ 14

https://go.uniwue.de/fp19-git

Using Foldables — Solution

def toList[F[_], A](data: F[A])(using Foldable[F]): List[A] =
data.foldRight[List[A]](Nil)((a, res) => a :: res)

Foldable is of kind (∗ → ∗) → ∗, so it needs a parameter of kind ∗ → ∗. Therefore
our function does too so it can pass it on: F[_].
For our folded data structure, we additionally need the element type (kind ∗) to
pass to F[_], so we can get a concrete type: A.

With those we can get F[A], a type we can use the methods from a
Foldable[F] instance on.

Like seen in the list lecture, foldRight is perfect for creating a list.

15

Functors

Typeclass hierarchy

Monoid

Functor

Applicative

Monad

Traverse

Foldable

A New Take on Old Comrades

Option:

def getSalary(p: Person): Option[Int] =
for // may fail if:

id <- getPersonId(p) // - person not in DB
baseSalary <- getPosition(id).map(_.baseSalary) // - id is not in DB
bonus <- getBonus(id) // - id is not in DB

yield baseSalary + bonus

Which is basically equivalent to

def getSalary(p: Person): Option[Int] =
getPersonId(p).flatMap(id =>

getPosition(id).map(_.baseSalary).flatMap(baseSalary =>
getBonus(id).map(bonus => baseSalary + bonus)))

Option allows you to handle errors or the absence of values and fail fast.

16

A New Take on Old Comrades

Functions:

val double: (Int => Int) = i => i * 2

val asHex: (Int => String) = i => "0x" + Integer.toString(i, 16)

val bytes: (String => List[Byte]) = _.getBytes.toList

val combined: (Int => List[Byte]) = double.andThen(asHex).andThen(bytes)

Functions can be chained, always keeping the input type of the first function.

17

A New Take on Old Comrades

Function and Option do completely different things and share practically no
behavioural similarity. But not all is different. Lets only look at functions taking
an Int:

type IntFunction[A] = Int => A

def map[A, B](a: Option[A])(f: A => B): Option[B]
def andThen[A, B](a: IntFunction[A])(f: A => B): IntFunction[B]

Option’s map and IntFunction’s andThen have a pretty similar signature.

The same is true for Either and List, which also have a corresponding map
function.

18

The Functor

There seems to a pattern there. Let’s try to capture that.

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

So a Functor is a unary type constructor which allows us to map over it.

We also see now, why we created the IntFunction alias: F[_] here expects a
single parameter i.e. F’s kind is ∗ → ∗, while a unary function has kind ∗ → ∗ → ∗.

19

The Functor

Implement the Functor for Option.

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

https://go.uniwue.de/fp19-git FunctorOption.scala⌨ 20

https://go.uniwue.de/fp19-git

Solution:

given Functor[Option] with
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] =
fa match

case None => None
case Some(a) => Some(f(a))

or simply use the existing map

def map[B](f: A => B): Option[B] = fa.map(f)

21

The Functor

We can now define functions purely in terms of functor. Adding them to the trait
makes them available on all types with functor instances.

//in trait Functor
extension [A](fa: F[A])
def map[B](f: A => B): F[B]

/* map, but also keep old value */
def fproduct[B](f: A => B): F[(A, B)] =

fa.map(a => (a, f(a)))

extension [A,B](fab: F[(A, B)])
/* split a functor with a tuple */
def unzip: (F[A], F[B]) =

(map(fab)(_._1), map(fab)(_._2))

Both of these new functions “just work” as long as there is a map method.

22

The Functor — Laws

To ease reasoning about them we also give those algebraic abstractions some
laws. We already saw the identity law:

y.map(id) == y

Thanks to parametricity, a lot follows from there.

Discussion:

• Can map reorder a list?
• Can map drop elements from a list?

No! This law forces every functor to keep its structure and just replace the
elements.

23

The Functor — Laws

To ease reasoning about them we also give those algebraic abstractions some
laws. We already saw the identity law:

y.map(id) == y

Thanks to parametricity, a lot follows from there.

Discussion:

• Can map reorder a list?
• Can map drop elements from a list?

No! This law forces every functor to keep its structure and just replace the
elements.

23

The Functor — Laws

The composition law states, that if we map with one function and then the other,
the result should be the same as mapping with the composition of both
functions:

x.map(f).map(g) == x.map(f andThen g)

24

Composing functors

Similar to monoids, functors can be composed. We can nest any number of them
and use map to modify the value in the innermost functor. E.g. if we have an
Option[List[Int]], we may want to run a calculation on all the ints in the
list, without first unwrapping it.

To define this composition, we first need type lambdas, as F[G[_]] would be
interpreted by Scala as passing G[_] as parameter to F, so passing a ∗ → ∗ to a
∗ → ∗, causing a type error.

25

Composing functors — Type Lambdas

We want F[G[_]] to be interpreted as a combined type of kind ∗ → ∗. With
Function we used a type alias, which is possible but clumsy. We can als define a
type lambda directly where we want to use the type:

Functor[[a] =>> F[G[a]]]
// ↑ ↑
// type parameter use of parameter

This is pretty similar to lambdas on the value level, but using brackets instead of
parentheses. The variant with _is similar to the underscore shorthand for value
lambdas.

26

Composing functors

With this, we can now create a method that combines two functors:

given [F[_],G[_]](using FF: Functor[F], FG: Functor[G])
: Functor[[a] =>> F[G[a]]] with
extension [A](fga: F[G[A]])

def map[B](f: A => B): F[G[B]] = FF.map(fga)(ga => FG.map(ga)(f))

With this, we can map the A in an F[G[A]] directly, if both F and G have a
functor instance.

27

Composing functors

Because F also has a functor, when we want to treat F[G[_]] as a composed
functor we have to do it explicitly:

def myfunc[F[_]](someInt: F[Int])(using Functor[F]) = someInt.map(_ + 1)
val nested: Option[List[Int]] = Some(List(1,2,3))

/* error Required: F[Int]
where: F is a type variable with constraint <: [_] =>> Any */

myfunc(nested)

// works
myfunc[[a] =>> Option[List[a]]](nested)

28

Conclusion

We have seen today:

• that folds with an associative operator can be split more efficiently
• how to describe the “type of a type” with kinds, so we can handle type
constructors and type lambdas without a concrete type

• how to use this to create a higher kinded monoid and abstract over
structures that can be folded (Foldable) or mapped (Functor)

• the Functor laws, and that nested Functors can also be treated as a single
Functor.

29

Exercise, if there is time left: Creating the Show type class
from scratch

The Show type class

On the JVM, every object has a toString method, which may or may not be
defined in a useful way. If it is not overridden, it just shows a JVM internal object
id.

The Show type class fulfills the same purpose, but is not automatically available
on any type, but only on the ones which actually want to provide a text
representation.

30

The Show type class

Define a type class named Show with a single type parameter A.

It should have a single extension method for A named show, taking no
parameters and returning a String.

https://go.uniwue.de/fp19-git Show.scala⌨ 31

https://go.uniwue.de/fp19-git

The Show type class — Solution

trait Show[A]:
extension (a: A)

def show: String

Side note: can also be defined with empty parentheses, i.e. def show(), but then calling it also

requires them. Usually parentheses for parameterless methods are used to signify side effects in

Scala (by convention)

32

Show instances

Create a Show instance for the case class Person:

case class Person(lastName: String, firstName: String, age: Int)

It should create a string of the form "<firstName> <lastName> is <age>
years old", e.g. given the value

val janedoe = Person("Doe", "Jane", 42)

this should be true:

janedoe.show == "Jane Doe is 42 years old"

Think about where this should be placed.

https://go.uniwue.de/fp19-git Show.scala⌨ 33

https://go.uniwue.de/fp19-git

Show instances — Solution

Some possible variants of how to implement this:

given Show[Person] with
extension (a: Person)

def show: String =
s"${a.firstName} ${a.lastName} is ${a.age} years old"

given Show[Person] with
extension (a: Person)

def show: String =
a.firstName + " " + a.lastName + " is " + a.age.toString + " years old"

Usually placed on the companion object of the type or the typeclass, if possible.

34

	Abstracting folds
	Functors
	Exercise, if there is time left: Creating the Show type class from scratch

