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f € O(n*) bedeutet f wichst hochstens quadratisch.
f e 2(n°) mindestens

f € O(n?)

f € o(n?) m echt langsamer als

f € w(n?) echt schneller als

Ubung.

Gegeben folgende Funktionen N - R mit n— .. .:

n?, log, n, \/nlog2 n, 1,017 nploss4 log,(n - 2"), 4logs

Sortieren Sie nach Geschwindigkeit des asymptotischen Wachstums,
also so, dass danach gilt: O(...) C O(...)C--- C O(...).
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