

Exercise Sheet #7

Advanced Algorithms (WS 2022/23)

Exercise 1 – Fair coins and fair dice

We have a coin that shows tails with probably p and heads with probably $1-p$. Suppose the coin is biased, that is, $p \neq 0.5$

- a) Describe a strategy to get a fair result from the biased coin. **3 Points**
- b) Can we use a similar strategy to make a biased k -sided die fair? Why or why not?
What practical problem would we run into? **2 Extra points**

Exercise 2 – Randomized 3-coloring

Given a graph $G = (V, E)$ and the three colors red, green, and blue. Coloring the vertices, our goal is to maximize the number of bichromatic edges, that is, edges whose incident vertices have a different color. Design a simple Monte Carlo algorithm and analyze the expected number of bichromatic edges. **3 Points**

Exercise 3 – Packing argument

Let δ be a positive real number. Show that a $\delta \times \delta$ square can contain at most $\mathcal{O}(1)$ points such that the distance between any pair of these points is at least δ . **3 Points**

Exercise 4 – CAUTIOUSFINDMIN

Consider the following (unnecessarily slow) algorithm to compute the minimum of a set S of pairwise distinct integers.

If $|S| = 1$, return its unique element. Otherwise, pick a random element x and recursively compute the minimum x' of $S \setminus \{x\}$. If $x' < x$, return x' . Otherwise, the algorithm behaves overly cautious: check if x is smaller than all elements in $S \setminus \{x\}$ and if so, return x .

Is the algorithm correct and guaranteed to terminate? What is the worst-case running time of the algorithm? What is the expected running time of the algorithm?

6 Points

Exercise 5 – Random permutation

Suppose you are given an array A of length n and you want to compute a random permutation of its elements. How can you do this with a fair coin (that can generate a random bit in $\mathcal{O}(1)$ time)? Describe an algorithm, why it works, and the (expected) running time.

5 Points

Please hand in your solutions on Wuecampus until the beginning of the next lecture, that is 14:15 on Wednesday, December 14.