
Lehrstuhl für Informatik I
– Algorithmen und Komplexität –

Universität Würzburg

Würzburg, 9 November 2022

Johannes Zink
Oksana Firman

Exercise Sheet #4

Advanced Algorithms (WS 2022/23)

Exercise 1 – Randomized Max Cut

Let G be the graph shown in Figure 1 (a). Apply the following steps of the algorithm
RANDOMIZEDMAXCUT from the lecture.

a) Formulate the quadratic program QP, whose optimal solution gives a maximal
cut for G; i.e. give the variables, the constraints and the objective function with
the respective values. 4 Points

b) Formulate its relaxation QPk, for k = 2. 1 Point

An optimal solution for QP2 is shown in Figure 1 (b). For the vectors x1, x2, . . . , x6 we
have x1 = x3 = (−1, 0), x2 = (1, 0), x4 = (0, 1), x5 = (0,−1), and x6 = (1√

2
,− 1√

2
).

c) List all cuts that RANDOMIZEDMAXCUT could compute from this solution and
calculate their weight. What is the expected value compared to the optimal solu-
tion? 3 Points

d) We use the randomly chosen vector r to get from a solution of QP2 to a cut in G.
Can we instead just pick r efficiently such that we get the best cut? 1 Point

e) Why do we pick the vector r at random for QPn instead of taking the one maxi-
mizing the cut? 1 Point

v1 v2 v3 v4

v5

v6

1 2 2

2

3
1

1

x1, x3 x2

x5

x4

x6

(a) (b)

FIGURE 1: (a) Graph G for Exercise 1 and (b) solution for QP2.

Exercise 2 – QP for MAX-2SAT

Given a conjunctive normal form formula f of Boolean variables x1, . . . , xn and non-
negative weights wc for each clause c of f, the MAX-SAT problem asks for a truth assi-
gnment to the variables such that the total weight of satisfied clauses is maximized. For
the problem MAX-2SAT the clauses c1, . . . , cm are restricted to contain at most 2 literals,
e.g. (x1 ∨ ¬x3). Not just MAX-SAT, but even MAX-2SAT is NP-hard.

Give a quadratic program for MAX-2SAT. 5 Points

Exercise 3 – Deterministic 0.5-approximation for MaxCut

In the lecture we saw a randomized 0.5-approximation algorithm for the unweighted
MAXCUT problem. We now want to derandomize this algorithm with the method of
conditional probabilities described next.

Consider the first vertex v1 for which we flipped a coin. We now want to decide de-
terministically, whether we should put v1 in S or not. For this, we consider the expec-
ted weight E[W] of the cut where v is set to either be in S or not in S but the verti-
ces v2, . . . , vn are still assigned randomly. More precisely, we put v in S if and only
if E[W|v1 ∈ S] ≥ E[W|v1 6∈ S]. Note that E[W] = (E[W|v1 ∈ S] + E[W|v1 6∈ S])/2.
Hence, by our choice A1 ∈ {S, V \ S}, we know that E[W|v1 ∈ A1] ≥ E[W] ≥ 0.5OPT.
We can repeat this process with v2 and put it in A2 ∈ {S, V \ S} based on whether
E[W|v1 ∈ A1, v2 ∈ S] ≥ E[W|v1 ∈ A1, v2 6∈ S]. In fact, we can repeat this for all the
reamining vertices v3, . . . , vn. However, to develope an algorithm, we need to be able
to efficiently compute E[W|v1 ∈ A1, . . . , vi ∈ Ai].

Describe how we can compute E[W|v1 ∈ A1, . . . , vi ∈ Ai] efficiently. Derive a simple
algorithm from this. 5 Points

Please hand in your solutions on Wuecampus until the beginning of the next lecture,
that is 14:15 on Wednesday, November 16.

