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(i.d.R. einer pro Woche)

•Mo, 27.02.2023: Ausarbeitungen abgeben



Ablauf des Seminars
• Di, 18.10.2022: Einführung
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Wochen nach dem eigenen Vortrag abgeben

Das reicht i.d.R. nicht um alles im Detail zu beschreiben!

→ wesentliche Teile identifizieren und ausführlich
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Voraussetzungen für das Bestehen des Seminars

• Halten einer Präsentation zum gewählten Thema

• Anfertigen einer Ausarbeitung

• Anwesenheit bei den anderen Vorträgen

• Einmaliges Fehlen ist erlaubt

• Teilnahme an den Diskussionen

Bewertung

• Vortrag (Inhalte, Gestaltung der Folien, Verständlichkeit)

• Ausarbeitung (Inhalte, sprachliche Darstellung, Recht-
schreibung, Verbindungen zu anderen Themen)
• 50 : 50



1. Small Point-Sets Supporting Graph Stories ( Oksana )

2. On the Complexity of the Storyplan Problem ( Oksana )

3. Compatible Spanning Trees in Simple Drawings of Kn ( Sascha )

4. Empty Triangles in Generalized Twisted Drawings of Kn ( Boris )

5. Shooting Stars in Simple Drawings of Km,n ( Felix )

6. Mutual Witness Gabriel Drawings of Complete Bipartite Graphs ( Johannes )

7. FORBID: Fast Overlap Removal By stochastic Gradient Descent for Graph Drawing ( Tim )

8. Planar Confluent Orthogonal Drawings of 4-Modal Digraphs ( Sascha )

9. Strictly-Convex Drawings of 3-Connected Planar Graphs ( Boris )

10. st-Orientations with Few Transitive Edges ( Tim )

11. An FPT Algorithm for Bipartite Vertex Splitting ( Diana )

12. Queue Layouts of Two-Dimensional Posets ( Diana )

13. The Rique-Number of Graphs ( Johannes )

14. Visibility Representations of Toroidal and Klein-bottle Graphs ( Felix )
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Find minimal k such that all drawings are planar.
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Does a given graph admit a storyplan (i.e., a sequence of planar partial drawings)?
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3. Compatible Spanning Trees in Simple Drawings of Kn

A drawing of K6:

Theorem 1. Let D be a cylindrical, monotone, or strongly c-monotone draw-
ing of Kn, and let TD be the set of all plane spanning trees of D.
Then, the compatibility graph F (TD) is connected.

Theorem 2. Let D be a simple drawing of Kn, and let T ∗D be the set of all plane
spanning stars, double stars, and twin stars on D.
Then, the compatibility graph F (T ∗D ) is connected.
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In einer einfachen Zeichnung teilt sich jedes Kantenpaar ≤ 1 Punkt.

⇒ jedes Dreieck (Kreis der Länge 3) ist frei von Selbstüberschneidungen

Ein Dreieck ist leer, falls sein Inneres oder sein Äußeres keinen Knoten enthält.

Vermutung: Jede einfache Zeichnung von Kn hat ≥ 2n− 4 leere Dreicke.

Hier: Beweis für den Spezialfall von verallgemeinert verdrehten Zeichnungen.
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5. Shooting Stars in Simple Drawings of Km,n

Does this drawing of K2,3 contain
a plane spanning tree?

No – but the drawing is not simple.

Does every simple drawing of Km,n
admit a plane spanning tree?

Thm. Let D be a simple drawing of
Km,n, and let r be an arbitrary
vertex of Km,n. Then D contains
a shooting star rooted at r.

Q:
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Given two vertex-disjoint graph drawings Γ0 and Γ1:

Γ0

Γ1

• The Gabriel disk of u and v is the disk
having u and v as antipodal points.

• The pair 〈Γ0, Γ1〉 is a mutual witness
Gabriel drawing if and only if . . .
. . . for each edge, the Gabriel disk of the
one drawing contains no vertex of the
other drawing, and . . .
. . . for each non-edge, the Gabriel disk of
the one drawing contains at least one
vertex of the other drawing.

•Which pairs of graphs
admit a mutual witness
Gabriel drawing?

complete bipartite



7. FORBID: Fast Overlap Removal By Gradient Descent

Eingabe: Hindernisse (achsenparallele Rechtecke), potentiell überlappend



7. FORBID: Fast Overlap Removal By Gradient Descent

Eingabe: Hindernisse (achsenparallele Rechtecke), potentiell überlappend

Ausgabe: Verschobene Hindernisse ohne Überlappungen
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Gütekriterien?

• Gesamtfläche
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node-link diagram PCOD Kandinsky drawing orthogonal drawing

Theorem. Every 4-modal irreducible triangulation has a PCOD with split
complexity at most one; and such a drawing can be computed in
linear time.
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9. Strictly-Convex Drawings of 3-Connected Graphs
Eine kreuzungsfreie Graphzeichung Γ zerlegt die Ebene in Regionen,
genannt Facetten.

Γ heißt strikt konvex, falls jede Facette durch ein
strikt konvexes Polygon berandet wird.{

alle Innenwinkel < 180◦

Bekannt: Jeder sog. 3-zusammenhängende planare Graph kann strikt konvex
gezeichnet werden und zwar auf einem O(n2)×O(n2) Gitter.

aber: versteckter Faktor ≈ 10000
Neu: Ein 2n× 5n3 Gitter genügt!

n = #Knoten

Verwendete Techniken: Kanonische Ordnung + Shift-Methode
(→ GraphVis-Vorlesung)
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11. An FPT Algorithm for Bipartite Vertex Splitting

2-layer drawing of a bipartite graph
with fixed vertex order.

vertex split

We want: Minimal number k of vertex-splits necessary to generate a
crossing-free drawing.

→ NP-hard!

Here: FPT algorithm for Bipartite Vertex Splitting parameterized by the
minimum number of vertex splits.
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12. Queue Layouts of Two-Dimensional Posets

2-dimension poset
(partially ordered set):

Edge from u to v
if v is right and
above u.

No transitive
edges.

Queue layout of a poset:

Order vertices such that the partial order
is respected.
We want to minimize maximum number
of nested edges.

2-rainbow

Queue number: minimum k such that the
poset admits a queue layout with
rainbows of size at most k.
What are bounds on the Queue-Number
of a Poset?
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13. The Rique-Number of Graphs

1-page stack-layout

This is about linear layouts, where all vertices are arranged on a horizontal line.

1-page queue-layout 1-page RIQ-layout

• RIQ stands for restricted-input queue: insertions are only allowed at the head,
while removals can occur at the head and the tail.
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14. Visibility Representations of Toroidal Graphs

K5 is toroidal.
K7 is toroidal.

Theorem 1.

Theorem 2.

Let G be a toroidal graph without loops. Then G has a visibility
representation on the flat torus. [Mohar & Rosenstiehl, 1998]

Let G be a toroidal graph without loops. Then G has a visibility
representation on the rectangular flat torus. [Biedl, 2022]
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Zum Abschluß: Demonstration des Programms IPE
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http://ipe.otfried.org/

Übrigens: ein gemeinsames git-Verzeichnis eignet sich hervorragend zum
gemeinsamen Bearbeiten von .tex, aber auch .ipe Dateien!

https://gitlab2.informatik.uni-wuerzburg.de/
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