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® Vorabversion der Ausarbeitung bis spétestens 2

Wochen nach dem eigenen Vortrag abgeben




Bestehen & Bewertung

Voraussetzungen fiir das Bestehen des Seminars
e Halten einer Prasentation zum gewdhlten Thema
® Anfertigen einer Ausarbeitung
® Anwesenheit bei den anderen Vortragen
e Einmaliges Fehlen ist erlaubt

® Teilnahme an den Diskussionen



Bestehen & Bewertung

Voraussetzungen fiir das Bestehen des Seminars
e Halten einer Prasentation zum gewdhlten Thema
® Anfertigen einer Ausarbeitung
® Anwesenheit bei den anderen Vortragen
e Einmaliges Fehlen ist erlaubt
® Teilnahme an den Diskussionen
Bewertung
® Vortrag
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Small Point-Sets Supporting Graph Stories

On the Complexity of the Storyplan Problem

Compatible Spanning Trees in Simple Drawings of K,

Empty Triangles in Generalized Twisted Drawings of K,

Shooting Stars in Simple Drawings of Ky, ,

Mutual Witness Gabriel Drawings of Complete Bipartite Graphs

FORBID: Fast Overlap Removal By stochastic Gradient Descent for Graph Drawing
Planar Confluent Orthogonal Drawings of 4-Modal Digraphs

Strictly-Convex Drawings of 3-Connected Planar Graphs

st-Orientations with Few Transitive Edges

. An FPT Algorithm for Bipartite Vertex Splitting

Queue Layouts of Two-Dimensional Posets
The Rique-Number of Graphs
Visibility Representations of Toroidal and Klein-bottle Graphs
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w+k=>5

Find minimal k such that all drawings are planar.
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Does a given graph admit a storyplan (i.e., a sequence of planar partial drawings)?
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3. Compatible Spanning Trees in Simple Drawings ot K,

A drawing of Kg:

Theorem 1. Let D be a cylindrical, monotone, or strongly c-monotone draw-
ing of K;;, and let 7p be the set of all plane spanning trees of D.
Then, the compatibility graph F(7p) is connected.

Theorem 2. Let D be a simple drawing of K;;, and let 7 be the set of all plane
spanning stars, double stars, and twin stars on D.
Then, the compatibility graph F(7) is connected.



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

— ¥



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

v v



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

> YAl



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

=V Al =



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

>\ v vt S



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

— ¥ VroooAly e=Xr QY

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« Cp« Ey>h




4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

X Ve v =t S

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« Cp« Ey>h

Ein Dreieck ist leer, falls sein Inneres oder sein Aufleres keinen Knoten enthilt.

4



4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

X Ve v =t S

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« C?« Ey>h

Ein Dreieck ist leer, falls sein Inneres oder sein Aufleres keinen Knoten enthilt.

& @




4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

X Ve v =t S

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« C?« Ey>h

Ein Dreieck ist leer, falls sein Inneres oder sein Aufleres keinen Knoten enthilt.

& & @




4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

X Ve v =t S

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« C?« Ey>h

Ein Dreieck ist leer, falls sein Inneres oder sein Aufleres keinen Knoten enthilt.

& @ @

Vermutung: Jede einfache Zeichnung von K, hat > 2n — 4 leere Dreicke.




4. Empty Triangles in Generalized Twisted Drawings

In einer einfachen Zeichnung teilt sich jedes Kantenpaar < 1 Punkt.

X Ve v =t S

= jedes Dreieck (Kreis der Lange 3) ist frei von Selbstiiberschneidungen

A« Cp« Ey>h

Ein Dreieck ist leer, falls sein Inneres oder sein Aufleres keinen Knoten enthilt.

& @ @

Vermutung: Jede einfache Zeichnung von K, hat > 2n — 4 leere Dreicke.

Hier: Beweis fiir den Spezialfall von verallgemeinert verdrehten Zeichnungen.
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5. Shooting Stars in Simple Drawings of K, ,

Q: Does every simple drawing of Ky, ,
admit a plane spanning tree?

Thm. Let D be a simple drawing of
Ky n, and let r be an arbitrary
vertex of Ky, ;. Then D contains

No — but the drawing is not simple. a shooting star rooted at r.

Does this drawing of K 3 contain
a plane spanning tree?
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node-link diagram PCOD Kandinsky drawing orthogonal drawing

Theorem. Every 4-modal irreducible triangulation has a PCOD with split
complexity at most one;
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9. Strictly-Convex Drawings of 3-Connected Graphs

Eine kreuzungsfreie Graphzeichung I' zerlegt die Ebene in Regionen,
genannt Facetten.

I' heifst strikt konvex, falls jede Facette durch ein
strikt konvexes Polygon berandet wird.

“~ alle Innenwinkel < 180O @ é

Bekannt: Jeder sog. 3-zusammenhédngende planare Graph kann strikt konvex
gezeichnet werden und zwar auf einem O(n?) x O(n?) Gitter.

n = #Knoten

aber: versteckter Faktor ~ 10000
Neu: Ein 21 x 5n° Gitter geniigt!

Verwendete Techniken: Kanonische Ordnung + Shift-Methode
(— GraphVis-Vorlesung)
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Eingabe: ein ungerichteter Graph G = (V, E)
Ausgabe: ein gerichteter Graph

Regeln:
e keine Kreise
e st-gerichtet

o kente transitiven Kanten
wenige

Spoiler: ist NP-schwer
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11. An FPT Algorithm for Bipartite Vertex Splitting

2-layer drawing of a bipartite graph
with fixed vertex order.

vertex split

We want: Minimal number k of vertex-splits necessary to generate a
crossing-free drawing.

— NP-hard!

Here: FPT algorithm for Bipartite Vertex Splitting parameterized by the
minimum number of vertex splits.
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12. Queue Layouts of Two-Dimensional Posets

2-dimension poset
(partially ordered set):

Queue layout of a poset:

2-rainbow

Edge from u to v
it v is right and

above u.

Order vertices such that the partial order
No transitive is respected.
edges. We want to minimize maximum number

of nested edges.

Queue number: minimum k such that the
poset admits a queue layout with
rainbows of size at most k.

What are bounds on the Queue-Number
of a Poset?
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13. The Rique-Number of Graphs

This is about linear layouts, where all vertices are arranged on a horizontal line.

! 1 ' !

1-page stack-layout 1-page queue-layout 1-page RIQ-layout

® RIQ stands for restricted-input queue: insertions are only allowed at the head,
while removals can occur at the head and the tail.
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7 " |/ _—~— 1Ky is toroidal.
|/ , Ry 15 TOTOIAd K5 is toroidal.
| | >

+

>

Theorem 1. Let G be a toroidal graph without loops. Then G has a visibility
representation on the flat torus.

Theorem 2.
rectangular
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e Uberblick verschaffen und Kurzvortrag vorbereiten

® Bei Fragen (oder spiitestens drei Wochen vor dem eigenen
Vortrag) an den Betreuer wenden

Zum Abschlufs: Demonstration des Programms IPE

zum Erstellen von Abbildungen und Folien
http:/ /ipe.otfried.org/
r» https:/ / gitlab2.informatik.uni-wuerzburg.de/

Ubrigens: ein gemeinsames git-Verzeichnis eignet sich hervorragend zum
gemeinsamen Bearbeiten von .tex, aber auch .ipe Dateien!
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