
1

Algorithmen und Datenstrukturen

Wintersemester 2022/23

3. Vorlesung

Laufzeitanalyse

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

a) einer Schleife?

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Wie beweisen wir die Korrektheit4.

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

a) einer Schleife?

b) eines inkrementellen Algorithmus?

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Wie beweisen wir die Korrektheit4.

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

a) einer Schleife?

b) eines inkrementellen Algorithmus?

c) eines rekursiven Algorithmus?

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Wie beweisen wir die Korrektheit4.

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

a) einer Schleife?

b) eines inkrementellen Algorithmus?

c) eines rekursiven Algorithmus?

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Wie beweisen wir die Korrektheit4.

Warum eigentlich interessieren wir uns fürs Sortieren?2.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.

Heute schon implementiert?

Zum Beispiel
– InsertionSort,

– MergeSort, . . .

Probieren Sie’s selbst!

3

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

1) n := Größe der Eingabe

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

1) n := Größe der Eingabe

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert ⇒ n − 1 Vergleiche

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert ⇒ n − 1 Vergleiche

A absteigend sortiert

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert ⇒ n − 1 Vergleiche

A absteigend sortiert

⇒ 1 + 2 + · · ·+ (n − 1) =

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert ⇒ n − 1 Vergleiche

A absteigend sortiert

⇒ 1 + 2 + · · ·+ (n − 1) =

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

n2 − n

2
Vgl.

3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!

1) n := Größe der Eingabe

Bester Fall:

Schlechtester Fall:

A aufsteigend sortiert ⇒ n − 1 Vergleiche

A absteigend sortiert

⇒ 1 + 2 + · · ·+ (n − 1) =

Lösung(?): Betrachte Extremfälle!

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

n2 − n

2
Vgl.

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt?
if ` < r then

m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt?
if ` < r then

m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

X

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt?

Effizient?

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

X

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

?

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

?

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

.

.

.
.
.
.

.

.

.
.
.
.

Anz. Vergleiche:

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

.

.

.
.
.
.

.

.

.
.
.
.

Anz. Vergleiche:

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

.

.

.
.
.
.

.

.

.
.
.
.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

n/4 n/4 n/4 n/4
.
.
.

.

.

.
.
.
.

.

.

.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

?

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang:

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 =

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X

n>1

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) =

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) = n log2 n − n log2 2 + n

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) = n log2 n − n log2 2 + n

= n log2 nX

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) = n log2 n − n log2 2 + n

= n log2 nX

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

X

4

Laufzeit von MergeSort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Effizient? Sei VMS(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt }
=

falls n
Zweierpotenz
und sonst?

–

VMS(n) =

{
0 falls n = 1,

2VMS(n/2) + n sonst.

if ` < r then
m = b(`+ r)/2c
MergeSort(A, `, m)
MergeSort(A, m + 1, r)
Merge(A, `, m, r)

Beweis:
Induktionsanfang: VMS(1) =
Induktionsschritt: VMS(n) = n log2 n − n log2 2 + n

= n log2 nX

Rekursionsbaum von MergeSort

n

n/4

0

n/4 n/4 n/4

0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
. log2 n

n · log2 n

per Induktion über n.
1 · log2 1 = 0X
2 · n

2 log2
n
2 + n =

n>1

Anz. Vergleiche:

n/2 n/2

X

5

Vergleich InsertionSort vs. MergeSort

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

VMS(x) = x log2 x
MergeSort:

VIS(x) =
x2 − x

2

InsertionSort:

V ′IS(x) = x − 1

5

Vergleich InsertionSort vs. MergeSort

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

VMS(x) = x log2 x
MergeSort:

VIS(x) =
x2 − x

2

InsertionSort:

V ′IS(x) = x − 1

5

Vergleich InsertionSort vs. MergeSort

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

VMS(x) = x log2 x
MergeSort:

VIS(x) =
x2 − x

2

InsertionSort:

V ′IS(x) = x − 1

6

Vergleich InsertionSort vs. MergeSort

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 60 70 80 90 100

VIS(x) =
x2 − x

2

VMS(x) = x log2 x

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

Menge der natürlichen Zahlen 0, 1, 2, . . .

Menge der reellen Zahlen, z.B. −7, 3, 2
9 ,
√

2, e, π2.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Dann ist
”
Groß-Oh von g“

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Dann ist
”
Groß-Oh von g“

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Dann ist
”
Groß-Oh von g“

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Dann ist
”
Groß-Oh von g“

f ∈ O(n2)

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Dann ist
”
Groß-Oh von g“

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

Wähle positive c und n0,

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

Wähle positive c und n0,

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

Wähle positive c und n0,

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

≤

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤ ⇒

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤ ⇒ wähle c = 6.

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤ ⇒ wähle c = 6.

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

Welches n0?

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤ ⇒ wähle c = 6.

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

Welches n0? Aussage gilt für jedes n ≥ 0.

7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.:

Beweis.

Dann ist
”
Groß-Oh von g“

f (n) = 2n2 + 4n − 20

Wähle positive c und n0,

6n2≤ ⇒ wähle c = 6.

f ∈ O(n2); m.a.W. f wächst höchstens quadratisch.

so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

Welches n0? Aussage gilt für jedes n ≥ 0. Nimm z.B. n0 = 1.
�

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Dann ist
”
Groß-Oh von g“

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Dann ist
”
Groß-Oh von g“

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

¬negiere! ()

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

¬negiere! ()

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

¬negiere! ()

für alle pos. Konst. c und n0

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige:

Dann ist
”
Groß-Oh von g“

¬negiere! ()

für alle pos. Konst. c und n0

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige: gibt es ein n ≥ n0,

Dann ist
”
Groß-Oh von g“

¬negiere! ()

für alle pos. Konst. c und n0

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige: gibt es ein n ≥ n0,

Dann ist
”
Groß-Oh von g“

¬negiere! ()

für alle pos. Konst. c und n0

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige: gibt es ein n ≥ n0,

Dann ist
”
Groß-Oh von g“

¬negiere! ()

für alle pos. Konst. c und n0

so dass f (n) > c · n.

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige: gibt es ein n ≥ n0,

Dann ist
”
Groß-Oh von g“

für alle pos. Konst. c und n0

so dass f (n) > c · n.

; m.a.W. f wächst schneller als linear.

8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Behaupt.: f 6∈ O(n)

Beweis. Zeige: gibt es ein n ≥ n0,

Dann ist
”
Groß-Oh von g“

für alle pos. Konst. c und n0

so dass f (n) > c · n.

bestimme n in Abh. von c und n0, so dass

n ≥ n0 und f (n) = 2n2 + 4n − 20 > c · n.

Also:

; m.a.W. f wächst schneller als linear.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann . . .

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann . . .

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber . . .

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber . . .

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

Also nehmen wir n =

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

dmax{c , 5, n0}e.Also nehmen wir n =

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

dmax{c , 5, n0}e.Also nehmen wir n =

Für dieses n gilt n ≥ n0 und f (n) > cn.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

dmax{c , 5, n0}e.Also nehmen wir n =

Für dieses n gilt n ≥ n0 und f (n) > cn.

9

Fortsetzung des Beweises f 6∈ O(n)

Bestimme n in Abh. von c und n0, so dass n ≥ n0 und

f (n) = 2n2 + 4n − 20 > c · n.

Problem: Die
”
−20“ stört.

Aber wenn n ≥ 5, dann gilt 4n − 20 ≥ 0.

D.h. wenn n ≥ 5 und 2n2 > cn, dann f (n) > cn.

m
n > c/2

⇑
n = cWie wär’s mit ?

Gut, aber wir müssen sicherstellen,
dass auch n ≥ 5 und n ≥ n0 gilt.

�
dmax{c , 5, n0}e.

Also gilt f 6∈ O(n).

Also nehmen wir n =

Für dieses n gilt n ≥ n0 und f (n) > cn.

10

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≤ c · g(n)

die Klasse der Fkt., die höchstens so schnell wachsen wie g .

Dann ist
”
Groß-Oh von g“

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)f 6∈ O(n)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)f 6∈ O(n) , f ∈ O(n3)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend:

f 6∈ O(n) , f ∈ O(n3)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend:

f 6∈ O(n) , f ∈ O(n3)

f ∈ Ω(n)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n) , f ∈ O(n3)

f ∈ Ω(n)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

Zusammen:

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

Zusammen: f ∈ Θ(n2)

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

Zusammen: f ∈ Θ(n2)

d.h. es gibt pos. Konst. c1, c2, n0, so dass für alle n ≥ n0 gilt:

11

Ein Klassifikationsschema für Funktionen (II)

Definition.
Sei g : N→ R eine Funktion. Dann ist

”
Groß-Omega von g“

Ω(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n)≥ c · g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g .

Beispiel. f (n) = 2n2 + 4n − 20

Bewiesen: , f ∈ O(n2)

Entsprechend: , f ∈ Ω(n2)

f 6∈ O(n)

, f 6∈ Ω(n3)

, f ∈ O(n3)

f ∈ Ω(n)

Zusammen: f ∈ Θ(n2)

d.h. es gibt pos. Konst. c1, c2, n0, so dass für alle n ≥ n0 gilt:

c1 · n2 ≤ f (n) ≤ c2 · n2.

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2) bedeutet

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2) bedeutet f wächst höchstens quadratisch.

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

bedeutet f wächst höchstens quadratisch.

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

bedeutet f wächst höchstens

mindestens

quadratisch.

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

bedeutet f wächst höchstens

mindestens

quadratisch.

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

bedeutet f wächst höchstens

mindestens

quadratisch.

”
genau“

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

bedeutet f wächst höchstens

mindestens

quadratisch.

neu!
f ∈ o(n2)

”
genau“

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

quadratisch.

neu!
f ∈ o(n2)

”
genau“

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

f ∈ ω(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

quadratisch.

neu!
f ∈ o(n2)

”
genau“

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

f ∈ ω(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

echt schneller als

quadratisch.

neu!
f ∈ o(n2)

”
genau“

12

Das Klassifikationsschema – intuitiv

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

f ∈ ω(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

echt schneller als

quadratisch.

neu!

Genaue Definition für
”
klein-Oh“ und

”
klein-Omega“ siehe Kapitel 3 [CLRS].

f ∈ o(n2)
”
genau“

12

Das Klassifikationsschema – intuitiv

Übung.

Gegeben folgende Funktionen N→ R mit n 7→ . . . :

n2, log2 n,
√

n log2 n, 1,01n, nlog3 4, log2(n · 2n), 4log3 n.

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

f ∈ ω(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

echt schneller als

quadratisch.

neu!

Genaue Definition für
”
klein-Oh“ und

”
klein-Omega“ siehe Kapitel 3 [CLRS].

f ∈ o(n2)
”
genau“

12

Das Klassifikationsschema – intuitiv

Übung.

Gegeben folgende Funktionen N→ R mit n 7→ . . . :

n2, log2 n,
√

n log2 n, 1,01n, nlog3 4, log2(n · 2n), 4log3 n.

f ∈ O(n2)

f ∈ Ω(n2)

f ∈ Θ(n2)

f ∈ ω(n2)

bedeutet f wächst höchstens

mindestens

echt langsamer als

echt schneller als

quadratisch.

neu!

Genaue Definition für
”
klein-Oh“ und

”
klein-Omega“ siehe Kapitel 3 [CLRS].

f ∈ o(n2)
”
genau“

Sortieren Sie nach Geschwindigkeit des asymptotischen Wachstums,

also so, dass danach gilt: O(. . .) ⊆ O(. . .) ⊆ · · · ⊆ O(. . .).

	Titel
	Recap
	Laufzeit analysieren: InsertionSort
	Laufzeit von MergeSort
	Vergleich InsertionSort vs. MergeSort
	Ein Klassifikationsschema für Funktionen (I)
	Ein Klassifikationsschema für Funktionen (I)
	Fortsetzung des Beweises
	Ein Klassifikationsschema für Funktionen (I)
	Ein Klassifikationsschema für Funktionen (II)
	Das Klassifikationsschema -- \em intuitiv

