Lehrstuhl fir Informatik | Wirzburg, October 26, 2022

— Algorithmen und Komplexitat —
Universitat Wirzburg Prof. Dr. Alexander Wolff

Johannes Zink
Oksana Firman
Marie Diana Sieper

Exercise Sheet #2
Advanced Algorithms (WS 2022/23)

Exercise 1 — Hamiltonian path

A Hamiltonian path is a path in a graph that visits each vertex exactly once.

a) Let G be a non-weighted, undirected graph. Describe an algorithm for deciding
whether G contains a Hamiltonian path. Use dynamic programming.

What are the running time and space consumption of your algorithm?
5 Points

b) How can we alter the algorithm such that it actually outputs the Hamiltonian
path? 2 Points

c) Now let G be an undirected graph that has, for each edge e € E(G), an edge
weight w(e) € R. Show how to find a shortest Hamiltonian path, i.e., a Hamilto-
nian path P of smallest total weight W =}, w(e). 3 Points

Exercise 2 — Edge-branching INDEPENDENT SET

In the second lecture we talked about a branching algorithm for MAXIMUM INDEPEN-
DENT SET. The algorithm was based on the following properties:

(Vertex 1) If a vertex is in the independent set, then its neighbours aren’t in the inde-
pendent set.

(Vertex 2) If a vertex is not in the independent set, then in a maximum independent set
at least one of its neighbours is in the independent set.

Branching algorithms are often based on such observations about the properties of fea-
sible and/or optimal solutions. We will now design an algorithm based on a different
property of independent sets:

(Edge) Consider an edge (v, w). An independent set does not contain both v and w.

a) Design a simple branching algorithm for MAXIMUM INDEPENDENT SET using
a single branching rule based on the Edge property. Additionally, you can use a
reduction rule based on the fact that isolated vertices belong to every maximum
independent set. 5 Points



b) Show that the algorithm you designed in (a) runs faster than O*(2"), where n is
the number of vertices of the given graph. 3 Points

c) Show that your running time analysis is tight by constructing a suitable family of
worst-case instances. 2 Points

Please hand in your solutions on Wuecampus until the beginning of the next lecture,
that is 14:15 on Wednesday, November 2.



