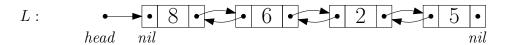
Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Universität Würzburg Würzburg, den 8. Februar 2016
Prof. Dr. Alexander Wolff
M.Sc. Krzysztof Fleszar

Vorlesung Algorithmen und Datenstrukturen WS 2015/16

Klausur - Gruppe A


orname:					Name: _				
		Matrik	elnumm	ner:					
Aufgabe	1	2	3	4	5	6	7	8	Gesamt
mögliche Punkte	3	4	4	5	3	4	4	6	33
erreichte Punkte									
Bearbeitungszeit:	90 Mii	nuten.	Mit 10	oder 3	3 (+8)) Punk	te hab	en Sie	bestanden
ufgabe 1									/ 3 Punl
Zeigen Sie mittels	vollstär	ndiger I	nduktio	n, dass	für alle	$k \in \mathbb{N}_{\mathbb{R}}$	$_{\geq 0}$ gilt:		
			$2\sum^{k}$	$\int_{0}^{2} 3^{i} = 3$	$3^{k+1} - 1$	1			
			$\frac{z}{i}$	0					

Aufgabe 2 / 4 Punkte

Gegeben sei folgende Methode:

SomeMethod(List L, int k) x = L.head $\mathbf{while} \ x \neq nil \ \mathbf{and} \ k > 0 \ \mathbf{do}$ x = x.next $\mathbf{if} \ x \neq nil \ \mathbf{then}$ x.prev = L.head.prev L.head = x k = k - 1

SomeMethod wird auf die unten abgebildete Liste L mit dem Parameter k=2 angewandt. Zeichnen Sie die Liste nach jedem Schleifendurchlauf nochmal hin. (Wir nehmen an, dass die Methode Zugriff auf die Attribute der Listen und der Listenelemente hat.)

Was macht die Methode mit L in Abhängigkeit von k?

Au	men	eben sei ein Feld $A=\langle s,s,s,\ldots,s,w,w,w,\ldots,w\rangle$ der Länge n . Geben Sie in gut komtiertem Pseudocode einen Algorithmus an, der die Länge der s -Sequenz in Zeit $O(\log n)$ timmt.
	int	${\sf SLength(int[]}\ A)$
	-	
	-	
	-	
	-	
	-	
	-	
	-	

Aufgabe 4	/ 5 Punkte
Sie möchten eine Wüste möglichst schnell überqueren. Sie haben eine anfaflasche dabei, die für k Kilometer ausreicht. Auf Ihrem Weg passieren Sie Ihre Flasche wieder auffüllen können. Da das Auffüllen jedoch lange dauer das Wasser aus einem tiefen Brunnen holen), möchten Sie möglichst wenig vornehmen.	n Oasen, wo Siet (Sie müssen erst
Geben Sie in gut kommentiertem Pseudocode einen Algorithmus CountMinminimale Anzahl der Zwischenstopps zurückgibt. Als Eingabe erhält der Wert k sowie ein Feld A der Länge n , wobei $A[i]$ für jedes $i=1,\ldots,n$ der der i -ten Oase zum Startpunkt enthält. Die n -te Oase ist das Ziel. Falls das werden kann, geben Sie ∞ zurück.	Algorithmus den Abstand (in km)
int $CountMinStops(int[] A, int k)$	

Um was für einen Typ von Algorithmus handelt es sich?
Analysieren Sie die Worst-Case-Laufzeit Ihres Algorithmus in Abhängigkeit von der Anzahl n der Oasen.
Beweisen Sie die Korrektheit Ihres Algorithmus: Warum liefert er die kleinstmögliche Anzah von Zwischenstopps?

Aufgabe 5

/ 3 Punkte

Beim doppelten Hashing ist es wichtig, dass die Hashfunktionen zueinander passen. Argumentieren Sie bei den folgenden Hashfunktionen, warum sie als Funktion $h_1(k)$ für das doppelte Hashing in einer Tabelle T[0..31] mit

$$h(k) = (h_0(k) + ih_1(k)) \mod 32$$

und

$$h_0(k) = (3k+5) \mod 32$$

nicht geeignet sind.

Geben Sie hierzu jeweils auch ein k an, das die Problematik aufzeigt.

- (a) $h_1(k) = 30 2 \cdot (k \mod 15)$
- (b) $h_1(k) = (k+3) \mod 10$
- (c) $h_1(k) = (29 2k) \mod 19$

Aufgabe 6

/ 4 Punkte

Wählen Sie aus der folgenden Menge von Funktionen eine maximale Teilmenge aus, deren Summe in $O(n^{3/2} \log n)$ liegt. Kreisen Sie die gewählten Funktionen ein!

$$\{7n^2,$$

$$\frac{1}{2}n^3,$$

$$n^2 - n^{1/2},$$

$$\frac{1}{2}n^3$$
, $n^2 - n^{1/2}$, $n^{1.5}\log_2(100n)$,

$$(n+1)^{3/2}\log_2 n,$$

$$n^{1.1},$$
 $2^n,$

$$2^n$$

$$100000^{\log_2 n}$$
,

$$1000^{100^{10}}n \cdot (\log_2 n)^{100^{10}},$$

$$n\sqrt{n}, \qquad \qquad n^{\log_2 n},$$

$$n^{\log_2 n}$$

$$2^{\log_2 n}$$
,

$$(\sqrt{8})^{\log_2 n},$$

$$2^{3\log_2\sqrt{n}}\cdot\sqrt{n}$$

$$2^{3\log_2\sqrt{n}}\cdot\sqrt{n}, \quad (\sqrt{2})^{\log_2(n^3)}\log(n^3), \quad 3^{3/2\cdot\log_2 n}$$

$$3^{3/2 \cdot \log_2 n}$$

Aufgabe 7	/ 4 Punkte
Gesucht ist ein Algorithmus, der ermittelt, wieviele Züge man mindestens	_
einem Schachbrett mit $n \times n$ Feldern einen Springer von Feld (x_1,y_1) z bewegen.	u Feld (x_2, y_2) zu
Die Schachregeln legen für jedes Feld (x,y) eine Menge $Z_{(x,y)}$ von bis zu In einem Zug muss der Springer von seinem Feld (x,y) auf eines der Felde werden.	
Geben Sie in Worten einen effizienten Algorithmus an, der die erforderliche in $O(n^2)$ Zeit berechnet. Ist das Zielfeld nicht erreichbar, so soll ∞ zurück	_
Sie dürfen Methoden aus der Vorlesung verwenden.	
	_

0		_
	e 8 $A \text{ ein Feld der Länge } n. \text{ Eine } \textit{Inversion} \text{ ist ein Paar } (i,j) \text{ mit der Eigenschaft, da} \\ i < j \leq n \text{ und } A[i] > A[j].$	SS
(a)	Geben Sie alle Inversionen im Feld $\langle 2,3,8,6,1\rangle$ an.	/ 2 P.
		_
(b)	Geben Sie ein Feld der Länge n mit Wertebereich $\{1,\dots,n\}$ an, bei dem die Anza	hl / 2 P.
	der Inversionen maximal ist (über alle Felder der Länge n mit gleichem Wertebereich	
	Wie viele Inversionen sind es?	_ _
(c)	Erklären Sie, wie die Laufzeit $T(A)$ von InsertionSort von der Anzahl $I(A)$ der Inversinen im Feld A abhängt, wobei $n=A.length$.	o- / 2 P.
	$T(A) = \underline{\hspace{2cm}}$	_
		_
(d)	/ 4	Zusatzpunkte
	Die Datenstruktur Rot-Schwarz-Baum soll um eine Methode CountSmaller(k) augme tiert werden, die die $Anzahl$ der Elemente im Baum bestimmt, die kleiner als die Ei gabe k sind. Die Laufzeit von CountSmaller soll in $O(\log m)$ sein, wobei m die aktuel Anzahl der Elemente im Baum ist.	n- lle
	Hierzu wird für jeden Knoten v das Attribut $v.size$ eingeführt, das die Anzahl d Elemente im Teilbaum mit Wurzel v speichert. Begründen Sie, warum der Wert von $size$ in allen Knoten aufrechterhalten werden kan	n,
	ohne die asymptotische Laufzeit der übrigen Rot-Schwarz-Baum-Methoden zu änderr	1:

		CountSmaller(int k , Node $x = root$) $x == nil \text{ then}$ $- \text{return}$	
	i	$f(k < x.key \ \mathbf{then}$ $\mathbf{return} \ CountSmaller(k, \underline{\hspace{1.5cm}})$	
	•	lse if k > x.key then	
		$- \mathbf{return} \ x. \underline{\hspace{1cm}} + \ 1 + CountSmaller(k, \underline{\hspace{1cm}})$	
	•	lse	
		if x.left == nil then return else return x	
		else return x	
e)		/ 4 Zusatzpun	
,	die .	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die anzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	Kie
•	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt.	Kle
•	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	KLE
•	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	Kle
•	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	Kie
•	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	Kie
,	die <i>i</i> Verv	n Sie in gut kommentiertem Pseudocode eine Methode CountInversions an, die nzahl der Inversionen eines Feldes A der Länge n in Zeit $O(n\log n)$ bestimmt. enden Sie hierzu CountSmaller. Langsamere Lösungen geben hier weniger Punkte.	KLE

Vervollständigen Sie die angegebene rekursive Methode CountSmaller.