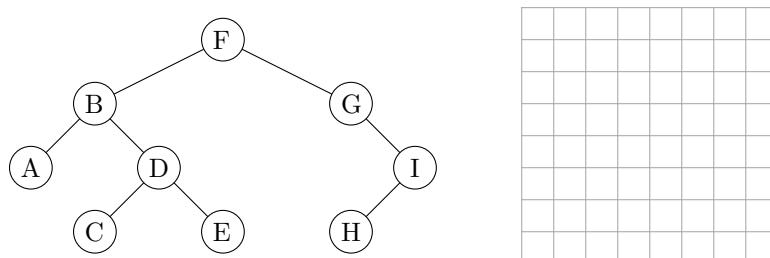



## Exercise Sheet #1

### Graph Visualization (SS 2023)

#### Exercise 1 – Drawing conventions & aesthetics of balloon layouts


The three drawings of the same tree below are drawn with a *balloon layout*. Try to find at least two common drawing conventions and two possible drawing aesthetics to optimize for this layout style. **2 Points**



#### Exercise 2 – Binary trees with pre- and postorder coordinates

Let  $T = (V, E)$  be a binary tree with root  $r$ . For each  $v \in V$ , let  $x(v) := \text{preorder}(v)$  and  $y(v) := \text{postorder}(v)$ . Recall that  $T(v)$  denotes the subtree rooted at  $v$ .

You may use the graph and grid below to try an example.



- Prove that this coordinate assignment yields a planar drawing of  $T$ . **4 Points**
- Give tight bounds on the area requirement of the generated drawing. **2 Points**

c) Prove that if you direct all edges of  $T$  such that they “point away” from  $r$  – that is, all vertices can be reached from  $r$  – then all arcs in the drawing point downwards.

**2 Points**

### Exercise 3 – Lower bound on the area of right-heavy HV-drawings

Prove that there are trees for which the right-heavy HV-layout algorithm from the lecture produces drawings with area  $\Omega(n \log n)$ .

**3 Points**

### Exercise 4 – Space-saving HV-drawings of complete binary trees

Let  $T$  be a *complete binary tree* of height  $h$ , that is, a binary tree where all vertices of depth  $1, \dots, h-1$  have exactly 2 children and all vertices of depth  $h$  are leaves. Consider the following HV-drawing algorithm.

---

**Algorithm 1:** BalancedHVDraw(node  $v$ , depth  $d$ )

---

```

if  $v == \text{nil}$  then return  $\emptyset$ 
 $v_L, v_R \leftarrow \text{left / right child of } v$ 
 $\Gamma_1 \leftarrow \text{BalancedHVDraw}(v_L, d + 1)$ 
 $\Gamma_2 \leftarrow \text{BalancedHVDraw}(v_R, d + 1)$ 
if  $d$  odd then return horizontal combination of  $\Gamma_1$  and  $\Gamma_2$ 
if  $d$  even then return vertical combination of  $\Gamma_1$  and  $\Gamma_2$ 

```

---

a) Prove that BalancedHVDraw produces a drawing of  $T$  with area  $O(n)$ .

*Hint: use induction on the height of the tree with the following hypothesis. The area of the drawing for odd height is  $2\sqrt{n+1} - 3 \times \frac{3}{2}\sqrt{n+1} - 2$  and for even height is  $\sqrt{2(n+1)} - 2 \times \frac{3}{2}\sqrt{2(n+1)} - 3$ .*

**5 Points**

b) Give sharp constant upper and lower bounds on the aspect ratio (i.e., the ratio between the width and the height) of the drawing generated with input  $T$ .

**2 Points**

---

This assignment is due at the beginning of the next lecture, that is, on April 028 at 10:15 am. Please submit your solutions via WueCampus. The questions can be asked in the tutorial session on April 26 at 16:00 and the solutions will be discussed one week after that on May 03.