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Sortieren mit anderen Mitteln
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Teile und herrsche

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Defaultwerte

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Defaultwerte –
Dadurch wird die Funktion

MergeSort(A) ≡
MergeSort(A, 1, A.length)

definiert.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

} teile

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

} teile

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

}
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”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[ ] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

To do!

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]
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Kombiniere
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
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Kombiniere

Merge(int[ ] A, int `, int m, int r)

A

` m r
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

` m r
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

for i = 1 to n1 do
L[i ] = A[(`−1)+ i ]

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

for i = 1 to n1 do
L[i ] = A[(`−1)+ i ]

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

Stopper (engl. sentinel)
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i
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Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

Schreiben Sie den Rest der
Routine auf ein Stück Papier!
Benutzen Sie dazu L und R.

Sie haben 5 Minuten.

Aufgabe:



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j



3

Kombiniere

Merge(int[ ] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r ]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i ] ≤ R[j ] then

A[k] = L[i ]

i = i + 1
else

A[k] = R[j ]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j

Aber. . . stimmt das denn alles???



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

1 105 6



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 53



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

3



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

1

8

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3
1

8
2

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3
1

8
2

3

2



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

03 74
1 5

3 4
1 3

3
1 2

3
1

8
2

3

3

2

3

3

3



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83

3

2

3 8

3 8

3 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

2

3 8

3 8

3 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

3 8

3 8

3 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

3 8

3 8

3 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

4

3

3

3 4

3 4



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3 4 8

3 4 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0

3

4 8

4 80



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3

3

8

80



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4

3

0



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7

3

0 7



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

0 7 8

9



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8 1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

91

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

61

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

91

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2

1

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

21

91



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5

1

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

61

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 1

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 5



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

6

6

6

9

91 2 1

91

3 4 5 6 7



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe

Wurzel:
erster Aufruf



4

MergeSort – ein Beispiel

MergeSort(int[ ] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe

Wurzel:
erster Aufruf

Blätter: einzelne Feldelemente



5

Korrektheit von Merge
Merge(int[ ] A, int `, int m, int r)

n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r ]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i ] ≤ R[j] then
A[k] = L[i ]
i = i + 1

else
A[k] = R[j]
j = j + 1
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erhöhe i L[i ] ist kleinstes noch nicht kopiertes Elem. in L.
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– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

// Fall (b)

(Fall (b) symmetrisch.)

Merge(int[ ] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r ]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i ] ≤ R[j] then
A[k] = L[i ]
i = i + 1

else
A[k] = R[j]
j = j + 1



6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `
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⇒ A[`..k − 1] = A[`..r ] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3

Merge(int[ ] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r ]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i ] ≤ R[j] then
A[k] = L[i ]
i = i + 1

else
A[k] = R[j]
j = j + 1



7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `
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⇒ A[`..k − 1] = A[`..r ] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3

Merge(int[ ] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r ]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i ] ≤ R[j] then
A[k] = L[i ]
i = i + 1

else
A[k] = R[j]
j = j + 1



7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `
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
für Felder d. Länge n.

�

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

MergeSort(A, `, r)
ist korrekt., d.h. MS
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Übersicht

Techniken für Korrektheitsbeweise
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