

Exercise Sheet #3

Graph Visualization (SS 2023)

Exercise 1 – Canonical order and shift method for the icosahedron

Let G be the icosahedron, i.e., the graph shown below.

- a) Find a canonical order of G . 3 Points
- b) Draw G using the shift algorithm from the lecture. Show the intermediate drawings step by step. 5 Points

Exercise 2 – Canonical orders for outerplanar graphs

A graph is *outerplanar* if it has a planar embedding such that all vertices are on the same face, usually the outer face. It is a *maximal outerplanar graph* if it is internally triangulated.

Describe a special canonical order built precisely for maximal outerplanar graphs.

- a) Reformulate the conditions (C1)–(C3) for maximal outerplanar graphs. Can we enforce a bound on the degree of v_{k+1} ? 2 Points
- b) How can we simplify the algorithm CanonicalOrder for maximal planar graphs to obtain a canonical order for maximal outerplanar graphs? 3 Points

Exercise 3 – An alternative shift algorithm

We want to examine an alternative drawing algorithm for planar, embedded, triangulated graphs $G = (V, E)$:

- Let (v_1, v_2, \dots, v_n) be a canonical order of the vertices.
- Draw v_1 at $(0, 0)$, v_2 at $(2, 0)$, and v_3 at $(1, 1)$.
- Draw the graph incrementally or $k = 4, 5, \dots, n$:

Let $v_1 = w_1, \dots, w_p, \dots, w_q, \dots, w_t = v_2$ be the vertices on the boundary of the outer face of G_{k-1} (in this order), where w_p, \dots, w_q are the neighbors of v_{k+1} in G_k . As the x-coordinate of v_k , choose an integer value $x(v_k)$ with $x(w_p) < x(v_k) < x(w_q)$. If no such value exists, first shift the right part of the drawing to the right by 1; i.e. for $q \leq i \leq t$ move each $L(w_i)$ to the right by 1. Now choose the smallest positive integer y-coordinate for which the drawing stays planar and v_k lies on the outer face.

- Argue why this algorithm always yields a planar drawing. Why does in step 3 always a suitable y-coordinate exist? **3 Points**
- Find a good lower bound for the maximum area requirement of the resulting drawing: find an infinite family of graphs where making bad choices for the x-coordinate in step 3 gives huge y-coordinates. **4 Points**

This assignment is due at the beginning of the next lecture, that is, on May 12 at 10:15 am. Please submit your solutions via WueCampus. The questions can be asked in the tutorial session on May 10 at 16:00 and the solutions will be discussed one week after that on May 17.