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Motivation

Census (2011): large-scale and comprehensive survey of German citizens

I number of inhabitants

I housing conditions

I working conditions

I ...

MikroSim: ”Multi-sectoral Regional Microsimulation Model” (Trier University)
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Problem Background



Address Selection
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Address Selection: Goal
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Goal

Create an assignment between households and dwellings which reflects the

statistical properties of the real-life population.

I Primary focus: feasibility of the assignment

I Secondary focus: statistical quality of the assignment
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Challenge

Combine several data sources with different resolutions.
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Data



Assumption (for this talk)

All necessary data are available, complete, cleaned, and pre-processed.
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Data Structure

We have two datasets: Household data and Address data.
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Data Structure

We have two datasets: Household data and Address data.

Unique ID Household Size [number of persons]

= 1; : : : ; 6
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Data Structure

We have two datasets: Household data and Address data.

Unique ID X-coord. Y-coord. Grid Cell Dwellings [amount per building]

= 1; : : : ; 5

Each Address is split into individual dwellings according to a discrete Gaussian

distribution with a peak at the real-life average.
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Dwellings	per	Building
1
2

3	-	5
6	-	12
13+
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Assumption

The more dwellings per address, the smaller the household size per dwelling.
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Graph Theory



Definitions

Definition (Bipartite Graph (Bipartiter Graph))
Consider a graph G = (V; E) where the vertices V can

be partitioned into two disjoint subsets A and B and

each edge is of the form e = {a; b} with a ∈ A and

b ∈ B. Then G is called a bipartite graph and is denoted

by G = (A;B; E).

a1

a2

a3

a4

b1

b2

b3

A

B
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Definitions

Definition (Matching (Matching))
A matching M in a graph G = (V; E) is a subset of the edges such that no two

edges are incident to the same node.
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Definitions

Definition (Maximal Matching (nicht erweiterbar))
A matching M of a graph G which is not subset of any other matching is called a

maximal matching.

Definition (Maximum Matching (größte Paarung))
A matching M of a graph G which contains the largest possible number of edges

in G is called a maximum matching.

Every maximum matching is maximal, but not every maximal matching is

maximum.
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A matching M of a graph G which contains the largest possible number of edges

in G is called a maximum matching.

Every maximum matching is maximal, but not every maximal matching is

maximum.

15 / 31



Matching Problems

Maximum Matching
Given: Graph G = (V; E)

Want: Find Matching M in G with the maximum number of edges.

Maximum Weight Matching
Given: Graph G = (V; E) and weights w : E → R
Want: Find Matching M in G of maximum weight, i.e.

P
e∈M we maximal.
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Matching Problems with Weights

Assignment Problem (Zuordnungsproblem)
Given: Bipartite Graph G = (U; V; E) with |U| = |V | and weights w : E → R
Want: Find maximum Matching M in G of minimum weight, i.e.

P
e∈M we is

minimal.

Example

Given three delivery drivers and three parcels,

each driver has a different delivery speed for

each parcel. The goal is to deliver all parcels in

the shortest time possible. Which driver should

deliver which parcel?
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Mathematical Formulation



Matching

I Natural structure: bipartite

graph G = (H;D;E)

I Draw edge {h; d} if size of h is

at most the capacity of

dwelling d

I Goal: match all households (if

possible) or find a maximum

matching
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Solution Strategies



Finding Matchings

Given: Bipartite Graph G = (U; V; E)

Want: Create a flow network G̃ = (W̃ ; Ẽ)

I Introduce two new nodes: s

(source) and t (sink)

I Set W̃ = U ∪ V ∪ {s; t}
I Construct Ẽ: add edges

(s; u) ∀u ∈ U
I Find maximum flow in G̃

u1

u2

u3

u4

v1

v2

v3

v4

s t
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Theorem

The cardinality of the maximum matching in a bipartite Graph G is equal to the

value of the maximum s − t-flow in G̃.

Proof: Übungszettel 4.
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Augmenting Path

Definition (Augmenting Path)
Let M be a matching on a graph G = (V; E). A

path p = (v1; : : : ; vk) is called M-augmenting if

all of the following hold:

1. p has odd length, i.e. k − 1 is odd,

2. v1 and vk are not incident to a matched

edge in M,

3. the edges of p are alternating in and out of

M.

1

2

3

4

5

6
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Augmenting Paths

Lemma
Consider a graph G = (V; E) with a matching M. Let P be the set of edges of

an augmenting path p = (v1; : : : ; vk). Then

M ′ := (M \ P ) ∪ (P \M) = M△P

is a matching of cardinality |M|+ 1 in G.
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Augmenting Paths

Given: Bipartite Graph G = (U; V; E)

Want: Find a maximum matching in G.

I Start with an existing matching M

I Find an augmenting path p

I Construct a new matching M ′ = M△P
I Repeat until no further augmenting

paths can be found.

a1

a2

a3

a4

b1

b2

b3
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Berge’s Lemma

Theorem
Let G = (V; E) be a graph and let M be a matching in G. Then M is a

maximum matching if and only if there does not exist an augmenting path in G

with respect to M.
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Main Algorithms

I Using max. flow: maximal matching in a bipartite graph (O(
p
|V | · |E|))

I Hopkraft-Karp-Algorithm: maximal matching in a bipartite graph

(O(
p
|V | · |E|))

I Blossom Algorithm (Edmonds): maximal matching in an arbitrary graph

(O(|V |2 · |E|))
I Hungarian Method: maximal weighted matching in bipartite graph

(O(|V |3))
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Main Algorithms

Click here to try.
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https://algorithms.discrete.ma.tum.de/matching/


Mathematical Formulation II



Constraints

I Per Grid Cell

I C1: Limit the amount of

households per grid cell

I C2: Limit the amount of persons

per grid cell

I C3: Ensure that the household

size ‘fits’ into the dwelling

capacity
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I C1: Limit the amount of

households per grid cell

I C2: Limit the amount of persons

per grid cell

I C3: Ensure that the household

size ‘fits’ into the dwelling

capacity

Want: Maximum weight Matching

which respects all constraints.
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Matching Formulation: Objective Function

Want: Maximum weight Matching which respects all constraints.

Idea: Introduce weights –1; –2; –3 > 0

Maximum Weights (1)

+–1·C1 : Limit the amount of households per grid cell (2)

+–2·C2 : Limit the amount of persons per grid cell (3)

+–3·C3 : Ensure that the household size ‘fits’ into the dwelling capacity (4)
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Solving this Optimization...

... is not easy.

Cannot use the objective function as weights on the graph ⇒ solved as

Mixed-Integer Linear Program (MILP).

More details in Part 2 of this course!
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Outlook

Use the implementation on larger datasets:

Assign a population of 105k in 56k households to 59k dwellings at 20k addresses
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