

# Building a Geo-Referenced Microsimulation Model with Discrete Optimization

Graphen und diskrete Optimierung



Kendra Reiter 10.05.2023

Joint work with Ulf Friedrich and Ralf Münnich

Tur Varenturm



### Outline

Motivation

Problem Background

Data

Graph Theory

Mathematical Formulation

Solution Strategies

Mathematical Formulation II





Census (2011): large-scale and comprehensive survey of German citizens



Census (2011): large-scale and comprehensive survey of German citizens

number of inhabitants



Census (2011): large-scale and comprehensive survey of German citizens

number of inhabitants

housing conditions



Census (2011): large-scale and comprehensive survey of German citizens

number of inhabitants

- housing conditions
- working conditions



Census (2011): large-scale and comprehensive survey of German citizens

number of inhabitants

- housing conditions
- working conditions





**>** ...

Census (2011): large-scale and comprehensive survey of German citizens

number of inhabitants

- housing conditions
- working conditions

MikroSim: "Multi-sectoral Regional Microsimulation Model" (Trier University)



### **Problem Background**



#### Address Selection





#### Address Selection





#### Address Selection







#### Address Selection: Goal





#### Goal

Create an assignment between households and dwellings which reflects the statistical properties of the real-life population.



#### Goal

Create an assignment between households and dwellings which reflects the statistical properties of the real-life population.

Primary focus: *feasibility* of the assignment



#### Goal

Create an assignment between households and dwellings which reflects the statistical properties of the real-life population.

- Primary focus: *feasibility* of the assignment
- Secondary focus: statistical quality of the assignment



### Challenge

Combine several data sources with different resolutions.



#### Data



### Assumption (for this talk)

All necessary data are available, complete, cleaned, and pre-processed.



We have two datasets: Household data and Address data.



We have two datasets: Household data and Address data.

| Unique ID | Household Size [number of persons] |
|-----------|------------------------------------|
|           | = 1, , 6                           |



We have two datasets: Household data and Address data.

| Unique ID | X-coord. | Y-coord. | Grid Cell | Dwellings [amount per building] |
|-----------|----------|----------|-----------|---------------------------------|
|           |          |          |           | $=$ 1, $\ldots$ , 5             |



We have two datasets: Household data and Address data.

| Unique ID | X-coord. | Y-coord. | Grid Cell | Dwellings [amount per building] |
|-----------|----------|----------|-----------|---------------------------------|
|           |          |          |           | $=$ 1, $\ldots$ , 5             |

Each Address is split into individual dwellings according to a discrete Gaussian distribution with a peak at the real-life average.





#### Assumption

The more dwellings per address, the smaller the household size per dwelling.



### **Graph Theory**

# ПΠ

### Definitions

**Definition (Bipartite Graph (Bipartiter Graph))** Consider a graph G = (V, E) where the vertices V can be partitioned into two disjoint subsets A and B and each edge is of the form  $e = \{a, b\}$  with  $a \in A$  and  $b \in B$ . Then G is called a bipartite graph and is denoted by G = (A, B, E).

# ПΠ

### Definitions

**Definition (Bipartite Graph (Bipartiter Graph))** Consider a graph G = (V, E) where the vertices V can be partitioned into two disjoint subsets A and B and each edge is of the form  $e = \{a, b\}$  with  $a \in A$  and  $b \in B$ . Then G is called a bipartite graph and is denoted by G = (A, B, E).





**Definition (Matching (Matching))** A matching M in a graph G = (V, E) is a subset of the edges such that no two edges are incident to the same node.



**Definition (Matching (Matching))** A matching M in a graph G = (V, E) is a subset of the edges such that no two edges are incident to the same node.





**Definition (Matching (Matching))** A matching M in a graph G = (V, E) is a subset of the edges such that no two edges are incident to the same node.





**Definition (Maximal Matching (nicht erweiterbar))** A matching *M* of a graph *G* which is not subset of any other matching is called a maximal matching.



#### **Definition (Maximal Matching (nicht erweiterbar))** A matching M of a graph G which is not subset of any other matching is called a

maximal matching.

#### Definition (Maximum Matching (größte Paarung))

A matching M of a graph G which contains the largest possible number of edges in G is called a maximum matching.



# **Definition (Maximal Matching (nicht erweiterbar))** A matching M of a graph G which is not subset of any other matching is called a maximal matching.

#### **Definition (Maximum Matching (größte Paarung))** A matching M of a graph G which contains the largest possible number of edges in G is called a maximum matching.

Every maximum matching is maximal, but not every maximal matching is maximum.



## Matching Problems

#### **Maximum Matching**

Given: Graph G = (V, E)

Want: Find Matching M in G with the maximum number of edges.


## Matching Problems

#### **Maximum Matching**

Given: Graph G = (V, E)

Want: Find Matching M in G with the maximum number of edges.

**Maximum Weight Matching** Given: Graph G = (V, E) and weights  $w : E \to \mathbb{R}$ Want: Find Matching M in G of maximum weight, i.e.  $\sum_{e \in M} w_e$  maximal.



## Matching Problems with Weights

Assignment Problem (Zuordnungsproblem) Given: Bipartite Graph G = (U, V, E) with |U| = |V| and weights  $w : E \to \mathbb{R}$ Want: Find maximum Matching M in G of minimum weight, i.e.  $\sum_{e \in M} w_e$  is minimal.



#### Matching Problems with Weights

**Assignment Problem (Zuordnungsproblem)** Given: Bipartite Graph G = (U, V, E) with |U| = |V| and weights  $w : E \to \mathbb{R}$ Want: Find maximum Matching M in G of minimum weight, i.e.  $\sum_{e \in M} w_e$  is minimal.

#### Example

Given three delivery drivers and three parcels, each driver has a different delivery speed for each parcel. The goal is to deliver all parcels in the shortest time possible. Which driver should deliver which parcel?





#### Matching Problems with Weights

**Assignment Problem (Zuordnungsproblem)** Given: Bipartite Graph G = (U, V, E) with |U| = |V| and weights  $w : E \to \mathbb{R}$ Want: Find maximum Matching M in G of minimum weight, i.e.  $\sum_{e \in M} w_e$  is minimal.

#### Example

Given three delivery drivers and three parcels, each driver has a different delivery speed for each parcel. The goal is to deliver all parcels in the shortest time possible. Which driver should deliver which parcel?





#### **Mathematical Formulation**



 Natural structure: bipartite graph G = (H, D, E)



- Natural structure: bipartite graph G = (H, D, E)
- Draw edge {h, d} if size of h is at most the capacity of dwelling d





- Natural structure: bipartite graph G = (H, D, E)
- Draw edge {h, d} if size of h is at most the capacity of dwelling d





- Natural structure: bipartite graph G = (H, D, E)
- Draw edge {h, d} if size of h is at most the capacity of dwelling d
- Goal: match all households (if possible) or find a maximum matching





#### **Solution Strategies**



#### Finding Matchings





#### Finding Matchings

Given: Bipartite Graph G = (U, V, E)Want: Create a flow network  $\tilde{G} = (\tilde{W}, \tilde{E})$ 

Introduce two new nodes: s (source) and t (sink)



## **Finding Matchings**

Given: Bipartite Graph G = (U, V, E)Want: Create a flow network  $\tilde{G} = (\tilde{W}, \tilde{E})$ 

Introduce two new nodes: s (source) and t (sink)
Set W = U ∪ V ∪ {s, t}



## **Finding Matchings**

- Introduce two new nodes: s
   (source) and t (sink)
- Set  $\tilde{W} = U \cup V \cup \{s, t\}$
- Construct  $\tilde{E}$ : add edges (s, u)  $\forall u \in U$



## **Finding Matchings**

- Introduce two new nodes: s (source) and t (sink)
- Set  $\tilde{W} = U \cup V \cup \{s, t\}$
- Construct  $\tilde{E}$ : add edges (s, u)  $\forall u \in U$  and (v, t)  $\forall v \in V$  with capacity 1



## **Finding Matchings**

- Introduce two new nodes: s (source) and t (sink)
- Set  $\tilde{W} = U \cup V \cup \{s, t\}$
- Construct  $\tilde{E}$ : add edges (s, u)  $\forall u \in U$  and (v, t)  $\forall v \in V$  with capacity 1
- Find maximum flow in  $\tilde{G}$





#### Theorem

The cardinality of the maximum matching in a bipartite Graph G is equal to the value of the maximum s - t-flow in  $\tilde{G}$ .



#### Theorem

The cardinality of the maximum matching in a bipartite Graph G is equal to the value of the maximum s - t-flow in  $\tilde{G}$ . *Proof*: Übungszettel 4.

## Augmenting Path

**Definition (Augmenting Path)** Let M be a matching on a graph G = (V, E). A path  $p = (v_1, ..., v_k)$  is called M-augmenting if all of the following hold:

- 1. p has odd length, i.e. k-1 is odd,
- 2.  $v_1$  and  $v_k$  are not incident to a matched edge in M,
- the edges of p are alternating in and out of M.



## Augmenting Path

**Definition (Augmenting Path)** Let M be a matching on a graph G = (V, E). A path  $p = (v_1, ..., v_k)$  is called M-augmenting if all of the following hold:

- 1. p has odd length, i.e. k-1 is odd,
- 2.  $v_1$  and  $v_k$  are not incident to a matched edge in M,
- the edges of p are alternating in and out of M.





#### Lemma

Consider a graph G = (V, E) with a matching M. Let P be the set of edges of an augmenting path  $p = (v_1, \ldots, v_k)$ . Then

$$M' := (M \setminus P) \cup (P \setminus M) = M \triangle P$$

is a matching of cardinality |M| + 1 in G.

Given: Bipartite Graph G = (U, V, E)Want: Find a maximum matching in G.



Given: Bipartite Graph G = (U, V, E)Want: Find a maximum matching in G.

Start with an existing matching M



Given: Bipartite Graph G = (U, V, E)Want: Find a maximum matching in G.

- Start with an existing matching M
- Find an augmenting path p



Given: Bipartite Graph G = (U, V, E)Want: Find a maximum matching in G.

- Start with an existing matching M
- Find an augmenting path p

• Construct a new matching  $M' = M \triangle P$ 



Given: Bipartite Graph G = (U, V, E)Want: Find a maximum matching in G.

- Start with an existing matching M
- Find an augmenting path p
- Construct a new matching  $M' = M \triangle P$
- Repeat until no further augmenting paths can be found.





## Berge's Lemma

#### Theorem

Let G = (V, E) be a graph and let M be a matching in G. Then M is a maximum matching if and only if there does not exist an augmenting path in G with respect to M.



#### Main Algorithms

- Using max. flow: maximal matching in a bipartite graph  $(\mathcal{O}(\sqrt{|V|} \cdot |E|))$
- ► Hopkraft-Karp-Algorithm: maximal matching in a bipartite graph (O(√|V| · |E|))
- Blossom Algorithm (Edmonds): maximal matching in an arbitrary graph (O(|V|<sup>2</sup> · |E|))
- Hungarian Method: maximal weighted matching in bipartite graph (O(|V|<sup>3</sup>))

# ТШ

#### Main Algorithms

#### Click here to try.





#### Hopcroft-Karp Algorithm

The Hopcroft-Karp Algorithm computes for two given sets with possible assignments a maximal relation.



#### Hungarian Method

The Hungarian Method determines for two given sets with weighted assignments a maximal (with respect to the weights) relation.



#### Mathematical Formulation II









- ► Per Grid Cell
- C1: Limit the amount of households per grid cell





- ► Per Grid Cell
- C1: Limit the amount of households per grid cell
- C<sub>2</sub>: Limit the amount of persons per grid cell





- ► Per Grid Cell
- C1: Limit the amount of households per grid cell
- C<sub>2</sub>: Limit the amount of persons per grid cell
- C<sub>3</sub>: Ensure that the household size 'fits' into the dwelling capacity





- ► Per Grid Cell
- C1: Limit the amount of households per grid cell
- C<sub>2</sub>: Limit the amount of persons per grid cell
- C<sub>3</sub>: Ensure that the household size 'fits' into the dwelling capacity

**Want:** Maximum weight Matching which respects *all* constraints.



- ▶ Per Grid Cell
- C<sub>1</sub>: Limit the amount of households per grid cell
- C<sub>2</sub>: Limit the amount of persons per grid cell
- C<sub>3</sub>: Ensure that the household size 'fits' into the dwelling capacity

**Want:** Maximum weight Matching which respects *all* constraints. **How?**


### Matching Formulation: Objective Function

**Want:** Maximum weight Matching which respects *all* constraints. **Idea:** Introduce weights  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3 > 0$ 

# Matching Formulation: Objective Function

**Want:** Maximum weight Matching which respects *all* constraints. **Idea:** Introduce weights  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3 > 0$ 

Maximum Weights(1) $+\lambda_1 \cdot C_1$ : Limit the amount of households per grid cell(2) $+\lambda_2 \cdot C_2$ : Limit the amount of persons per grid cell(3) $+\lambda_3 \cdot C_3$ : Ensure that the household size 'fits' into the dwelling capacity(4)



### Solving *this* Optimization...

... is not easy.



## Solving this Optimization...

... is not easy.

Cannot use the objective function as weights on the graph  $\Rightarrow$  solved as Mixed-Integer Linear Program (MILP). More details in Part 2 of this course!



#### Outlook

Use the implementation on larger datasets:

Assign a population of 105k in 56k households to 59k dwellings at 20k addresses

#### References

- Ulf Friedrich, Ralf Münnich, and Kendra M. Reiter. "Building a geo-referenced microsimulation model with discrete optimization". Online Conference. Conference on New Techniques and Technologies for Statistics. 2021. URL: https://coms.events/NTTS2021/data/abstracts/en/abstract\_0002.html.
- [2] Ralf Münnich et al. "A Population Based Regional Dynamic Microsimulation of Germany: The MikroSim Model". In: methods, data, analyses (2021), p. 23.
- Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover Publications, 1998.
- Kendra M. Reiter. "A Weighted Matching Model for Georeferenced Microsimulations". MA thesis. Technical University Munich, 2021.
- [5] Alexander Schrijver. Combinatorial Optimization. Springer, 2002.
- [6] Statistische Ämter des Bundes und der Länder. *Overview of the register-based census.* 2011. URL: https://www.zensus2011.de/EN/2011Census/Methodology/Methodology\_node.html.