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Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns über einen Algorithmus stellen?

1.



2

Recap: Diskutieren Sie mit Ihrer NachbarIn!

a) einer Schleife?

b) eines inkrementellen Algorithmus?

Welche Entwurfstechniken für Algorithmen kennen wir
schon?

3.

Wie beweisen wir die Korrektheit4.

Warum eigentlich interessieren wir uns fürs Sortieren?2.
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1) n := Größe der Eingabe

Lösung(?): Betrachte Extremfälle!
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Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Gesucht: Maß für die Laufzeit, das nur von n abhängt.

(zwischen Elementen der Eingabe)

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

n2 − n

2
Vgl.



3

Laufzeit analysieren: InsertionSort

Zwei Konventionen:

=hier A.length

2) Wir zählen nur Vergleiche!
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so dass für alle n ≥ n0 gilt: f (n) ≤ c · n2.

da 4n ≤ 4n2

Welches n0? Aussage gilt für jedes n ≥ 0.



7

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)
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; m.a.W. f wächst schneller als linear.



8

Ein Klassifikationsschema für Funktionen (I)

Definition.
Sei g : N→ R eine Funktion.

O(g) =

f : N→ R |


es gibt positive Konstanten c und n0,

so dass für alle n ≥ n0 gilt:
f (n) ≤ c · g(n)
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Übung.
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√
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Sortieren Sie nach Geschwindigkeit des asymptotischen Wachstums,

also so, dass danach gilt: O(. . . ) ⊆ O(. . . ) ⊆ · · · ⊆ O(. . . ).
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