
Exam: Introduction to Functional Programming
Sample exam

Prof. Dr. Frank Puppe
Felix Herrmann

Alexander Gehrke

Name:

Matriculation number:

Course of studies:

Point overview:

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 5 6 14 4 4 5 4 4 4 4 4 58

Score:

Page 1 of 10



1. Short questions
(a) (1)You want to write a function that should return either a number (Int) or an error code. Which

return type would you use?

(b) (1)Give the signature for the method which is defined for a Functor (optionally as extension or in
normal function notation).
trait Functor[F[_]]:

(c) (3)Define the concept of algebras in regard to types, as introduced in the lecture.

Page 2 of 10



2. Recursions
Given is the following data structure of a binary tree. A binary tree here is either a leaf with a value or
a branch, which has a left and right subtree.

enum Tree[+A]:
case Leaf(value: A)
case Branch(left: Tree[A], right: Tree[A])

final def doSomething(p: A => Boolean): Option[A] =
this match

case Leaf(a) => if p(a) then Some(a) else None
case Branch(l,r) => l.doSomething(p) match

case Some(a) => Some(a)
case None => r.doSomething(p)

Now look at the method doSomething in the Tree enum.
(a) (4)Explain in your own words, what the method does.

(b) (2)There are two recursive calls in doSomething. Decide for each of them, if it is in tail position
(i.e. the conditions for a tailrecursive function are fulfilled), and if the the whole function is tail
recursive.

Page 3 of 10



3. Monad laws
Given is the following data structure of a binary tree and a matching monad instance:

enum Tree[+A]:
case Leaf(value: A)
case Branch(left: Tree[A], right: Tree[A])

object Tree:
given Monad[Tree] with

extension [A](fa: Tree[A])
def flatMap[B](f: A => Tree[B]): Tree[B] =

fa match
case Leaf(a) => f(a)
case Branch(l, r) => Branch(flatMap(l)(f), flatMap(r)(f))

def pure[A](a: A): Tree[A] = Leaf(a)

(a) (8)Prove that the given monad instance fulfills the associativity law:
m.flatMap(f).flatMap(g) == m.flatMap(a => f(a).flatMap(g))

Page 4 of 10



(as before)
enum Tree[+A]:

case Leaf(value: A)
case Branch(left: Tree[A], right: Tree[A])

object Tree:
given Monad[Tree] with

extension [A](fa: Tree[A])
def flatMap[B](f: A => Tree[B]): Tree[B] =
fa match

case Leaf(a) => f(a)
case Branch(l, r) => Branch(flatMap(l)(f), flatMap(r)(f))

def pure[A](a: A): Tree[A] = Leaf(a)

(b) (6)Prove that the given monad instance fulfills the identity laws.
x.flatMap(pure) == x

pure(y).flatMap(f) == f(y)

Page 5 of 10



4. (4)Int Monoids
We represented a monoid in code as follows:

Implement two different monoids for Int, which fulfill the monoid laws.

given intMonoid1: Monoid[Int] with

given intMonoid2: Monoid[Int] with

.

Page 6 of 10



5. Parametricity
We are given the following function signature:

def p2[A,B,C,D](a: A, b: B)(f: (A,B) => C, g: (A,C) => D): D

(a) (2)Give a valid implementation of the function only based on the types (you don’t have to write the
signature again).

(b) (2)Why is the signature sufficient here to make assertions about the function’s behaviour, as long as
the implementation behaves referentially transparent (i.e. doesn’t throw exceptions etc.)?

6. (5)Recursion: takeWhileTCO
Given is the following, non tail recursive function:

def takeWhile[A](l: List[A], pred: A => Boolean): List[A] = l match {
case Nil => Nil
case x::xs => if (pred(x)) x :: takeWhile(xs, pred)

else Nil
}

It takes a list and a predicate and returns the list’s longest prefix which only contains elements fulfilling
the predicate.
Give a version of this function, which is tail recursive.
You may use the method .reverse on lists.

Page 7 of 10



7. (4): zipAdd
Implement the function zipAdd(l1: List[Int], l2: List[Int]): List[Int], which takes two lists
of ints and returns a list, in which the elemens have been added pairwise. For the inputs List(1,2,3)
and List(4,5,6) the result is List(5, 7, 9). If one list is shorter than the other, the longer list should
be treated as if it had only the length of the shorter list.
The function isn’t required to be tail recursive.

8. (4)Modelling a wallet
The following program has several problems. Point out 4 things, that are in contradiction to the principles
presented in the lecture and give possible solutions for each.

final case class Wallet(
amountMoney: Int,
numberOfDocuments: Int,

)
// --- später ---
def transformWallet(w: Wallet): Wallet {

if (w == null) {
changeWallet(w)

} else {
throw new RuntimeException("no wallet");

}
}

Page 8 of 10



9. State Monad
Given is the following case class for a State monad:

case class State[S, +A](run: S => (A, S)):
def map[B](f: A => B): State[S, B] = ???

def flatMap[B](f: A => State[S, B]): State[S, B] = ???

Assume that the defined methods are implemented in a way, that fulfills the laws of Monad and Ap-
plicative. Also the following methods are implemented as in the lecture

def get[S]: State[S, S]

def set[S](s: S): State[S, Unit]

(a) (1)Give the type of intState in the following expression:
val intState = for {
i <- get[Int]
q = i * i
_ <- set(q)

} yield q.toString

(b) (3)Translate the for comprehension in the above expression into calls of the methods flatMap and map
defined on State.

Page 9 of 10



10. Folds
(a) (2)Explain the difference between foldLeft and foldRight on lists.

(b) (2)Name one possible condition, under which foldLeft and foldRight return the same result for the
same input list.

11. (4)Referential Transparency
Given is the following program, which uses the scala.collection.mutable.Stack class. The method
pop removes an element from the Stack and returns that element. Show that this program is not
referentially transparent.

def sum(s: Stack[Int]): Int {
val a = s.pop()
val b = s.pop()
a + b

}

Page 10 of 10


