Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2022 /23
2. Vorlesung

Sortieren mit anderen Mitteln

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Teile und herrsche

Teile und herrsche

;7* ®
—/ &

LA 0% o)
'L* * /
% o |
\ LW
g
Akl

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Teile und herrsche

;7* ®
7 _*
443 Phog) N
rLJP * /
23
\ *"t /
Akl

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile und herrsche

;7* ®
7 _*
443 Phog) N
rLJP * /
23
\ *"t /
Akl

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:
Telle. . .

Teile und herrsche

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Teile und herrsche

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Herrsche. . .

Teile und herrsche

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Herrsche. . . durch rekursives Losen von Teilinstanzen —

nur falls diese sehr klein sind, l0se sie direkt.

Teile und herrsche

7 ®
—/ &

LA 0% o)
'L* * /
% o |
\ LW
)
N

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Herrsche. . . durcth'jsen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

Teile und herrsche

;7* ®
—/ &

LA 0% o)
'L* * /
% o |
\ LW
g
Akl

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems. Aufruf einer Funktion durch sich selbst

Herrsche. . . durcth'jsen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

Teile und herrsche

;7* ®
—/ &

LA 0% o)
'L* * /
% o |
\ LW
g
Akl

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems. Aufruf einer Funktion durch sich selbst

Herrsche. . . durcth'jsen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

Kombiniere. . .

Teile und herrsche

7 ®
—/ &

LA 0% o)
'L* * /
% o |
\ LW
)
N

Idee:
o teile den Kartenstapel in zwei ungefahr gleichgroBBe Telile,

e sortiere die Teile (z.B. durch verschiedene Personen) und

o flige die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems. Aufruf einer Funktion durch sich selbst

Herrsche. . . durcth'jsen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

Kombiniere. .. die Teillosungen zu einer Losung der
urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int /=1, int r = A.length)

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

N

Defaultwerte

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

7
*\q‘q‘
_ i,;
PRrTHL X

NELY
\ *'j- /
\ A2 %)

Teile und herrsche

MergeSort(int[] A, int /=1, int r = A.length)

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

N

Defaultwerte —

Dadurch wird die Funktion
MergeSort(A) =
MergeSort(A, 1, A.length)

definiert.

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
Allgemein:
Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.
Herrsche. . . durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, |0se sie direkt.
Kombiniere. .. die Teillosungen zu einer Losung der

urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

m=|({+r)/2]

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

4
9 *
3

\

7 ®
2 [0 o)
**.[. /
% /
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=[({+r)/2] } teile

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Herrsche. . . durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, |0se sie direkt.

Kombiniere. .. die Teillosungen zu einer Losung der

urspriinglichen Instanz.

L H
,L’F
j =
\ LW

7 ®

—/ %

P £ —~
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

m=[({+r)/2] } teile
MergeSort(A, £, m)

MergeSort(A, m+ 1, r)

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

L H
,L’F
j =
\ LW

7 ®

—/ %

P £ —~
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

m=[({+r)/2] } teile
MergeSort(A, £, m)

MergeSort(A, m+ 1, r)

} herrsche

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

L H
,L’F
j =
\ LW

7 ®

—/ %

P £ —~
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

m=[({+r)/2] } teile
MergeSort(A, £, m)

MergeSort(A, m+ 1, r)
~ Merge(A, ¢, m, r)

} herrsche

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

L H
,L’ﬁ
j ey
\ LW

7 ®

—/ %

P £ —~
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=[({+r)/2] } teile
MergeSort(A, £, m) }
MergeSort(A, m+ 1, r) herrsche
~ Merge(A, ¢, m, r) } kombiniere
Allgemein:
Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.
Herrsche. . . durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.
Kombiniere. .. die Teillosungen zu einer Losung der

urspriinglichen Instanz.

L H
,L’F
j ey
\ | % o |

7 ®

—/ %

P £ —~
=

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=[({+r)/2] } teile
MergeSort(A, £, m) }
MergeSort(A, m+ 1, r) herrsche
 Merge(A, ¢, m, r) } kombiniere
Allgemein:
Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.
Herrsche. . . durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.
Kombiniere. .. die Teillosungen zu einer Losung der

urspriinglichen Instanz.

7 ®

—/ %

P £ —~
—

L H
2 o
j o
\ LW
W
A 1;'1‘0":/

(

Teile und herrsche

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

Allgemein:
Telle. . .

Herrsche. . .

Kombiniere. . .

m=[({+r)/2] } teile
MergeSort(A, £, m)

MergeSort(A, m+ 1, r)
- Merge(A, ¢, m,

} herrsche

r) } kombiniere

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Losen von Teilinstanzen —
nur falls diese sehr klein sind, l0se sie direkt.

die Teillosungen zu einer Losung der
urspriinglichen Instanz.

Kombiniere

Kombiniere

Kombiniere

Merge(int[] A, int £, int m, int r)

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1 nn=r—m

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1 nn=r—m

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..nm] = A[£..m]

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

Kombiniere
Merge(int[] A, int £, int m, int r)

m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]

L[1..n] = A[¢..m] |
\for I =1 to n; do
| L[i]=A[({—1)+1]

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..m] = Alm + 1"\for I =1 to n; do
| L[i] = Al(¢—1)+1]

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]
R[1..n] = Alm + 1..r]

R
L
n n»
N~
A
$ ¢ ¢
¢ m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]
R[1..n] = Alm + 1..r]
Llm +1]=R[m+1] =

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]
R[1..n] = Alm + 1..r]
Llm +1]=R[m+1] =

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]
R[1..m] = Alm + 1..r] Stopper (engl. sentinel)
Ly +1] = Rlns + 1] =& R

R o0

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 _ R o0
for k =7 to r do i
[o0
n n>
N —
A
¢ ¢ ¢
— g ¢ m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n2] = A[m + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 _ R o0
for k =/ to r do i
Aufgabe: [00

Schreiben Sie den Rest der . ,
Routine auf ein Stiick Papier! /1\/2\

Benutzen Sie dazu L und R.

Sie haben 5 Minuten. 7d 4 '
= /¢ m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
1= =1 . R 0
for k =/ to r do i
if L[/] < R[j] then | 55
Alk] = L[]
I=1+1 ni n-o
N~
A
| ¢ ¢
L K / m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
Llm +1] = R[m + 1] = oo y
i=j=1 _ R o0
for k =/ to r do i
if L[/] < R[j] then LI 55
Alk] = L[]
| = i—|— 1 n n»
—~—
A
: I B

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
Llm +1] = R[m + 1] = oo y
i=j=1 . R o0
for k =/ to r do i
if L[/] < R[j] then LI 55
Alk] = L[]
| = i—|— 1 n n»
—~—
A
: I B

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
Llm +1] = R[m + 1] = oo y
i=j=1 . R o0
for k =/ to r do i
if L[/] < R[j] then LI 55
Alk] = L[]
| = i—|— 1 n n»
—~—
A
bt }
= ¢ k m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
Llm +1] = R[m + 1] = oo y
i=j=1 _ R 0O
for k =/ to r do i
if L[/] < R[j] then LI 55
‘ A[k] = L[i]
| = i—|— 1 n n»
else N —
L A[k] = R[j] A
j=j+1 N A | }
= ¢ k m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 ALY, o0
for k =/ to r do i /
if L[/] < R[j] then LI 1700
‘ Alk] = L[i]
| = i—|— 1 n n»
else N —
L A[k] = R[j] A
=l tr }
= ¢ k m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 ALY, o0
for k =/ to r do i /
if L[/] < R[j] then LI 1700
‘ Alk] = L[i]
| = i—|— 1 n n»
else N —
L A[k] = R[j] A
=l tr }
= ¢ k m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n2] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 . R =
for k =/ to r do i /
if L[/] < R[j] then LI} [Too
‘ A[k] = L[]
I =1+1 ny n»
else —
L A[k] = R|/] A
J=J+1 ? ? ? ?
= ¢ k m r

Kombiniere

Merge(int[] A, int £, int m, int r)
m=m-—¥¢+1. nn=r—m
[= new int[l..n; + 1]; R = new int[1..ny + 1]
L[1..n] = A[¢..m]

R[1..n2] = Alm + 1..r] J
L[n +1] = R[m + 1] = o0 :
i=j=1 . R =
for k =/ to r do i /
if L[/] < R[j] then LI} [Too
‘ A[k] = L[]
I =1+1 ny n»
else —
L A[k] = R|/] A
J=J+1 ? ? ? ?
= ¢ k m r

Aber. .. stimmt das denn alles???

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then
m=|(L+r)/2] } teile

MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe

Merge(A, £, m, r) } kombiniere

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then
m=|(L+r)/2] } teile

MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe

Merge(A, £, m, r) } kombiniere

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

8/3/4(0/7/9/1/6|5/2

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652

81314/ 0|7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652

834|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652
834|O7

8134

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652
834|O7

e

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652
834|O7
e

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652
834|O7
e

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652

834|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652

834|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

83407|91652
834|O7
e
8|3

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

33407|91652
334|O7
e
3{3
8‘\

3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

38407|91652
384|O7

e

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

38407|91652
384|O7

e

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

38407|91652

384|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

38407|91652

384|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34407|91652

344|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7
3[al8] [0]7
Y
3[8] |4

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7
348 o|7
Y
3[8] |4

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7
348 o|7
AY;

3[8] 4] [0

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652
348|O7

3[al8] [0
AL
3[8] 4] [o] [7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

348|O7

3[al8] [0]7
AL A
3[8] 4] [o] [7
L

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

34807|91652

3[4[8]0]7
3[al8] [0]7
AL

318 4 0 /

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O4807|91652

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O3807|91652

0/3/8/0/|7

T

37al8] To]7
AL
3[8] [4] [o0] [7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O3407|91652

0/3/4 0|7

T~

37al8] Tol7
AL
3[8] 4] [0] |7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O3477|91652

013/14|7|7

AT

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

m = |(£+r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A, m ~+ 1, r) } herrSChe

. Merge(A, ¢, m,r) } kombiniere

O3478|91652

0/3/4/7|8

SN

37al8] Tol7
AL
3[8] 4] [0] |7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O3478|91652

034|738 9/1/6/5|2

=N

37al8] Tol7
AL
3[8] 4] [0] |7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

O3478|91652

034|738 916|52

=N

37al8] Tol7
AL
3[8] 4] [0] |7

Y

8|3

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
03 47 8|9 11652
0 34|78 91 6|5 2
314|8 07 9/1/6
1?2 3 4? ‘_5
38 4 0 I

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
03 47 8|9 11652
0 34|78 91 6|5 2
314|8 07 9 1|6
1? D 3 4? ‘_5
38 4 0 I

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
6347§F165§
0[34]7]8 516F§
37478 0|7 SIF
eanicaRo:

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombiniere
0 34|78 | 9111652
0 34|78 9116 | 52
314|8 07 911 | 6
1?2 3 4? ‘_5 6] 7
38 4 0 I 9 | 1

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|9 11652
0 34|78 91 6|5 2
1 3 4 5 6 8
314|8 07 9 1|6
1?2 3 4? ‘_5 6] 7
38 4 0 I 9|1

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|9 11652
0 34|78 91 6|5 2
1 3 4 5 6 8
314|8 07 9 1|6
1?2 3 4? ‘_5 6] 7
38 4 0 I 9|1

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|9 11652
0 34|78 91 6|5 2
1 3 4 5 6 8
314|8 07 9 1|6
1?2 3 4? ‘_5 6 7
38 4 0 I 91

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 11652
1 5 6 10
0 34|78 1]1 6|5 2
1 3 4 5 6 8
314|8 07 1 1|6
1?2 3 4? ‘_5 6 7
38 4 0 I 1]1
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 9652
0 34|78 1/9 6|5 2
1 3 4 5 6 8
314|8 07 1 9|6
1?2 3 4? ‘_5 6 7
38 4 0 I 1/9

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 31417 §|i 9/61|5 ;
03478 igakﬁ
37478 0|7 igﬁ
e EaRaoN:

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 31417 §|i 9/61|5 ;
03478 igakﬁ
37478 Jol7] [1]9]6
e EaEaol:

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 31417 §|i 9/61|5 ;
03478 igakﬁ
37478 Jol7] [1]9]6
ol

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 31417 §|i 6/6|5 ;
03478 ieakﬁ
37478 Jo|7] [1]6]6
S oRT

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 31417 §|i 695 ;
03478 iegkﬁ
37478 Jol7] [1]6]9
g o

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619/ 5|2
1 5 6 10
0 34|78 1|6 9|5 2
1 3 4 5 6 8 10
314|8 07 11619 512
1?2 3 4? ‘_5 6?7 8
38 4 0 I 1/9 6
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619/ 5|2
1 5 6 10
0 34|78 1|6 9|5 2
1 3 4 5 6 8 10
314|8 07 11619 5|2
1?2 3 4? ‘_5 6?7 8
38 4 0 I 1/9 6
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619/ 5|2
1 5 6 10
0 34|78 1|6 9|5 2
1 3 4 5 6 8 10
314|8 07 11619 5|2
1?2 3 4? ‘_5 6?7 8
38 4 0 I 1/9 6 5
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619/ 5|2
1 5 6 10
0 34|78 1|6 9|5 2
1 3 4 5 6 8 10
314|8 07 11619 5|2
1?2 3 4? ‘_5 6?7 8 10
38 4 0 I 1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619/ 5|2
1 5 6 10
0 34|78 1|6 9|5 2
1 3 4 5 6 8 10
314|8 07 11619 512
1?2 3 4? ‘_5 6?7 8 10
38 4 0 I 1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 619 2 2
1 5 6 10
0 34|78 1|6 9|2 2
1 3 4 5 6 8 10
314|8 07 11619 2|2
1?2 3 4? ‘_5 6?7 8 10
38 4 0 I 1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 61925
1 5 6 10
0 34|78 1|6 9|2 5
1 3 4 5 6 8 10
314|8 07 11619 215
1?2 3 4? ‘_5 6?7 8 10
38 4 0 I 1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
T F 10
03 47 8|1 61925
1 5 6 10
0 34|78 116/9(2|5
1 3 4 5 6 8 10
314|8 07 11619 215
1?2 3 4? ‘_5 6?7 8 10
38 4 0 I 1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEELE |
 Merge(A, £, m,r) } kombiniere
T T 10
03 47 8|1 61925
1 5 6 10
0 34|78 116/9(2|5
1 3 2\ 5 6? 8 10
314|8 07 11619 25
1?2 3 4? ‘_5 6?7 8 10
318 4 0 [1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche |
 Merge(A, £, m,r) } kombiniere
T T 10
0131417 8|1 2191215
1 5 6 10
0/3/4|718 1121925
1 3 2\ 5 6? 8‘\ 10
31418 0|7 1609 215
1?2 3 4? ‘_5 6?7 8 10
318 4 0 { 109 0 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEELE |
 Merge(A, £, m,r) } kombiniere
T T 10
03 47 8|1 215125
1 5 6 10
0 34|78 1125125
1 3 2\ 5 6? 8‘\ 10
314|8 07 11619 25
1?2 3 4? ‘_5 6?7 8 10
318 4 0 [1/9 6 5 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then
m=|(£+r)/2] ; teile

MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEELE |
 Merge(A, £, m,r) } kombiniere
T T 10
0/3/4|7 8|1 2/5/6/5
1 5 6 10
03473 112/5/65
1 3 2\ 5 6? 10
314|8 07 1169 215
1?2 3 4? ‘_5 6?7 8 10
318 4 0 [1/9 6 2
1 2 6 7

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 3147 §|i 25106 190
(1) 3147 é i 2516 3
T GRTaT
o n R g

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo Ay) herrsche
_____ | Merge(A.t,m.r) } kombiniere:
(1) 3147 é i 25106 190
(1) 3147 é i 2516 3
T GRTaT
o n R g

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo A m) herrsche
_____ | Merge(A f,m,r) } kombiniere
6 31417 g i 21516 190
oy e s 6]
el e aTs
S Y s 5

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
014738125609
1/ \ 6 10
0 34|78 K_} 21569
?3 418 ?O Z_ ?1 69 215
318 4 0 I 1/9 6 2

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
01273812569
1/ v\& —- 10
0 34|78 K_} 21569
?3 418 ?O Z_ ?1 69 215
318 4 0 I 1/9 6 2

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo A m) herrsche
_____ | Merge(A f,m,r) } kombiniere
(1) 11213 é i 215106 190
e a5 6ls
el e aTs
S Y s 5

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo A m) herrsche
_____ | Merge(A f,m,r) } kombiniere
(1) 11213 ZBL i 215106 190
IS a5 6ls
el e aTs
S Y s 5

MergeSort — ein Beispiel

MergeSort(int[] A, int £ = 1, int r = A.length)
- if £ < r then

m=|(£+r)/2] } teile
MergeSort(A, ¢, m
MergeSortgA, m +)1, r) } DEEEE |
 Merge(A, ¢, m, r) } kombiniere :
1 5 6 10
012,34/ 5/2/5/6/9
1/ N =\ 10
034,78 11215 9
1 3 2\ 5 6? 10
3148 07 11619 215
1? 2 3 4? ‘_5 6? 7 8 10
318 4 0 { 19 0 2
1 2 6 7

MergeSort — ein Beispiel

irMergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
 Merge(A, ¢, m, r) } kombiniere
01 2/3(4/5/65/6/9
/7 o —
1 S N\ 10
0 34|78 K_} 21569
?3 418 ?O Z_ ?1 69 215
318 4 0 I 1/9 6 5 2

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
01 2/3(4/5/67/6/9
1/ — 10
03473 K_} 219169
?3 418 ?O Z_ ?1 69 215
33 4 0 [1/9 6 5 2

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo A m) herrsche
_____ | Merge(Af,m,r) } kombiniere
011]2(374]576]7(89
T SR
el e aTs
S Y s 5

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|({+r)/2] } teile
Moo A m) herrsche
_____ | Merge(Af,m,r) } kombiniere
0T112(374]516]7]8 gj\
T R
el e aTs
S Y s 5

MergeSort — ein Beispiel

‘MergeSort(int[] A, int £ =1, int r = A.length)
- if £ < r then

m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } DEEEE |
. Merge(A, ¢, m, r) } kombinierei
/_9 12/3/4|/5/6/7/8 9&
0 41718 112/5/6/9
1 3 2\ 5 6? 10
314|8 07 1169 215
1?2 3 4? ‘_5 6?7 8 10
318 4 0 I 119 6 5 2

MergeSort — ein Beispiel

I\/IergeSort(mt[] A, int { =1, int r = A.length)
if £ < r then

m=|(L+r)/2] } teile

MergeSort(A, £, m)

MergeSort(A, m+ 1, r) } MEEEE |
. Merge(A, ¢, m, r) } kombiniere

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, ¢, m)
Mergesort(A’ m - 1’ I’) } herrsche
. Merge(A, ¢, m,r) } kombiniere
Rekursionsbaum
/ N von MergeSort:

o 4N LN LN

Hn Hn

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=({+r)/2,

MergeSort(A, £, m)
MergeSort(A, m+ 1, r)
Merge(A, ¢, m, r)

} teile
} herrsche

} kombiniere

p

Hn

N

Rekursionsbaum
von MergeSort:

Baum der

/

Hn

rekursiven
\ Aufrufe

AR

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche
. Merge(A, ¢, m, r) } kombiniere
Wurzel: Rekursionsbaum
erster Aufruf / \ von I\/IergeSort:

Baum der

7 N 7 N Auiafe
R A A A

Hn Hn

MergeSort — ein Beispiel

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m=|(L+r)/2] } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche
. Merge(A, ¢, m, r) } kombiniere
Wurzel: Rekursionsbaum
erster Aufruf / \ von I\/IergeSort:

/ N\ VAR N
N LN LN LN

I_L‘ I&_‘ l & Blatter: einzelne Feldelemente

. Merge(int|| A, int £, int m, int r
Korrektheit von Merge il(:,[,l_gﬂ; n — "o
lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]
R[1..ny] = Alm + 1..r]
Lln + 1] = R[n + 1] = o©
i=j=1
for k = /¢ to r do
if L[i] < R[j] then
Alk] = L[i]
i=i+1
else
AlK] = RIj]
j=i+1

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an
. nach Schema , F"! L[1..nm] = A[£..m]
R[1..ny] = Alm + 1..r]
Lln + 1] = R[n + 1] = o©
i=j=1
for k =/ to r do
if L[] < R[] then
Alk] = L[]
i=i+1
else
AlK] = RI]
j=j+1

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! L[1..m] = A[¢..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
i=j=1

for Kk = ¢ to r do

if L[i/] < R[j] then
Alk] = L[i]
I=1+1
else

Alk] = R[]
J=J+1

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! L[1..m] = A[¢..m]
_ _ _ R[1..ny] = Alm + 1..r]
0. Schleifeninvariante L[n + 1] = R[m + 1] = oo
i=j=1

forﬁ =/ to r do

if L[i/] < R[j] then
Alk] = L][i]
I=1i+1

else
Alk] = R[j]
j=j+1

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = ¢ to r do

kleinsten Elemente von LU R
sortiert.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! L[1..m] = A[¢..m]
e : R[1..n2] = Alm + 1..r]
0. Schleifeninvariante L[+ 1] = R[m + 1] = oo
o A[l..k — 1] enthilt die k — ¢ ==
kleinsten Elemente von LU R for k = £ to r do
. if L[/] < R[j] then
sortiert. ATK] = L[i]
e L[i] und R[j] sind die kleinsten . r=i+1
Elemente in L bzw. R, die noch AlK] = R[]
nicht in A kopiert wurden. =41

1. Initialisierung

e Da beim ersten Schleifendurchlauf kK = ¢ gilt,
enthalt A[¢..k — 1] = () die O kleinsten Elem. von LU R.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! L[1..m] = A[¢..m]
e : R[1..n2] = Alm + 1..r]
0. Schleifeninvariante L[+ 1] = R[m + 1] = oo
o A[l..k — 1] enthilt die k — ¢ ==
kleinsten Elemente von LU R for k = £ to r do
. if L[] < R[] then
sortiert. ATK] = L[i]
e L[i] und R[j] sind die kleinsten . r=i+1
Elemente in L bzw. R, die noch AlK] = R[]
nicht in A kopiert wurden. =41

1. Initialisierung

e Da beim ersten Schleifendurchlauf kK = ¢ gilt,

enthalt A[¢..k — 1] = () die O kleinsten Elem. von LU R.
e Dai=j =1,

sind L[/] und R[j] die kleinsten noch nicht kopierten Elem.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! L[1..m] = A[¢..m]
e : R[1..n2] = Alm + 1..r]
0. Schleifeninvariante L[+ 1] = R[m + 1] = oo
o A[l..k — 1] enthilt die k — ¢ ==
kleinsten Elemente von LU R for k = £ to r do
. if L[] < R[] then
sortiert. ATK] = L[i]
e L[i] und R[j] sind die kleinsten . r=i+1
Elemente in L bzw. R, die noch AlK] = R[]
nicht in A kopiert wurden. =41

1. Initialisierung

e Da beim ersten Schleifendurchlauf kK = ¢ gilt,

enthalt A[¢..k — 1] = () die O kleinsten Elem. von LU R.
e Dai=j =1,

sind L[/] und R[j] die kleinsten noch nicht kopierten Elem.

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung‘/

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

ALK = R[]
j=i+1

1. Initialisierung‘/ 2. Aufrechterhaltung

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierungz/ 2. Aufrechterhaltung

e Zwei Falle: (a) L[/] < R[j], (b) R[j] < L[{].

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierungz/ 2. Aufrechterhaltung

e Zwei Fille: (a) L[/] < R[j], (b) R[j] < L[i]. Betrachte Fall (a).

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L[]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
o Zwei Fille: za/) L[/l < R[j], (b) R[j] < L[i]]. Betrachte Fall (a).

e Nun gilt:]‘_

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L[]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).
o Nun gilt: — A[l..k] enthilt die kleinsten k — ¢ + 1 Elem. sortiert }_

o /weil Falle:

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©

=5 =1

for k =/ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

el

se

1. Initialisierungz/ 2. Aufrechterhaltung

o /weil Falle:

®if L[i] < R[j] then // Fall (a)

A[K] = L[i]
i=i+1

Alk] = Rl
j=j+1

a) L[i] < R[j], (b) R[j] < L[/]]. Betrachte Fall (a).

e Nun gilt: — A[l..k] enthélt die kleinsten k — ¢ + 1 Elem. sortiert }_
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*! LIL..m] = Alé..m]
_ _ _ R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i i=j=1
° ﬁ\l[ék lélenthalt die kL ER for J = { to r do
eln_sten emente von L U if L[]] < R[j] then // Fall (a)
sortiert. A[Kk] = L[i]
e L[i] und R[j] sind die kleinsten olse =t
Elemente in L bzw. R, die noch Alk] = R[]
nicht in A kopiert wurden. = +1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

o /weil Falle:

erhohe |

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*! LIL..m] = Alé..m]
_ _ _ R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i i=j=1
° ﬁ\l[ék lélenthalt die kL ER for J = { to r do
eln_sten emente von L U if L[]] < R[j] then // Fall (a)
sortiert. A[Kk] = L[i]
e L[i] und R[j] sind die kleinsten olse =t
Elemente in L bzw. R, die noch Alk] = R[]
nicht in A kopiert wurden. = +1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

o /weil Falle:

erhdhe /| =

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse r=r
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

o /weil Falle:

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in L.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*! LIL..m] = Alé..m]
_ _ _ R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i i=j=1
° ﬁ\l[ék lélenthalt die kL ER for J = (to r do
eln_sten emente von L U if L[] < R[j] then // Fall (a)
sortiert. A[Kk] = L[i]
e L[i] und R[j] sind die kleinsten olse J=lest
Elemente in L bzw. R, die noch Alk] = R[]
nicht in A kopiert wurden. = +1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhohe k

o /weil Falle:

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J — ¢ to r do
eln_sten emente von L U if L[] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

o /weil Falle:

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhohe k =

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*! LIL..m] = Alé..m]
_ _ _ R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i i=j=1
° ﬁ\l[ék lélenthalt die kL ER for J = (to r do
eln_sten emente von L U if L[] < R[j] then // Fall (a)
sortiert. A[Kk] = L[i]
e L[i] und R[j] sind die kleinsten olse J=lest
Elemente in L bzw. R, die noch Alk] = R[]
nicht in A kopiert wurden. = +1

1. Initialisierungz/ 2. Aufrechterhaltung

e Zwei Fille: (a) L[/] < R[j], (b) R[j] < L[i]. Betrachte Fall (a).

e Nun gilt: — A[¢..k]| enthélt die kleinsten k — ¢ + 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.
erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], (b) R[j] < L[i]. Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F*“! L[1..m] = A[£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[i] < R[j] then // Fall (a)
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], , (b) R[j] < L[i]. Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,F"! LIL.m] = Al..m]
R[1..n2] = A[m + 1..r]
0. Schleifeninvariante L[ny +1] = R[m2 + 1] = o0
B it i i=j=1
o ﬁ\l[ék lélenthalt die kL ER for k = to r do
eln_sten emente von L U if L[/] < R[j] then // Fall (2)
sortiert. Alk] = L]i]
e L[i] und R[j] sind die kleinsten olse = // Fall (b)
Elemente in L bzw. R, die noch Alk] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], , (b) R[j] < L[i]. Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,F"! LIL.m] = Al..m]
R[1..n2] = A[m + 1..r]
0. Schleifeninvariante L[ny +1] = R[m2 + 1] = o0
B it i i=j=1
o ﬁ\l[ék lélenthalt die kL ER for k = to r do
eln_sten emente von L U if L[/] < R[j] then // Fall (2)
sortiert. Alk] = L]i]
e L[i] und R[j] sind die kleinsten olse = // Fall (b)
Elemente in L bzw. R, die noch Alk] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[], , (b) R[j] < L[i]. Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,F"! LIL.m] = Al..m]
R[1..n2] = A[m + 1..r]
0. Schleifeninvariante L[ny +1] = R[m2 + 1] = o0
B it i i=j=1
o ﬁ\l[ék lélenthalt die kL ER for k = to r do
eln_sten emente von L U if L[/] < R[j] then // Fall (2)
sortiert. Alk] = L]i]
e L[i] und R[j] sind die kleinsten olse = // Fall (b)
Elemente in L bzw. R, die noch Alk] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[/l < R[], , (b) R[j] < L[i]. , Betrachte Fall (a).
e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,F"! LIL.m] = Al..m]
R[1..n2] = A[m + 1..r]
0. Schleifeninvariante L[ny +1] = R[m2 + 1] = o0
B it i i=j=1
o ﬁ\l[ék lélenthalt die kL ER for k = to r do
eln_sten emente von L U if L[/] < R[j] then // Fall (2)
sortiert. Alk] = L]i]
e L[i] und R[j] sind die kleinsten olse = // Fall (b)
Elemente in L bzw. R, die noch Alk] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung 2. Aufrechterhaltung
za/) L[] < R[/]‘/ (b) R[j] < Lﬁ. Betrachte Fall (a).

e Nun gilt: — A[{..k] enthélt die kleinsten k — ¢ 4+ 1 Elem. sortiert
— L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

erhdhe i = L[i] ist kleinstes noch nicht kopiertes Elem. in Li|:>
erhhe k = A[l..k — 1] enthalt die kleinsten k — ¢ Elem. sortiert

o /weil Falle:

INV!

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

ALK = R[]
j=i+1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= All..k — 1] = A[l..r] enthdlt die r — ¢ 4 1 kleinsten Elem.
von LU R sortiert.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= All..k — 1] = A[l..r] enthdlt die r — ¢ 4 1 kleinsten Elem.
von LU R sortiert.

) \LUR\:nl—I—n2—|—2

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= All..k — 1] = A[l..r] enthdlt die r — ¢ 4 1 kleinsten Elem.
von LU R sortiert.

e LUR|=m+n+2 =r—/¢+3

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= All..k — 1] = A[l..r] enthdlt die r — ¢ 4 1 kleinsten Elem.
von LU R sortiert.

o [LUR|=n+m+2 =F=0%3

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= All..k — 1] = A[l..r] enthdlt die r = £+ 1 kleinsten Elem.
von L U R sortiert.

o [LUR|=n+m+2 =F=0%3

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= Al[l..k — 1] = A[l..r] enthdlt die r = £ + 1 kleinsten Elem.
von LU R sortiert. /r2 Stopper

e LUR|=m+m+2 =p={l+3

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung 3. Terminierung
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= Al[l..k — 1] = A[l..r] enthdlt die r = £ + 1 kleinsten Elem.
von LU R sortiert. /r2 Stopper

o LUR|=n1+n+2 =r—¢+3, d.h. A[l..r] korrekt sort.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F"! LR[[ll--nll]Z%)\[[f--mll |
Lo = m-+1..r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
e Nach Abbruch der for-Schleife gilt k = r 4+ 1.

= Al[l..k — 1] = A[l..r] enthdlt die r = £ + 1 kleinsten Elem.
von LU R sortiert. /r2 Stopper

o LUR|=n1+n+2 =r—¢+3, d.h. A[l..r] korrekt sort.

Korrektheit von Merge

. nach Schema , F“!

0. Schleifeninvariante
o Al[l..k — 1] enthilt die k — /¢

Merge(int[] A, int £, int m, int r)

m=m-—¥~¢+1, nn=r—m

lege L[1..n; + 1] und R[1..ny + 1] an
L[1..n1] = A[¢..m]

R[1..ny] = Alm + 1..r]

Lln + 1] = R[n + 1] = o©
i=j=1

for k = /¢ to r do

kleinsten Elemente von LU R
sortiert.

e L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

®if L[] < R[j] then
AlK] = L[i]
f=i+1
else

Alk] = R[]
J=J+1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! LR[[ll--”l]]: /)\[[E--”ﬂl |
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

| aufzeit?

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! LR[[ll--m]]Z /)\[[f--nﬂl]
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==y
. ﬁ\l[ék lélenthalt die kL ER for J —[7to 7]do
eln_sten emente von L U if L[]] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

| aufzeit?

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! LR[[ll--m]]Z /)\[[f--nﬂl]
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==y
. ﬁ\l[ék lélenthalt die kL ER for J —[7to 7]do
eln_sten emente von L U if L[]] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Laufzeit? Merge macht genau Vergleiche.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema ,,F"! LR[[ll--m]]Z /)\[[f--nﬂl]
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==y
. ﬁ\l[ék lélenthalt die kL ER for J —[7to 7]do
eln_sten emente von L U if L[]] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Laufzeit? Merge macht genau r — £ + 1 Vergleiche.

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! LR[[ll--”l]]: /)\[[E--”ﬂl |
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Laufzeit? Merge macht genau r — £ + 1 Vergleiche.
Und MergeSort?

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! LR[[ll--”l]]: /)\[[E--”ﬂl |
.| = Alm . r
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Laufzeit? Merge macht genau r — £ + 1 Vergleiche.
Und MergeSort? Korrekt?

Merge(int[] A, int £, int m, int r)

Korrektheit von Merge ™ = Zeit mer—m
lege L[1..n; + 1] und R[1..ny + 1] an

. nach Schema , F“! L[1..m] = Al£..m]
R[1..ny] = Alm + 1..r]
0. Schleifeninvariante Llm + 1] = R + 1] = oo
B it i ==,
. ﬁ\l[ék lélenthalt die kL ER for J = ¢ to r do
eln_sten emente von L U if L[] < R[j] then
sortiert. Alk] = L]i]
e [[/] und RJ[j] sind die kleinsten olse =it
Elemente in L bzw. R, die noch AlK] = R[j]
nicht in A kopiert wurden. L =1

1. Initialisierung‘/ 2. Aufrechterhaltung‘/ 3. Terminierung‘/
Also ist Merge korrekt! g.e.d.

Laufzeit? Merge macht genau r — £ + 1 Vergleiche.

Und MergeSort? Korrekt? Effizient?

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then
m=|(L+r)/2] } teile

MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe

Merge(A, £, m, r) } kombiniere

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

Korrekt?

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik?

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):

n=1:

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):

n=1:

Dannist £ = r.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. ..
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):
n=1:

Dann ist £ = r.

= if-Block wird nicht betreten.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):
n=1:

Dannist £ = r.

= if-Block wird nicht betreten.
D.h. nichts passiert.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = [(£+7r)/2] } teile
MergeSort(A, £, m)
MergeSOrt(A’ m ~+ 1, r) } herrSChe
. Merge(A, ¢, m,r) } kombiniere

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .
Vollstandige Induktion iiber n=r — £+ 1 (= A[l..r].length):
n=1:

Dannist £ = r.

= if-Block wird nicht betreten.
D.h. nichts passiert.

OK, da A[{..¢] schon sortiert. &

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

n> 1:

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

n> 1:

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

n> 1:

Wegen n > 1list £ <r.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

. Merge(A, ¢, m,r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢4 0l 2) } teile
MergeSort(A, £, m)
MergeSort(A, m+ 1, r) } herrsche

| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].

—
|.A.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

i = (¢ 72| } teile
MergeSort(A, ¢, m)
MergeSort(A, m+ 1, r) } herrsche

| Merge(A, £, m.) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].

= MergeSort(A, £, m) ist korrekt und

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche

| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].
= MergeSort(A, £, m) ist korrekt und
 'MergeSort(A, m + 1, r) ist korrekt.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche

| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].
= MergeSort(A, £, m) ist korrekt und

MergeSort(A, m + 1, r) ist korrekt.
Schon bewiesen:

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)
if £ < r then

m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche

| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[l..m] und Alm + 1..r] sind kiirzer als A[{..r].
= MergeSort(A, £, m) ist korrekt und

MergeSort(A, m + 1, r) ist korrekt.
Schon bewiesen: Merge ist korrekt.

Korrektheit von Mergesort

MergeSort(int[] A, int £ =1, int r = A.length)

if / < r then
m = |(£+r)/2] } teile
MergeSort(A, £, m)
Mergesort(A’ m - 1’ I’) } herrsche
| Merge(A, £, m, r) } kombiniere

n> 1:

Wegen n > 1 ist £ < r. = if-Block wird betreten.
Nach Wahl von mgilt £ < m < r.

= A[f..m| und Alm + 1..r] sind kiirzer als All..r].

= MergeSort(A, £, m) ist korrekt und MergeSort(A, ¢, r)
MergeSort(A, m + 1, r) ist korrekt. p ist korrekt, d.h. MS

Schon bewiesen: Merge ist korrekt. fir Felder d. Lange n.

Ubersicht

Techniken fiir Korrektheitsbeweise

e iterative Algorithmen (a la InsertionSort, Factorial, Merge)

e rekursive Algorithmen (a la MergeSort)

10

Ubersicht

Techniken fiir Korrektheitsbeweise

e iterative Algorithmen (a la InsertionSort, Factorial, Merge)

per Schleifeninvariante (Schema , F*)

e rekursive Algorithmen (a la MergeSort)

10

Ubersicht

Techniken fiir Korrektheitsbeweise

e iterative Algorithmen (a la InsertionSort, Factorial, Merge)

per Schleifeninvariante (Schema , F*)

e rekursive Algorithmen (a la MergeSort)

per Induktion

10

	Titel
	Teile und herrsche
	Kombiniere
	MergeSort~-- ein Beispiel
	Korrektheit von Merge I
	Korrektheit von Merge II
	Korrektheit von Merge III
	Korrektheit von Merge IV
	Korrektheit von Mergesort
	Übersicht

