

Exercise Sheet #4

Advanced Algorithms (WS 2022/23)

Exercise 1 – Randomized Max Cut

Let G be the graph shown in Figure 1 (a). Apply the following steps of the algorithm RANDOMIZEDMAXCUT from the lecture.

- a) Formulate the quadratic program QP , whose optimal solution gives a maximal cut for G ; i.e. give the variables, the constraints and the objective function with the respective values. **4 Points**
- b) Formulate its relaxation QP^k , for $k = 2$. **1 Point**

An optimal solution for QP^2 is shown in Figure 1 (b). For the vectors x^1, x^2, \dots, x^6 we have $x^1 = x^3 = (-1, 0)$, $x^2 = (1, 0)$, $x^4 = (0, 1)$, $x^5 = (0, -1)$, and $x^6 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$.

- c) List all cuts that RANDOMIZEDMAXCUT could compute from this solution and calculate their weight. What is the expected value compared to the optimal solution? **3 Points**
- d) We use the randomly chosen vector r to get from a solution of QP^2 to a cut in G . Can we instead just pick r efficiently such that we get the best cut? **1 Point**
- e) Why do we pick the vector r at random for QP^n instead of taking the one maximizing the cut? **1 Point**

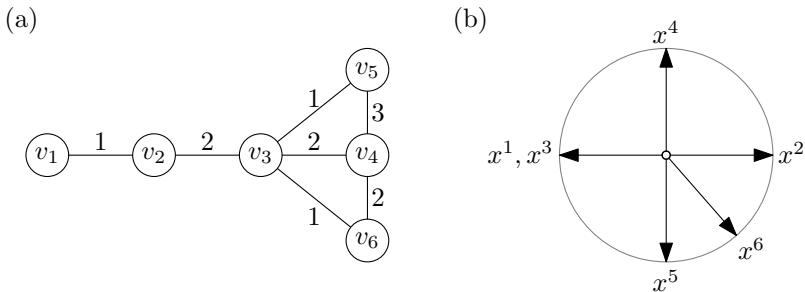


FIGURE 1: (a) Graph G for Exercise 1 and (b) solution for QP^2 .

Exercise 2 – QP for MAX-2SAT

Given a conjunctive normal form formula f of Boolean variables x_1, \dots, x_n and non-negative weights w_c for each clause c of f , the MAX-SAT problem asks for a truth assignment to the variables such that the total weight of satisfied clauses is maximized. For the problem MAX-2SAT the clauses c_1, \dots, c_m are restricted to contain at most 2 literals, e.g. $(x_1 \vee \neg x_3)$. Not just MAX-SAT, but even MAX-2SAT is NP-hard.

Give a quadratic program for MAX-2SAT.

5 Points

Exercise 3 – Deterministic 0.5-approximation for MaxCut

In the lecture we saw a randomized 0.5-approximation algorithm for the unweighted MAXCUT problem. We now want to derandomize this algorithm with the method of conditional probabilities described next.

Consider the first vertex v_1 for which we flipped a coin. We now want to decide deterministically, whether we should put v_1 in S or not. For this, we consider the expected weight $E[W]$ of the cut where v is set to either be in S or not in S but the vertices v_2, \dots, v_n are still assigned randomly. More precisely, we put v in S if and only if $E[W|v_1 \in S] \geq E[W|v_1 \notin S]$. Note that $E[W] = (E[W|v_1 \in S] + E[W|v_1 \notin S])/2$. Hence, by our choice $A_1 \in \{S, V \setminus S\}$, we know that $E[W|v_1 \in A_1] \geq E[W] \geq 0.5\text{OPT}$. We can repeat this process with v_2 and put it in $A_2 \in \{S, V \setminus S\}$ based on whether $E[W|v_1 \in A_1, v_2 \in S] \geq E[W|v_1 \in A_1, v_2 \notin S]$. In fact, we can repeat this for all the remaining vertices v_3, \dots, v_n . However, to develop an algorithm, we need to be able to efficiently compute $E[W|v_1 \in A_1, \dots, v_i \in A_i]$.

Describe how we can compute $E[W|v_1 \in A_1, \dots, v_i \in A_i]$ efficiently. Derive a simple algorithm from this.

5 Points