Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2022 /23
3. Vorlesung

Laufzeitanalyse

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

2

Recap: Diskutieren Sie mit lhrer Nachbarln!

Recap: Diskutieren Sie mit lhrer Nachbarln!

1. Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1. Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

2. Warum eigentlich interessieren wir uns fiirs Sortieren?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

Warum eigentlich interessieren wir uns fiirs Sortieren?

Welche Entwurfstechniken fiir Algorithmen kennen wir
schon?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

Warum eigentlich interessieren wir uns fiirs Sortieren?

Welche Entwurfstechniken fiir Algorithmen kennen wir
schon?

Wie beweisen wir die Korrektheit

a) einer Schleife?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

Warum eigentlich interessieren wir uns fiirs Sortieren?

Welche Entwurfstechniken fiir Algorithmen kennen wir
schon?

Wie beweisen wir die Korrektheit

a) einer Schleife?

b) eines inkrementellen Algorithmus?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1.

Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

Warum eigentlich interessieren wir uns fiirs Sortieren?

Welche Entwurfstechniken fiir Algorithmen kennen wir
schon?

Wie beweisen wir die Korrektheit

a) einer Schleife?
b) eines inkrementellen Algorithmus?

c) eines rekursiven Algorithmus?

Recap: Diskutieren Sie mit lhrer Nachbarln!

1. Was sind die zwei (oder drei?) entscheidensten Fragen,
die wir uns iiber einen Algorithmus stellen?

2. Warum eigentlich interessieren wir uns fiirs Sortieren?

3. Welche Entwurfstechniken fiir Algorithmen kennen wir

schon? 4
Sy
4. Wie beweisen wir die Korrektheit \2//‘:7 gei;f/ ’ M
. Q
a) einer Schleife? P:ongée’gzz/:fo"l‘, - ere
ren o -
b) eines inkrementellen Algorithmus? S/%Se/bsu

c) eines rekursiven Algorithmus?

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A)
for j = 2 to A.length do

key = A[j]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do) _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do) _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and A[i] > key do —hier A.length

L Ali + 1] = A[]

=1 —1

| Al + 1] = key

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

(zwischen Elementen der Eingabe)

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

(zwischen Elementen der Eingabe)

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:

for j = 2 to A.length do _
key = Alj] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

L Ali + 1] = A[/]
r=1=1 2) Wir zdhlen nur Vergleiche!
| Al + 1] = key

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall:
Schlechtester Fall:

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert
Schlechtester Fall:

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert = n — 1 Vergleiche
Schlechtester Fall:

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert = n — 1 Vergleiche
Schlechtester Fall: A absteigend sortiert

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert = n — 1 Vergleiche
Schlechtester Fall: A absteigend sortiert

= 1+2+---4+(n—-1) =

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert = n — 1 Vergleiche
Schlechtester Fall: A absteigend sortiert

= 1+2+---4+(n—-1) =

n2—n

2

Vgl.

Laufzeit analysieren: InsertionSort

InsertionSort(int[] A) Zwei Konventionen:
for j = 2 to A.length do _
key = A[j] 1) n:= GroBe der Eingabe
i=j—1
while i > 0 and [A[i] > key do —hier A.length

=1 —1

| Al + 1] = key

L Al + 1] = Al
2) Wir zdhlen nur Vergleiche!

(zwischen Elementen der Eingabe)

Gesucht: MaB fiir die Laufzeit, das nur von n abhangt.
Problem: Tatsachliche Laufzeit hangt stark von Eingabe ab.
Losung(?): Betrachte Extremfalle!

Bester Fall: A aufsteigend sortiert = n — 1 Vergleiche

Schlechtester Fall: A absteigend sortiert 5
n-—n
= 1+2+---4+(n—-1) > Vgl.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Korrekt?
if £ < r then
m=|(L+r)/2] } teile

MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe

Merge(A, £, m, r) } kombiniere

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Korrekt?
if £ < r then \/
m=|(L+r)/2] } teile

MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe

Merge(A, £, m, r) } kombiniere

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Korrekt?

if / < r then \/
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Effizient?

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

falls n =1,
V|\/|5(n) — <

sonst.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0 falls n =1,
V|\/|5(n) — <

sonst.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0 falls n =1,
VMs(n) — <

-+ sonst.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0 falls n =1,
VMs(n) — <

2Vwms(n/2) +n sonst.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

/

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche
| Merge(A, £, m, r) } kombiniere

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

/

Laufzeit von MergeSort

MergeSort(int[] A, int £ = 1, int r = A.length) | Rekursionsbaum von MergeSort
if £ <r then | A;;z. Vergleiche: <
m = [(£+r)/2] } teile —

MergeSort(A, £, m) |l s i
I\/IergeSort(A, m-+ 1, r) } herrsche

- Merge(A, ¢, m,r) } kombiniere |ﬁ ﬁ |ﬁ E |ﬁ ﬁ |ﬁ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

Laufzeit von MergeSort

MergeSort(int[] A, int £ = 1, int r = A.length) | Rekursionsbaum von MergeSort
if £ <r then | A;;z. Vergleiche: Q§
m=|({+r)/2] } teile S S

MergeSort(A, £, m) |l s i
I\/IergeSort(A, m-+ 1, r) } herrsche

- Merge(A, ¢, m,r) } kombiniere |ﬁ ﬁ |ﬁ E |ﬁ ﬁ |ﬁ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if g <r then Anz. Vergleiche: [z§
- i
m= [(£+r)/2] } teile B ‘T/|2‘

MergeSort(A, £, m) |l i I
I\/IergeSort(A, m-+ 1, r) } herrsche

- Merge(A, ¢, m,r) } kombiniere |ﬁ ﬁ |ﬁ E |ﬁ ﬁ |ﬁ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if f <r then Anz. Vergleiche: [z§
- i
m=[((+1)/2 } teile /2 g

MergeSort(A, £, m) n/4 04 0/4 b4
. - }herrsche LU L A
MergeSort(A, m+ 1, r)

' Merge(A £ 1) L kombiniere N N 4 4N

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

/

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if f <r then Anz. Vergleiche: [z§
- i
m=[((+1)/2 } teile /2 g

MergeSort(A, £, m) n/4 04 0/4 b4
. - }herrsche LU L A
MergeSort(A, m+ 1, r)

' Merge(A £ 1) \ kombiniere d b b &y § Y

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

/

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if £ <r then Anz. Verglfiche: [z§
m=[({+r)/2] } teile a2)2
MergeSort(A, ¢, m) } herrsche IW%I I:ﬁl lﬁ%l Iﬁ@
MergeSort(A, m+ 1, r)

' Merge(A £ 1) } kombiniere d b b d Y €Y

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if (< r tfzzn)/2J } I ,;;22. Verglfiche: 1{72
m= |[(£+r telle n, n,
MergeSort(A, £, m) } herrsche |Q_;:| W W‘@ W
MergeSort(A, m+ 1, r) -[log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

is(1) 2Viws(n/2) +n sonst. '

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if (< r tfzzn)/2J } I ,;;22. Verglfiche: 1{72
m= |[(£+r telle n, n,
MergeSort(A, £, m) } herrsche |Q_;:| W W‘@ W
MergeSort(A, m+ 1, r) -[log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann g"vt () <’o falls n = 1, \> |
n) = = Nn-10 n
MS 2Vius(n/2) + 1 sonst. =

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if (< r tfzzn)/2J } I ,;;22. Verglfiche: 1{72
m= |[(£+r telle n, n,
MergeSort(A, £, m) } herrsche |Q_;:| W W‘@ W
MergeSort(A, m+ 1, r) -[log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Bewelis:

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if (< r tfzzn)/2J } I ,;;22. Verglfiche: 1{72
m= |[(£+r telle n, n,
MergeSort(A, £, m) } herrsche |Q_;:| W W‘@ W
MergeSort(A, m+ 1, r) -[log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n—=1)

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then

m=[({+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r)
Merge(A, ¢, m, r)

} herrsche "'

} kombiniere @ S @ 5 ! o.lﬁl Iﬁﬁl

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

n,7/2 ?/2

l\ v
-|log, n|-

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0

Vis(n) = <\2V|v|s(n/2) +B

Beweis: per Induktion iber n.

Induktionsanfang:

falls n =1,

sonst.

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then

m=[({+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r)
Merge(A, ¢, m, r)

} herrsche "'

} kombiniere @ S @ 5 ! o.lﬁl Iﬁﬁl

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

n,7/2 ?/2

l\ v
-|log, n|-

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0

Vis(n) = <\2V|v|s(n/2) +B

Beweis: per Induktion iber n.

Induktionsanfang: Vius(1) =

falls n =1,

sonst.

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if (< r tfzzn)/2J } I ,;;22. Verglfiche: 1{72
m= |[(£+r telle n, n,
MergeSort(A, £, m) } herrsche |Q_;:| W W‘@ W
MergeSort(A, m+ 1, r) -[log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ ﬁ

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n= 1

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.
Induktionsanfang: Vus(1l) =1-log, 1 =

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then

m=[({+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r)
Merge(A, ¢, m, r)

} herrsche "'

} kombiniere @ S @ 5 ! o.lﬁl Iﬁﬁl

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

n,7/2 ?/2

l\ v
-|log, n|-

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

0

Vis(n) = <\2V|v|s(n/2) +B

Beweis: per Induktion iber n.
Induktionsanfang: Vius(1) =1-log,1 =0 v/

falls n =1,

sonst.

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

if / < r then N
m=|({+r)/2] } teile . ”,7/2 < n/2
MergeSort(A, £, m) } herrsche | /i” |Q’/i” W‘@ W
MergeSort(A, m+1,r) :{log, nj. :
Merge(A, ¢, m, r) } kombiniere @ ﬁ @ 0 ' 0 ﬁ @ ﬁl

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

V|\/|5(n) —

\
2Vwms(n/2) +n sonst.

Beweis: per Induktion iber n.

Induktionsanfang: Vus(1l) =1-log,1 =0 v
Induktionsschritt: Viys(n) =

0 falls n =1,

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

if / < r then N
- f
m=|(£+r)/2] } teile /2] |
MergeSort(A, £, m) } herrsche |g._/f| |g/f‘” W‘@ W
MergeSort(A, m+1,r) :{log, nj. :
Merge(A, ¢, m, r) } kombiniere @ ﬁ @ 0 ' 0 ﬁ @ ﬁl

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

V|\/|5(n) —

\
2Vwms(n/2) +n sonst.

Beweis: per Induktion iber n.

Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5 log, 5 +n =

0 falls n =1,

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[] A, int £ =1, int r = A.length)

Rekursionsbaum von MergeSort

Anz. Vergl‘;iche: n

if / < r then N
- f
m=|(£+r)/2] } teile /2] |
MergeSort(A, £, m) } herrsche |g._/f| |g/f‘” W‘@ W
MergeSort(A, m+1,r) :{log, nj. :
Merge(A, ¢, m, r) } kombiniere @ ﬁ @ 0 ' 0 ﬁ @ ﬁl

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt (

V|\/|5(n) —

\
2Vwms(n/2) +n sonst.

Beweis: per Induktion iber n.

Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5log, 5 +n =

0 falls n =1,

> = n-log, n

Laufzeit von MergeSort

MergeSort(int[| A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if £ <r then Anz. Vergl‘;iche: Q§
- /2
m=[((+r)/2] } teile 2 | L
MergeSort(A, £, m) n/4 w4 | 04 m/a
. ! }herrsche g - D
MergeSort(A, m+1,r) -|log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ @

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n= 1

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.
Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5log, 5 +n = nlog, n — nlog,2 4 n

Laufzeit von MergeSort

MergeSort(int[| A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if £ <r then Anz. Vergl‘;iche: Q§
- /2
m=[((+r)/2] } teile 2 | L
MergeSort(A, £, m) n/4 w4 | 04 m/a
. ! }herrsche g - D
MergeSort(A, m+1,r) -|log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ @

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n= 1

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.
Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5log, 5 +n = nlog, n — nlog,2 4 n
= nlog, n

Laufzeit von MergeSort

MergeSort(int[| A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if £ <r then Anz. Vergl‘;iche: Q§
- /2
m=[((+r)/2] } teile 2 | L
MergeSort(A, £, m) n/4 w4 | 04 m/a
. ! }herrsche g - D
MergeSort(A, m+1,r) -|log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ @

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
v die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n= 1

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.
Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5log, 5 +n = nlog, n — nlog,2 4 n
= nlog, n

Laufzeit von MergeSort

MergeSort(int[| A, int £ =1, int r = A.length) Rekursionsbaum von MergeSort
if £ <r then Anz. Vergl‘;iche: Q§
- /2
m=[((+r)/2] } teile 2 | L
MergeSort(A, £, m) n/4 w4 | 04 m/a
. ! }herrsche g - D
MergeSort(A, m+1,r) -|log, n|- ;
. Merge(A, ¢, m,r) } kombiniere @ @ @ 0 ' 0 ﬁ @ @

Effizient? Sei Vus(n) die maximale Anzahl von Vergleichen,
v die MergeSort zum Sortieren von n Zahlen benétigt.

Dann gilt 0 falls n= 1

Vi = > = n-log, n
is(1) 2Viws(n/2) +n sonst. =

Beweis: per Induktion iber n.
Induktionsanfang: Vius(1) =1-log,1 =0 v/
Induktionsschritt: Vis(n) =2- 5log, 5 +n = nlog, n — nlog,2 4 n
= nlog, n

Vergleich InsertionSort vs. MergeSort

16

14 |

12 +

10 +

MergeSort:
Vms(x) = x log, x

InsertionSort:

X2—X

Vis(x) = —— ~

Vis(x) = x — 1

Vergleich InsertionSort vs. MergeSort

16 i
14
12
?
10 J>
5 MergeSort: |
Vims(x) = xlog, x] InsertionSort:
6 o x* = x
Vis(x) = —
—O
4 7 5
| — |
5 /% I ViglX) = x — 1

Vergleich InsertionSort vs. MergeSort

16 i
14
12
?
10 J>
5 MergeSort: |
Vims(x) = xlog, x] InsertionSort:
6 o x* = x
Vis(x) = —
—O
4 7 5
| — |
5 /% I ViglX) = x — 1

T 2 3 7 5 OM

Vergleich InsertionSort vs. MergeSort

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0

7

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion.

7

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g:@M)—@®eine Funktion.

cMenge der reellen Zahlen, z.B. —7, 3, %, V2, e, w2,

Menge der natiirlichen Zahlen 0,1, 2, ...

7

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

Olg) =< f:N=>R

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?)

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < ¢ - n?.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c-n®.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c-n®.

f(n)=2n*>+4n—-20 <

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c-n®.

f(n) =2n*>+4n—-20 < 6n°

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n) =2n*>+4n—-20 < 6n°

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n)=2n>+4n—-20 < 6n° =

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n) =2n>+4n—-20 < 6n* = wihle c =6.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n) =2n>+4n—-20 < 6n* = wihle c =6.

Welches ng?

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n—20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n) =2n>+4n—-20 < 6n* = wihle c =6.
Welches ng? Aussage gilt fiir jedes n > 0.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n—20
Behaupt.: f € O(n?); m.a.W. f wichst hdchstens quadratisch.

Bewelis. Wahle positive ¢ und ng,
so dass fiir alle n > ng gilt: f(n) < c- n®.

f(n) =2n>+4n—-20 < 6n* = wihle c =6.
Welches ny? Aussage gilt fiir jedes n > 0. Nimm z.B. ng = 1.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f & O(n)

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Leige:

8

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:
f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n—20
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Leige:

8

8

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:
f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()

Behaupt.: f & O(n); m.a.W. f wéachst schneller als linear.

Beweis. Zeige:

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,,GroB-Oh von g*

O(g)=<f:N—=R so dass fiir alle n > ng gilt:
f(n) < c-g(n)
die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()

Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige:

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

O(g) =

f:N—R

so dass fiir alle n > ng gilt:
f(n) < c - g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()

Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige:

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

O(g) =

f:N—R

so dass fiir alle n > ng gilt:
f(n) < c- g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()

Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige:

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

O(g)=<f:N—=R so dass fiir alle n > ng gilt:
f(n) < c-g(n)
die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()

Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. ZLeige: gibt es ein n > ny,

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

O(g)=<f:N—=R so dass fiir alle n > ng gilt:
f(n) < c-g(n)
die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) = 2n* +4n— 20 negiere! ()
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige: gibt es ein n > ny,

Ein Klassifikationsschema fiir Funktionen (I)

Definition.
Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

so dass fiir alle n > ng gilt:

ell wachsen wie g.

Olg) =< f:N=>R

die Klasse der Fkt., die hochstens so sch
Beispiel. f(n) =2n* + 4n— 20 negiere! (—)

Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige: gibt es ein n > ng,

8

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige: fur alle pos. Konst. ¢ und ng gibt es ein n > ny,
so dass|f(n) > c - n.

8

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
Olg) =< f:N=>R so dass fiir alle n > ng gilt:

f(n) < c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Behaupt.: f ¢ O(n); m.a.W. f wéchst schneller als linear.

Beweis. Zeige: fur alle pos. Konst. ¢ und ng gibt es ein n > ny,
so dass|f(n) > c - n.

Also: bestimme n in Abh. von ¢ und ng, so dass
n>ny und f(n)=2n*"+4n—-20 > c-n

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n>+4n—-20 > c-n.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n>+4n—-20 > c-n.

Problem: Die, —20" stort.

Fortsetzung des Beweises f ¢ O(n)
Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n>+4n—-20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > 5, dann . ..

Fortsetzung des Beweises f ¢ O(n)
Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n>+4n—-20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.

Fortsetzung des Beweises f ¢ O(n)
Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n? > cn, dann

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.

0

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.

0

n>c/2

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)

n>c/2

l

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)

n>c/2

l

Wie war's mit n=c¢ ?

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
)
Wie war's mit n=c¢ ?
Gut, aber ...

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
)
Wie war's mit n=c¢ ?
Gut, aber ...

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.
Problem: Die ,, —20" stort.

Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
f
Wie war's mit n=c¢c ?

Gut, aber wir missen sicherstellen,
dass auch n>5 und n > ng gilt.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
)
Wie war's mit n=c¢ ?

Gut, aber wir missen sicherstellen,
dass auch n>5 und n > ng gilt.

Also nehmen wir n =

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
)
Wie war's mit n=c¢ ?

Gut, aber wir missen sicherstellen,
dass auch n>5 und n > ng gilt.

Also nehmen wir n = [max{c, 5, np}]|.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort.
Aber wenn n > b, dann gilt 4n— 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
)
Wie war's mit n=c¢ ?

Gut, aber wir missen sicherstellen,
dass auch n>5 und n > ng gilt.

Also nehmen wir n = [max{c, 5, np}]|.
Fiir dieses n gilt n> nyg und f(n) > cn.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort. pu
Aber wenn n > b, dann gilt 4n — 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
f
Wie war's mit n=c¢ ?

Gut, aber wir miussen sicherstellen,
dass auch n>5 und n > ng gilt.

Also nehmen wir n = [max{c,5, ng}]|.
Fiir dieses n gilt n> nyg und f(n) > cn.

Fortsetzung des Beweises f ¢ O(n)

Bestimme n in Abh. von ¢ und ng, so dass n > ng und
f(n)=2n?>+4n 20 > c-n.

Problem: Die, —20" stort. pu
Aber wenn n > b, dann gilt 4n — 20 > 0.
D.h. wenn n>5 und 2n° > cn, dann f(n) > cn.
)
n>c/2
f
Wie war's mit n=c¢ ?

Gut, aber wir miussen sicherstellen,
dass auch n>5 und n > ng gilt.

Also nehmen wir n = [max{c,5, ng}]|.
Fiir dieses n gilt n > ng und f(n) > cn. Also gilt f & O(n).

10

Ein Klassifikationsschema fiir Funktionen (I)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Oh von g*

es gibt positive Konstanten ¢ und ng,
O(g)=¢f:N—=R so dass fiir alle n > ng gilt:
f(n)<c-g(n)

die Klasse der Fkt., die hochstens so schnell wachsen wie g.

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.
Sei g: N — R eine Funktion. Dann ist , GroB-Omega von g*“

2(g) =

f:N—R

es gibt positive Konstanten ¢ und ny,
so dass fiir alle n > ng gilt:

f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ O(n), fec O(n?)

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ O(n), feO(n?), feo(n

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.
Sei g: N — R eine Funktion. Dann ist , GroB-Omega von g*“

2(g) =

f:N—R

es gibt positive Konstanten ¢ und ny,
so dass fiir alle n > ng gilt:

f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
f ¢ O(n), feO(n?), feo(n

Bewiesen:

Entsprechend:

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.
Sei g: N — R eine Funktion. Dann ist , GroB-Omega von g*“

2(g) =

f:N—R

es gibt positive Konstanten ¢ und ny,
so dass fiir alle n > ng gilt:

f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
f ¢ O(n), feO(n?), feo(n
Entsprechend: f € 2(n)

Bewiesen:

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ O(n), feO(n?), feo(n
Entsprechend: f € 2(n), f € 2(n?)

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ O(n), feO(n?), feo(n
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n?)

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ 0(n), feO0(n?), feOo(n)
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n°)

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ 0(n), feO0(n?), feOo(n)
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n°)

Zusammen:

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,,GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ 0(n), feO0(n?), feOo(n)
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n°)

Zusammen: f € O(n?)

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ 0(n), feO0(n?), feOo(n)
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n°)

Zusammen: f € O(n?)
d.h. es gibt pos. Konst. c¢1, ¢, ng, so dass fiir alle n > nqg gilt:

11

Ein Klassifikationsschema fiir Funktionen (1)

Definition.

Sei g: N — R eine Funktion. Dann ist ,, GroB-Omega von g"
es gibt positive Konstanten ¢ und ny,
0g)=<¢f:N—=>R so dass fiir alle n > nq gilt:
f(n)=c-g(n)

die Klasse der Fkt., die mindestens so schnell wachsen wie g.

Beispiel. f(n) =2n°+4n— 20
Bewiesen: f ¢ 0(n), feO0(n?), feOo(n)
Entsprechend: f € 2(n), f € 2(n?), f & Q2(n°)

Zusammen: f € O(n?)
d.h. es gibt pos. Konst. c¢1, ¢, ng, so dass fiir alle n > nqg gilt:
c1-n* < f(n)<c-n?

11

Das Klassifikationsschema — intuitiv

f € O(n?) bedeutet

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
f e 2(n°)

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
f e 2(n°) mindestens

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
f e 2(n°) mindestens

f € O(n?)

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
f e 2(n°) mindestens

f € O(n?)

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
fe Q(nz) mindestens

fe O(n

f e o(n2)*>

quadratisch.

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens quadratisch.
fe Q(nz) mindestens
f e O(n

f o(#)* echt langsamer als

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens
f e 2(n°) mindestens

f € O(n?)

quadratisch.

f € o(n?) m echt langsamer als
f € w(n?)

12

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens quadratisch.
f e 2(n°) mindestens
f € O(n?)

f € o(n?) m echt langsamer als
f € w(n?) echt schneller als

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens quadratisch.
f e 2(n°) mindestens
f € O(n?)

f € o(n?) m echt langsamer als
f € w(n?) echt schneller als

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens quadratisch.
f e 2(n°) mindestens

f € O(n?)

f € o(n?) m echt langsamer als

f € w(n?) echt schneller als

Ubung.

Gegeben folgende Funktionen N - R mit n— .. .:

n?, log, n, \/nlog2 n, 1,017 nploss4 log,(n - 2"), 4logs

12

Das Klassifikationsschema — intuitiv

f € O(n*) bedeutet f wichst hochstens quadratisch.
f e 2(n°) mindestens

f € O(n?)

f € o(n?) m echt langsamer als

f € w(n?) echt schneller als

Ubung.

Gegeben folgende Funktionen N - R mit n— .. .:

n?, log, n, \/nlog2 n, 1,017 nploss4 log,(n - 2"), 4logs

Sortieren Sie nach Geschwindigkeit des asymptotischen Wachstums,
also so, dass danach gilt: O(...) C O(...)C--- C O(...).

	Titel
	Recap
	Laufzeit analysieren: InsertionSort
	Laufzeit von MergeSort
	Vergleich InsertionSort vs. MergeSort
	Ein Klassifikationsschema für Funktionen (I)
	Ein Klassifikationsschema für Funktionen (I)
	Fortsetzung des Beweises
	Ein Klassifikationsschema für Funktionen (I)
	Ein Klassifikationsschema für Funktionen (II)
	Das Klassifikationsschema -- \em intuitiv

