
1

Algorithmen und Datenstrukturen

Wintersemester 2022/23

2. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Sortieren mit anderen Mitteln

2

Teile und herrsche

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . . eine Instanz in kleinere Instanzen desselben
Problems.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Idee:
• teile den Kartenstapel in zwei ungefähr gleichgroße Teile,

• sortiere die Teile (z.B. durch verschiedene Personen) und

• füge die Teilstapel zu einem sortierten Stapel zusammen.

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

Aufruf einer Funktion durch sich selbst

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Defaultwerte

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Defaultwerte –
Dadurch wird die Funktion

MergeSort(A) ≡
MergeSort(A, 1, A.length)

definiert.

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

} teile

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

} teile

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

2

Teile und herrsche

Allgemein:

Teile. . .

Herrsche. . .

Kombiniere. . .

eine Instanz in kleinere Instanzen desselben
Problems.

durch rekursives Lösen von Teilinstanzen –
nur falls diese sehr klein sind, löse sie direkt.

die Teillösungen zu einer Lösung der
ursprünglichen Instanz.

MergeSort(int[] A, int ` = 1, int r = A.length)
if ` < r then

m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

}

herrsche

teile

} kombiniere

To do!

}

Zeichnungen aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]

3

Kombiniere

3

Kombiniere

Merge(int[] A, int `, int m, int r)

3

Kombiniere

Merge(int[] A, int `, int m, int r)

A

` m r

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

` m r

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

for i = 1 to n1 do
L[i] = A[(`−1)+ i]

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

for i = 1 to n1 do
L[i] = A[(`−1)+ i]

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

Stopper (engl. sentinel)

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

Schreiben Sie den Rest der
Routine auf ein Stück Papier!
Benutzen Sie dazu L und R.

Sie haben 5 Minuten.

Aufgabe:

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

k

i

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷

j

i

k

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j

3

Kombiniere

Merge(int[] A, int `, int m, int r)
n1 = m − `+ 1; n2 = r −m

L = new int[1..n1 + 1]; R = new int[1..n2 + 1]

L[1..n1] = A[`..m]

R[1..n2] = A[m + 1..r]

L[n1 + 1] = R[n2 + 1] =∞
i = j = 1

for k = ` to r do

if L[i] ≤ R[j] then

A[k] = L[i]

i = i + 1
else

A[k] = R[j]

j = j + 1

A

︷︸︸︷n1 n2

L

R ∞

∞

` m r

︷︸︸︷
i

k

j

Aber. . . stimmt das denn alles???

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

1 105 6

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 53

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

3

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

1

8

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3
1

8
2

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

08 3 74
1 5

8 3 4
1 3

8 3
1 2

3
1

8
2

3

2

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

03 74
1 5

3 4
1 3

3
1 2

3
1

8
2

3

3

2

3

3

3

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83

3

2

3 8

3 8

3 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

2

3 8

3 8

3 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

3 8

3 8

3 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

3

3 8

3 8

3 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 74
1 5

4
1 3

1 2

3
1

8
2

83 4
3

4

3

3

3 4

3 4

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

3

3 4 8

3 4 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0

3

4 8

4 80

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3

3

8

80

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

0 7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4

3

0

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

7
1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7

3

0 7

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

3

0 7 8

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

0 7 8

9

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8 1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

91

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

61

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

91

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2

1

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

51

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

21

91

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5

1

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

61

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 1

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 5

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

6

6

6

9

91 2 1

91

3 4 5 6 7

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

08 21 53 97 64
1 105 6

1 5

21 59 6
106

1 3

1 2

3
1

8
2

83 4
3

4 8 0 7
54

0
4

7
5

0 3 4 7 8

1 6
6 8

19
6 7

9
6

1
7

3

1

1

0 7 8

9

9

9

9

6
8

6

6

6

9

9

9

25
10

5 2
10

2

2

2 5

5

5

2

2

5

5 6

6

6

9

91 2 1

91

3 4 5 6 857

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe

Wurzel:
erster Aufruf

4

MergeSort – ein Beispiel

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

Rekursionsbaum
von MergeSort:

Baum der
rekursiven
Aufrufe

Wurzel:
erster Aufruf

Blätter: einzelne Feldelemente

5

Korrektheit von Merge
Merge(int[] A, int `, int m, int r)

n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

• Da beim ersten Schleifendurchlauf k = ` gilt,
enthält A[`..k − 1] = 〈〉 die 0 kleinsten Elem. von L ∪ R.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

• Da beim ersten Schleifendurchlauf k = ` gilt,
enthält A[`..k − 1] = 〈〉 die 0 kleinsten Elem. von L ∪ R.

• Da i = j = 1,
sind L[i] und R[j] die kleinsten noch nicht kopierten Elem.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

5

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

• Da beim ersten Schleifendurchlauf k = ` gilt,
enthält A[`..k − 1] = 〈〉 die 0 kleinsten Elem. von L ∪ R.

• Da i = j = 1,
sind L[i] und R[j] die kleinsten noch nicht kopierten Elem.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i].

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

// Fall (a)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt: – A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt: – A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i ⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k

⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

// Fall (b)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

// Fall (b)

(Fall (b) symmetrisch.)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

// Fall (b)

(Fall (b) symmetrisch.)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

6

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

• Zwei Fälle: (a) L[i] ≤ R[j], (b) R[j] < L[i]. Betrachte Fall (a).

• Nun gilt:

erhöhe i L[i] ist kleinstes noch nicht kopiertes Elem. in L.
erhöhe k A[`..k − 1] enthält die kleinsten k − ` Elem. sortiert

⇒
⇒

– A[`..k] enthält die kleinsten k − ` + 1 Elem. sortiert

– L[i + 1] ist kleinstes noch nicht kopiertes Elem. in L.

// Fall (a)

(dank INV)

⇒

IN
V
!

// Fall (b)

(Fall (b) symmetrisch.)

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3
+2 Stopper

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3
+2 Stopper

, d.h. A[`..r] korrekt sort.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

7

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

• Nach Abbruch der for-Schleife gilt k = r + 1.

⇒ A[`..k − 1] = A[`..r] enthält die r − ` + 1 kleinsten Elem.
von L ∪ R sortiert.

• |L ∪ R| = n1 + n2 + 2 = r − ` + 3
+2 Stopper

, d.h. A[`..r] korrekt sort.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Laufzeit?

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Laufzeit?

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Laufzeit? Merge macht genau r − ` + 1 Vergleiche.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Laufzeit? Merge macht genau r − ` + 1 Vergleiche.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Und MergeSort?

Laufzeit? Merge macht genau r − ` + 1 Vergleiche.

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Und MergeSort?

Laufzeit? Merge macht genau r − ` + 1 Vergleiche.

Korrekt?

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

8

Korrektheit von Merge

. . . nach Schema
”
F“!

0. Schleifeninvariante
• A[`..k − 1] enthält die k − `

kleinsten Elemente von L ∪ R
sortiert.

• L[i] und R[j] sind die kleinsten
Elemente in L bzw. R, die noch
nicht in A kopiert wurden.

1. Initialisierung 2. Aufrechterhaltung 3. Terminierung

Also ist Merge korrekt! q.e.d.

Und MergeSort?

Laufzeit? Merge macht genau r − ` + 1 Vergleiche.

Korrekt? Effizient?

Merge(int[] A, int `, int m, int r)
n1 = m − ` + 1; n2 = r − m
lege L[1..n1 + 1] und R[1..n2 + 1] an
L[1..n1] = A[`..m]
R[1..n2] = A[m + 1..r]
L[n1 + 1] = R[n2 + 1] =∞
i = j = 1
for k = ` to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt?

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik?

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

n = 1: Induktionsanfang

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

n = 1:

Dann ist ` = r .

Induktionsanfang

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

n = 1:

Dann ist ` = r .

⇒ if-Block wird nicht betreten.

Induktionsanfang

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

n = 1:

Dann ist ` = r .

⇒ if-Block wird nicht betreten.

D.h. nichts passiert.

Induktionsanfang

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Korrekt? Welche Beweistechnik? Hm, MergeSort ist rekursiv. . .

Vollständige Induktion über n = r − ` + 1 (= A[`..r].length):

n = 1:

Dann ist ` = r .

⇒ if-Block wird nicht betreten.

D.h. nichts passiert.

OK, da A[`..`] schon sortiert.

Induktionsanfang

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.
n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r .

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.
n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.
n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.
n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.
n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

MergeSort(A, `,m) ist korrekt und

n > 1: Induktionsschritt

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

MergeSort(A, `,m) ist korrekt und

n > 1: Induktionsschritt

MergeSort(A,m + 1, r) ist korrekt.

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

MergeSort(A, `,m) ist korrekt und

n > 1: Induktionsschritt

MergeSort(A,m + 1, r) ist korrekt.

Schon bewiesen:

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

MergeSort(A, `,m) ist korrekt und

n > 1: Induktionsschritt

MergeSort(A,m + 1, r) ist korrekt.

Schon bewiesen: Merge ist korrekt.

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

9

Korrektheit von Mergesort

MergeSort(int[] A, int ` = 1, int r = A.length)

}
herrsche

teile

} kombiniere

}

Wegen n > 1 ist ` < r . ⇒ if-Block wird betreten.
Nach Wahl von m gilt ` ≤ m < r .

⇒ A[`..m] und A[m + 1..r] sind kürzer als A[`..r].

Induktionsannahme: MergeSort korrekt für Felder d. Länge < n.

⇒
I.A.

MergeSort(A, `,m) ist korrekt und

n > 1: Induktionsschritt

MergeSort(A,m + 1, r) ist korrekt.

Schon bewiesen: Merge ist korrekt.


für Felder d. Länge n.

�

if ` < r then
m = b(` + r)/2c
MergeSort(A, `,m)
MergeSort(A,m + 1, r)
Merge(A, `,m, r)

MergeSort(A, `, r)
ist korrekt., d.h. MS

10

Übersicht

Techniken für Korrektheitsbeweise

• iterative Algorithmen (à la InsertionSort, Factorial, Merge)

• rekursive Algorithmen (à la MergeSort)

10

Übersicht

Techniken für Korrektheitsbeweise

• iterative Algorithmen (à la InsertionSort, Factorial, Merge)

• rekursive Algorithmen (à la MergeSort)

per Schleifeninvariante (Schema
”
F“)

10

Übersicht

Techniken für Korrektheitsbeweise

• iterative Algorithmen (à la InsertionSort, Factorial, Merge)

• rekursive Algorithmen (à la MergeSort)

per Schleifeninvariante (Schema
”
F“)

per Induktion

	Titel
	Teile und herrsche
	Kombiniere
	MergeSort~-- ein Beispiel
	Korrektheit von Merge I
	Korrektheit von Merge II
	Korrektheit von Merge III
	Korrektheit von Merge IV
	Korrektheit von Mergesort
	Übersicht

