
2 — Functional Data Structures
Einführung in die Funktionale Programmierung

Prof. Frank Puppe, Felix Herrmann, Alexander Gehrke
Sommersemester 2023

Lehrstuhl für Informatik VI, Uni Würzburg

1

Hands-on Lecture

⌨

Starting with this lecture, we will have small programming exercises in between
explanations. We think, programming things yourself helps understanding. Also,
talking about problems

Slides with exercises will have the marker in the lower left corner.

2

Overview

Functional data structures are operated on using only pure functions. We’ve
already had a short look at functional lists with head and tail functions last
week.

Recap: pure functions are functions, that do not change data in place or perform
other side effects.

This means functional data structures must be immutable, e.g. appending to a
functional list returns a new list.

3

Digression: Variance

Digression: Variance

You may have noticed in statically typed languages, that some subtype relations
you would expect are not given by the type system, when parameterized types are
involved.

For example, if you have a class Animal with subclasses Cat and Dog, one could
expect, that a List<Cat> can be used when a List<Animal> is expected.

We’ll now see, why this is generally not the case (and why functional data
structures allow it).

4

Digression: Variance

Variance describes the subtyping relationship for parameterized types.

There are four types of variance. In Scala, variance is declared in the type
definition.

Variance Syntax Foo[X] <: Foo[Y] when
invariant class Foo[A] never
covariant class Foo[+A] X <: Y
contravariant class Foo[-A] Y <: X
bivariant not supported always

5

Digression: Variance — implications

Variance places restriction on where the type may be used:

• A covariant type parameter may not be used in a method argument
• A contravariant type parameter may not be used as a return type

We’ll see some examples that explain these restrictions, see also the variance
section of the online Scala Book.

6

https://docs.scala-lang.org/scala3/book/types-variance.html
https://docs.scala-lang.org/scala3/book/types-variance.html

Digression: Variance — Covariance Counterexample

trait MutableList[+A]:
def add(a: A): Boolean

val anyList: MutableList[Any] = MutListImpl[Int](1,2,3)
anyList.add("not an int") // A = Any, String <: Any, so add should take strings

A covariant type in method parameter would cause the implementation to expect
only a subtype of what we are allowed to pass in. This trait definition will not
compile.

7

Digression: Variance — Contravariance Counterexample

trait ContraList[-A]:
def get(index: Int): A

val stringList: ContraList[String] =
ContraListImpl[Object](new Object, new Object)

stringList.get(0) // not a string

A contravariant type as return type would cause supertypes of our expected type
to be returned. This trait definition will not compile.

8

Digression: Variance — Comparison to Java / Call site variance

In Java, variance is declared at use site instead of declaration site:
List<? extends Foo> fooList declares a covariant list that may be
assigned a List<T> with any T that is a subtype of Foo (contravariance is
declared with super).

The same rules apply regarding usage of the type. Java will for example prevent
calling the add method on fooList.

non-essential 9

Immutable Lists

Defining singly linked lists

A basic data structure for sequences of elements is the singly linked list:

// `List` data type, parameterized on a type `A`
enum List[+A]:
// Nil represents the empty list
case Nil
// Cons represents nonempty lists
case Cons(_head: A, _tail: List[A])

Remember: fields of case classes are immutable by default. This way, our list
definition can be covariant.

List is an algebraic data type (ADT), a type that is a combination of other types.
In this case, it is a combination of Cons and Nil, both are considered subtypes
of List[A].

10

Defining singly linked lists

enum List[+A]:
case Nil
case Cons(_head: A, _tail: List[A])

With this, we can create lists of elements by nesting Cons objects:

empty list of doubles: val ex1: List[Double] = Nil
list with an int val ex2: List[Int] = Cons(1, Nil)
list with two strings val ex3 = Cons("a", Cons("b", Nil))

Note: the slides assume an import List.* for all code not inside the enum or its
companion object, otherwise we’d need to write List.Cons and List.Nil

11

Linked List — Companion Object

object List:
def sum(ints: List[Int]): Int = ints match

case Nil => 0
case Cons(hd, tl) => hd + sum(tl)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(0.0, _) => 0.0
case Cons(hd, tl) => hd * product(tl)

def apply[A](as: A*): List[A] = // Variadic function syntax
if (as.isEmpty) Nil
else Cons(as.head, apply(as.tail*))

• companion object to our List algebraic data type

12

Linked List — Companion Object

object List:
def sum(ints: List[Int]): Int = ints match

case Nil => 0
case Cons(hd, tl) => hd + sum(tl)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(0.0, _) => 0.0
case Cons(hd, tl) => hd * product(tl)

def apply[A](as: A*): List[A] = // Variadic function syntax
if (as.isEmpty) Nil
else Cons(as.head, apply(as.tail*))

• calculate sum of a list of ints

12

Linked List — Companion Object

object List:
def sum(ints: List[Int]): Int = ints match

case Nil => 0
case Cons(hd, tl) => hd + sum(tl)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(0.0, _) => 0.0
case Cons(hd, tl) => hd * product(tl)

def apply[A](as: A*): List[A] = // Variadic function syntax
if (as.isEmpty) Nil
else Cons(as.head, apply(as.tail*))

• calculate product of a list of doubles

12

Linked List — Companion Object

object List:
def sum(ints: List[Int]): Int = ints match

case Nil => 0
case Cons(hd, tl) => hd + sum(tl)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(0.0, _) => 0.0
case Cons(hd, tl) => hd * product(tl)

def apply[A](as: A*): List[A] = // Variadic function syntax
if (as.isEmpty) Nil
else Cons(as.head, apply(as.tail*))

• allows us to initialize a list like this: List(1,2,3). Variadic functions can
take any number of parameters and return them as a
scala.collection.Seq. Details about this syntax is out of scope for the
lecture.

12

Pattern Matching — Exercise

⌨

What is the result of following match-expression?

import List.*
val x = List(1,2,3,4,5) match
case Cons(x, Cons(2, Cons(4, _))) => x
case Nil => 42
case Cons(x, Cons(y, Cons(3, Cons(4, _)))) => x + y
case Cons(hd, tl) => hd + sum(tl)
case _ => 101

• x == 3, the third case matches and captures first two elements as x and y.
• First case would match list with 2 at second and 4 at third position
• Fourth and fifth case would also match, but come later

13

Pattern Matching — Exercise

What is the result of following match-expression?

import List.*
val x = List(1,2,3,4,5) match
case Cons(x, Cons(2, Cons(4, _))) => x
case Nil => 42
case Cons(x, Cons(y, Cons(3, Cons(4, _)))) => x + y
case Cons(hd, tl) => hd + sum(tl)
case _ => 101

• x == 3, the third case matches and captures first two elements as x and y.
• First case would match list with 2 at second and 4 at third position
• Fourth and fifth case would also match, but come later

13

Data sharing in functional data structures

Modifying operations on immutable data structures

• Functional lists are immutable. How to add or remove elements?
⇒ By returning new Lists

• Example: given a list xs, prepend 1 to it: Cons(1, xs)
• Existing list is not changed
• xs is immutable⇒ can be safely reused
• No „pessimistic copying“ required, like seen in typical non-fp programs

• If operations on a data structure keep and reuse the existing structure, we
call it persistent

14

Example: head

Using pattern matching, we can add methods to the List enum, so they can be
called on any list. For example, let’s define a method to get the first element in
the list:

def head: A = this match
case Nil => sys.error("head of empty list")
case Cons(hd, _) => hd

• Not ideal, throws an error when the list is empty, which is not referentially
transparent.

• But also can’t return an A, when we have none
• We’ll see functional ways to handle errors next lecture

15

Exercise: Implement tail

Implement tail in the List enum, which removes the first element of a list and
returns the rest.

def tail: List[A] = ???

Your template already contains the implementation for head. Your solution
should be similar.

What possible actions exist when called on an empty list, that does not exist for
head?

https://go.uniwue.de/fp22-git/ List.scala⌨ 16

https://go.uniwue.de/fp22-git

Exercise: Implement tail — Solution

def tail: List[A] = this match
case Nil => sys.error("tail of empty list")
case Cons(_, tl) => tl

• For tail on Nil, we throw an error here
• We could also return Nil, but usually tail on Nil is a bug. Not throwing an
error makes it harder to find.

• A similar solution wouldn’t be possible for head, because there is no
“empty” A (except if you allow null, which we don’t).

• Aside from the error handling options in the next lecture, you should be
using pattern matching instead of head and tail, if the list could be empty.

17

Exercise: Implement init

Implement init, which returns all but the last element of a list („reverse tail“).

def init: List[A] = ???

Hint: you may want to use more than two cases.

Why can’t this be implemented in constant time?

https://go.uniwue.de/fp22-git/ List.scala⌨ 18

https://go.uniwue.de/fp22-git

Exercise: Implement init — Solution

def init: List[A] = this match
case Nil => sys.error("init of empty list")
case Cons(_,Nil) => Nil
case Cons(hd, tl) => Cons(hd, tl.init)

• Because of cons structure, copying of all earlier elements is needed when
removing an entry

• ⇒ removing the last element: O(n− 1)

• Also not tail-recursive!

19

Exercise: Implement init — Tailrecursive Solution

• Tail recursive by accumulating backwards, then reversing
• Implementation of reverse will be an exercise

def initTailrec: List[A] =
@annotation.tailrec
def go(cur: List[A], init: List[A]): List[A] = cur match

case Nil => sys.error("init of empty list")
case Cons(_,Nil) => init
case Cons(hd, tl) => go(tl, Cons(hd, init))

go(this, Nil).reverse

20

Widening the type

Let’s look at another method, setHead, which replaces the first element of a list:

def setHead[AA >: A](head: AA): List[AA] = ???

Don’t be confused by the types. The signature says “AA is a supertype of A”. As
our List is covariant in A, we would not be able to have a parameter of type A.

We solve the problem by returning another type of list. The compiler will
automatically infer AA, so that our current elements and the new head element
are fitting. E.g. setting the head of a List[Cat] to a Dog will return a
List[Animal].

21

Exercise: Implement setHead

Now implement it, using the same idea as with tail (empty list should throw an
error).

def setHead[AA >: A](head: AA): List[AA] = ???

(the implementation will not have to care about the more complex types in the
signature either, the compiler will take care of that)

https://go.uniwue.de/fp22-git/ List.scala⌨ 22

https://go.uniwue.de/fp22-git

Exercise: Implement setHead — Solution

def setHead[AA >: A](head: AA): List[AA] = this match
case Nil => sys.error("setHead on empty list")
case Cons(_, tl) => Cons(head, tl)

or, using tail:

def setHead[AA >: A](head: AA): List[AA] = Cons(head, this.tail)

23

Dropping elements

We can generalize tail to drop, which removes the first n elements in O(n).

def drop(n: Int): List[A] =
if n <= 0 then this
else this match

case Nil => Nil
case Cons(_, tl) => tl.drop(n-1)

• Usually implemented to not throw on n > l.length, as number of
elements to drop often calculated from some other source (e.g. a step size).

24

More Data Sharing

Concatenating two lists with length l1 and l2 only takes O(l1):

def append[AA >: A](other: List[AA]): List[AA] =
this match

case Nil => other
case Cons(hd, tl) => Cons(hd, tl.append(other))

Doing the same using a non-persistent structure like Arrays takes O(l1 + l2), as
both have to be copied. Here we can keep the second list unchanged.

25

Parametricity

Parametricity

Remember our stringExists function from last lecture? We can write a (more
sane) version for our list implementation:

@annotation.tailrec
def stringExists(strings: List[String], s: String): Boolean =
strings match

case List.Nil => false
case List.Cons(hd, tl) => if(hd == s) true else stringExists(tl, s)

But the signature still has the same problem. We can not tell from it, if the
function just looks at equality or still converts to lower case.

26

Parametricity

We can fix this by generalizing our function:

@annotation.tailrec
final def exists[AA >: A](a: AA): Boolean = this match
case Nil => false
case Cons(hd, tl) => hd == a || tl.exists(a)

Our function does not know the type of list elements, so it cannot use specific
operations on it.

We saw the same effect earlier, where we couldn’t create a functional solution in
head for empty lists, because head can’t know how to create a value of the type
parameter A.

27

Parametricity

If we go further, we can even have function signatures, for which only one
possible pure implementation remains. We call this concept parametricity,
because it works by replacing types with type parameters.

When you use type parameters, you don’t have any operations on the types
available except those, that you pass in as functions.

Caveat: In many languages, there still exist ways to create wrong implementations, for
example a function could still return null, which tricks the type checker. But these are
much simpler to detect and will usually fail in a way that is always detected.

28

Parametricity — Exercise

For example, take the following signature:

def para[A,B,C](a: A, b: B)(f: (A,B) => C): C

Try to implement it. There is only one way, that satisfies the type checker.

https://go.uniwue.de/fp22-git/ Parametricity.scala⌨ 29

https://go.uniwue.de/fp22-git

Parametricity — Solution

def para[A,B,C](a: A, b: B)(f: (A,B) => C): C = f(a, b)

All we have is values of type A and B, and a function that takes an A and B to
produce a C. The signature requires C as result.

As we do not know which type C is, we cannot create one, except with the given
function.

30

Higher order functions

def para[A,B,C](a: A, b: B)(f: (A,B) => C): C = f(a, b)

Our function is also a higher order function, i.e. a function that takes other
functions as parameters.

Using functions this way, passing them around and generalizing functions by
moving part of their behaviour into a parameter is a core concept in functional
programming.

31

Recursion over lists and generalizing to Higher Order
Functions

Back to our first list operations...

Looking back, sum and product are very similar:

def sum(ints: List[Int]): Int = ints match
case Nil => 0
case Cons(x,xs) => x + sum(xs)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(x,xs) => x * product(xs)

• We can generalize by pulling subexpressions to arguments

empty list result

• Additionally, we can turn subexpressions referring to local vars into functions

function to add element to result

we’re ignoring optimization of zeroes in multiplication here, as it’s only an optimization

32

Back to our first list operations...

Looking back, sum and product are very similar:

def sum(ints: List[Int]): Int = ints match
case Nil => 0
case Cons(x,xs) => x + sum(xs)

def product(ds: List[Double]): Double = ds match
case Nil => 1.0
case Cons(x,xs) => x * product(xs)

• We can generalize by pulling subexpressions to arguments
empty list result

• Additionally, we can turn subexpressions referring to local vars into functions
function to add element to result

we’re ignoring optimization of zeroes in multiplication here, as it’s only an optimization

32

Right folds

Let’s move those parts out:

def foldRight(z: A)(f: (A, A) => A): A =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

z is our “zero” element, when the list is empty
f is the operation we use to combine two elements
But we can make this function even more generic

33

Right folds

Let’s move those parts out:

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

Just by changing the signature, we now can also return something with a type
different from the the list element type. This makes folding a list very powerful, as
you can express most recursions over the whole list with it.

33

Right folds

Let’s see, how our summing and multiplying looks with fold:

def sum2(ints: List[Int]) =
ints.foldRight(0)((x,y) => x + y)

def product2(doubles: List[Double]) =
doubles.foldRight(1.0)(_ * _) // `_ * _` is shorthand for `(x,y) => x * y`

34

Right folds — step by step example

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

RT lets us replace foldRight by its definition step by step:

Cons(1, Cons(2, Cons(3, Nil))).foldRight(0)((x,y) => x + y)
1 + Cons(2, Cons(3, Nil)).foldRight(0)((x,y) => x + y)
1 + (2 + Cons(3, Nil).foldRight(0)((x,y) => x + y))
1 + (2 + (3 + Nil.foldRight(0)((x,y) => x + y)))
1 + (2 + (3 + (0)))
6

+

1 . . .+

2 . . .+

3 . . .0

35

Right folds

⌨

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

• What happens, if we pass Nil and Cons to foldRight?

List(1,2,3).foldRight(Nil: List[Int])(Cons(_,_))

• We get the original list back
• You can think of foldRight as replacing the list constructors Nil and Cons
with z and f:

Cons(1, Cons(2, Nil))
f (1, f (2, z))

36

Right folds

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

• What happens, if we pass Nil and Cons to foldRight?

List(1,2,3).foldRight(Nil: List[Int])(Cons(_,_))

• We get the original list back
• You can think of foldRight as replacing the list constructors Nil and Cons
with z and f:

Cons(1, Cons(2, Nil))
f (1, f (2, z))

36

Short-circuiting

⌨

• Can product be implemented using foldRight and still halt recursion
immediately when encountering a 0.0? Why or why not?

• No! The argument to f is evaluated before calling it, which in this case
means traversing rest of the list. To support early termination, we need to
defer that until we need it. We’ll learn how in a later lecture.

37

Short-circuiting

• Can product be implemented using foldRight and still halt recursion
immediately when encountering a 0.0? Why or why not?

• No! The argument to f is evaluated before calling it, which in this case
means traversing rest of the list. To support early termination, we need to
defer that until we need it. We’ll learn how in a later lecture.

37

Left folds

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

• foldRight is not tail-recursive. Implement a list recursion function
foldLeft, which is tail-recursive:

def foldLeft[B](z: B)(f: (B, A) => B): B = ???

Hints: One case stays the same. To be tail-recursive, one case must make the
recursive call as last action. Try to follow the types.

• Note that the recursive call replaces z with our current intermediate result

https://go.uniwue.de/fp22-git/ List.scala⌨ 38

https://go.uniwue.de/fp22-git

Left folds

def foldRight[B](z: B)(f: (A, B) => B): B =
this match

case Nil => z
case Cons(hd, tl) => f(hd, tl.foldRight(z)(f))

• foldRight is not tail-recursive. Implement a list recursion function
foldLeft, which is tail-recursive:

final def foldLeft[B](z: B)(f: (B, A) => B): B = this match
case Nil => z
case Cons(hd, tl) => tl.foldLeft(f(z, hd))(f)

• Note that the recursive call replaces z with our current intermediate result

38

map, filter and flatMap

• Let’s look at general List methods, that we’ll see on several other
structures later: map, filter and flatMap

• Their implementation will be covered on the exercise sheet. We will
concentrate on how to use them.

39

map

• map applies a function to each element of a list, producing a new list of
same length with the results

def map[B](f: A => B): List[B]

• Examples:

// double all values
List(1,2,3).map(_ * 2) == List(2,4,6)

// result type can be different
List(1,2,3).map(_.toString) == List("1", "2", "3")

40

filter

• filter applies a predicate to each element of a list, producing a new list
containing all elements, for which the predicate returned true

def filter(p: A => Boolean): List[A]

• Example:

// only keep odd numbers
List(1,2,3,4,5,6).filter(_ % 2 == 1) == List(1,3,5)

41

flatMap

• flatMap is similar to map, but the given function returns a list of elements.
The resulting lists are concatenated.

def flatMap[B](f: A => List[B]): List[B]

• Example:

// for each number, add it multiplied by 10 to the list
List(1,2,3).flatMap(i => List(i, i * 10)) == List(1, 10, 2, 20, 3, 30)

42

Which is the most powerful?

⌨

Which of the three functions would you think to be most powerful, i.e. which can
be used to implement the others? Why is the other way round not possible?

def map[B](f: A => B): List[B]

def filter(p: A => Boolean): List[A]

def flatMap[B](f: A => List[B]): List[B]

flatMap is more powerful than map and filter, because you can implement both
of them via flatMap (at least in combination with List constructors).

With map, you can only change each element, but not the structure of the list (i.e.
the length). With filter, you can only shorten, but not increase the length.

We’ll discuss this in detail later, when we have seen several structures with
flatMap.

43

Which is the most powerful?

Which of the three functions would you think to be most powerful, i.e. which can
be used to implement the others? Why is the other way round not possible?

def map[B](f: A => B): List[B]

def filter(p: A => Boolean): List[A]

def flatMap[B](f: A => List[B]): List[B]

flatMap is more powerful than map and filter, because you can implement both
of them via flatMap (at least in combination with List constructors).

With map, you can only change each element, but not the structure of the list (i.e.
the length). With filter, you can only shorten, but not increase the length.

We’ll discuss this in detail later, when we have seen several structures with
flatMap.

43

Combining higher order functions

The higher order functions on List that we learned are general enough, that we
won’t need manual recursion in most cases. We can combine them to create
more complex operations:

case class Order(order: String, date: LocalDate, price: Int)
//Find out how much we paid for pizzas this year
val totalPizzaCosts =
orders.filter(_.order.contains("Pizza"))

.filter(_.date.getYear == 2022)

.map(_.price)

.foldLeft(0)(_ + _)

44

for comprehensions

If we nest several layers of map and flatMap, this can become confusing:

List("a", "b", "c").flatMap(letter =>
List("1", "2", "3").map(number =>

letter + number
)

)
// returns: List("a1", "a2", "a3", "b1", "b2", "b3", "c1", "c2", "c3")

Scala provides syntactic sugar for this, which reads more like a for loop in other
languages.

45

for comprehensions

for
letter <- List("a", "b", "c")
number <- List("1", "2", "3")

yield letter + number
// returns: List("a1", "a2", "a3", "b1", "b2", "b3", "c1", "c2", "c3")

Each line of a for comprehension is translated to a call to flatMap, and the last
line to a call to map.

The keyword yield after the braces marks the return value of the innermost map
call. So the result of our for comprehension is a List with the element type of
the yielded expression (here: String).

46

for comprehensions

It is possible to use filtering in for comprehensions, but this is more subtle (it
uses a different method, which we did not implement, for performance reasons).
Using the standard library List, you can add if lines to a comprehension:

for
a <- List(1,2,3,4)
if a % 2 == 0 // remove odd numbers
b <- List(2,4,6,8)

yield a + b

which translates to

List(1,2,3,4)
.filter(a => a % 2 == 0)
.flatMap(a =>

List(2,4,6,8).map(b => a + b)
)

47

Lists in the standard library

We have implemented our own list to understand it better. For future exercises
you may use the standard library.

Most functions are the same or very similar. One notable difference is exists,
which takes a function to check for any condition instead of being hardcoded to
equality. Examples:

val ints = List(1,2,3) // construction
ints.head == 1
ints.tail == List(2,3)
ints.foldLeft(0)(_ + _) == 6
ints.drop(2) == List(3)
ints.exists(_ > 2) == true // exists is higher order
ints.exists(_ < 0) == false

48

Lists in the standard library

A more prominent difference is seen during appending and pattern matching:
Cons is called :: and usually used in infix notation. Nil is the same.

val strings = List("x","y","z")

val moreStrings = "w" :: strings // prepend to list
moreStrings == List("w", "x","y","z")

moreStrings == "w" :: "x" :: "y" :: "z" :: Nil // construct manually

val check = moreStrings match
case Nil => "empty"
case x :: xs => s"head is $x and tail is $xs" // matching with ::

check == "head is w and tail is List(x, y, z)"

49

Conclusion

We learned today...

• what variance means for our types
• how to define an algebraic data type using an enum
• how to work with immutable and persistent lists
• using pattern matching for destructuring nested datastructures
• what higher order functions are and how we can generalize methods by
making them HOFs

• how to use HOFs on list instead of manual recursion.

50

	Digression: Variance
	Immutable Lists
	Data sharing in functional data structures
	Parametricity
	Recursion over lists and generalizing to Higher Order Functions

