
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 03. November 2022

Prof. Dr. Alexander Wolff
Felix Klesen, M. Sc.

3. Übungsblatt zur Vorlesung
Algorithmen und Datenstrukturen (Winter 2022/23)

Aufgabe 1 – Rekursionsgleichung aufstellen

SomeAlgo(int[] A, int ` = 1, int r = A.length)
if ` == r then return A[`]
g← r− `+ 1
let B[1..3] be new array of int
B[1]← SomeAlgo(A, `, `+ dg/2e− 1)
B[2]← SomeAlgo(A, `+ bg/4c, `+ bg/4c+ dg/2e− 1)
B[3]← SomeAlgo(A, `+ bg/2c, r)
InsertionSort(B)
return B[1]

a) Was gibt SomeAlgo zurück? 1 Punkt

b) Stellen Sie eine Rekursionsgleichung für die asymptotische Laufzeit T(n) von
SomeAlgo(A) auf (mit n := A.length). Denken Sie an den Basisfall. 2 Punkte

Aufgabe 2 – Rekursionsgleichungen lösen

Sei T : N → R eine Funktion, so dass T(n) für n = 1 einen konstanten Wert annimmt
und für alle anderen n ∈ N durch eine der folgenden Rekursionsgleichungen definiert
ist. Geben Sie für jedes der folgenden T eine Funktion g an, so dass T ∈ Θ(g). Eine
Begründung Ihrer Lösung ist zwingend erforderlich.

Drei Teilaufgaben sind mit der Meistermethode lösbar (geben Sie den jeweiligen Fall
an), eine jedoch nicht (diese wird mit 2 Punkten bewertet). Nutzen Sie für diese die
Rekursionsbaummethode. Nehmen Sie an, dass n = 2m, für einm ∈ N. 5 Punkte

a) T(n) = 3T(bn/9c) +
√
n

b) T(n) = 4T(bn/2c) + n3
c) T(n) = 4T(bn/2c) + n2 log

2
n

d) T(n) = 5T(bn/2c) + n2

1

Aufgabe 3 – Algorithmen erkennen (2)

Geben Sie für jeden der gegebenen Algorithmen an, was er bewirkt und bestimmen sie
möglichst genau seine Laufzeit (Groß-Oh-Notation).

a) Algorithmus1(int[] A, int ` = 1, int r = A.length) 2 Punkte
if 1 ≤ ` and ` < r and r ≤ A.length then
key = A[`]
A[`] = A[r]
A[r] = key
Algorithmus1(A, `+ 1, r− 1)

b) Algorithmus2(int[] A, int k) 2 Punkte
n = A.length
c = 0
for i = 1 to n do

for j = i+ 1 to n do
if A[i] +A[j] == k then
c = c+ 1

return c

c) Algorithmus3(int[] A) 2 Punkte
n = A.length
for i = 1 to n do

if A[i] 6= 0 then
a = A[i]
A[i] = 0
b = Algorithmus3(A)
if a > b then

return b;
return a;

return 0

Aufgabe 4 – FunSort

Gegeben sei folgender Sortieralgorithmus in Pseudocode, wobei die Methode Merge
aus MergeSort übernommen wurde.

FunSort(array of int A)
i = 1
while i < A.length do

Merge(A, 1, i, i+ 1)
i = i+ 1

2

a) Welchem Algorithmus, den Sie aus der Vorlesung kennen, ähnelt FunSort? Begrün-
den Sie Ihre Antwort. 1 Punkt

b) Sei Tmax(n) die maximale Laufzeit von FunSort über alle Eingaben der Größe n. Ge-
ben Sie eine Funktion f an, so dass Tmax ∈ Θ(f).

Begründen Sie Ihr Ergebnis. 1 Punkt

c) Sei Tmin(n) die minimale Laufzeit von FunSort über alle Eingaben der Größe n. Ge-
ben Sie eine Funktion g an, so dass Tmin ∈ Θ(g).

Begründen Sie Ihr Ergebnis. 1 Punkt

d) Beweisen Sie die Korrektheit des Algorithmus mit folgender Schleifeninvarianten:

Bei der i-ten Ausführung des while-Schleifenkopfes gilt, dass

(i) A[1..i] dieselben Elemente wie zu Beginn der Ausführung des Algorithmus enthält –
jedoch sortiert.

(ii) A[i+ 1..A.length] sich seit der Ausführung des Algorithmus nicht verändert hat.

3 Punkte

Bitte geben Sie Ihre Lösungen bis Donnerstag, 10. November 2022, 14:00 Uhr einmal
pro Gruppe über Wuecampus als pdf-Datei ab. Vermerken Sie dabei stets die Namen
und Übungsgruppen aller BearbeiterInnen auf der Abgabe.

Grundsätzlich sind stets alle Ihrer Aussagen zu begründen und Ihr Pseudocode ist stets
zu kommentieren.

Die Lösungen zu den mit PABS gekennzeichneten Aufgaben, geben Sie bitte nur über
das PABS-System ab. Vermerken Sie auf Ihrem Übungsblatt, in welchem Repository
(sXXXXXX-Nummer) die Abgabe zu finden ist. Geben Sie Ihre Namen hier als Kom-
mentare in den Quelltextdateien an.

3

