

Exercise Sheet #4

Graph Visualization (SS 2023)

Exercise 1 – Fast construction of Schnyder realizer

In the lecture we have proven that every triangulated plane graph $G = (V, E)$ has a Schnyder labeling and a Schnyder realizer. The proof yields a recursive algorithm: contract an edge $\{a, x\}$, find recursively a Schnyder forest in the resulting graph and then add x consistently back. A naive implementation of this algorithm yields a runtime of $O(n^2)$, in particular, because we need to find the contracted edge. Explain how the algorithm can be improved to admit linear runtime.

Hint: Think about the candidate edges for contraction. How to update them quickly?
7 Points

Exercise 2 – Weak barycentric representations

Let $G = (V, E)$ be a plane triangulated graph with a weak barycentric representation $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$. Let $A, B, C \in \mathbb{R}^2$ be points in general position.

Show that the function $f: v \in V \mapsto v_1A + v_2B + v_3C$ yields a crossing-free drawing.
6 Points

Exercise 3 – Fast calculation of barycentric coordinates

Let $G = (V, E)$ be an n -vertex triangulated plane graph with a Schnyder realizer T_1, T_2, T_3 . As in the lecture, let $v_i = |V(R_i(v))| - |P_{i-1}(v)|$ where $|V(R_i(v))|$ is the number of vertices in the region R_i with respect to v (including the vertices on the boundary of R_i and v itself) and $|P_i(v)|$ is the number of vertices on the path from v to a_i in T_i .

Show that all values v_i can be calculated for all inner vertices in a total runtime of $O(n)$.

Hint 1: Consider each $i \in \{1, 2, 3\}$ independently. (It suffices to consider v_1 .)

Hint 2: Gather the necessary information by traversing T_1, T_2 , and T_3 .
7 Points

This assignment is due at the beginning of the next lecture, that is, on May 26 at 10:15 am. Please submit your solutions via WueCampus. The questions can be asked in the tutorial session on May 24 at 16:00 and the solutions will be discussed one week after that on May 31.