Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2022 /23
1. Vorlesung

Kapitel 1: Sortieren

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Unerdnur> | Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”,
d.h. die Dauer ist unabhangig von n.

Noch |was: [OfL{1{0|OJ1}1{1]0{L{——|0]O|OJOJL{L{1{1]1]1

......‘ ojojo|jo |0 |06 |00 0 0

4

| X
V1o

Frage an alle Erstis

Wie sortieren Sie?

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten phacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand hélt@ eine sortierte Reih@aufrecht.

Invariante! — A

\

Korrektheit: am Ende sind alle Karten in der linken Hand —
und zwar sortiert!

Ein inkrementeller Algorithmus

// In Pseudocode ’/—Typ der Eingabe (hier ein Feld von .. .)

IncrementalAlg(array of ... A)
= < = Variable

N

Name des Alg. Eingabe

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)
berechne Losung fiir A[1] // Initialisierung

for j@?2 tod@.lengt>do // Schleifenkopf

Y Anzahl der Elemente des Feldes A
Zuweisungoperator — in manchen Sprachen j :=2
- — in manchen Biichern j 2
— In Java Jj =2

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen
berechne Losung fiir mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do
// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]

.. kommt noch ...

return-Losung // nicht nétig — das aufrufende Programm

hat Zugriff auf das sortierte Feld A

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int

berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert
for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein
key = AlJ]

1= —1

while / > 0 and A[/] > key do

Wie verschieben wir die Ein- AlJ]
trage groBer key nach rechts? A[l..j . 1] l key = 3

Va

B 2(41417(31118]6
1 i

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein

key = A[J]

=5 —1

while / > 0 and A[/] > key do

Ali + 1] = Al AL
=01 A[l..j—l]lkey:3

Ali 1] = key 2Tala[7[3]1]8]6

1 -

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

e Ist der Algorithmus korrekt?
e \Welche Laufzeit hat der Algorithmus?

e Wie viel Speicherplatz benétigt der Algorithmus?

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .

Was? |WANTED: Bedingung, die
a) an dieser Stelle immer erfiillt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema , F": Wir brauchen noch drei Zutaten. ..
1.) Initialisierung
Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier: klar, denn fiir j = 2 gilt:
A[l..j — 1] = A[L..1] ist unverandert und ,sortiert".

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: Eigentlich: Invariante fiir while-Schleife aufstellen

und beweisen!

Korrektheit beweisen

InsertionSort(int[] A) I‘{IGI’ enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
key = A[Jj]

e Beginn des Algorithmus —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: Beob.: Elemente werden so lange nach rechts
geschoben wie notig. key wird korrekt eingefiigt.

Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
/ v 4 ¥

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. = korrekt!

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <0 thenerror(...) Was passiert, wenn die Schleife gar
,.6221 nicht betreten wird?
J = Co .
Lf:f-j k=0 oder k=1. Also k! = 1.
J=J+1 Riickgabewert ist f = 1. = korrekt.
return f
Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,

wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier: klar, denn fiir j = 2 gilt:
f=2-1)=1=1

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhdht = f=(—1)! = INV

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.

Verletzte Schleifenbedingung: j > k, also j = k + 1.
Einsetzen von ,,j = k+ 1" in INV liefert f = k!

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
7 v v

Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

e Bringen Sie Fragen in die Ubung mit!
e Bleiben Sie von Anfang an am Ball!

e Schreiben Sie sich in die Vorlesung ein:
— wuecampus2.uni-wuerzburg.de
— wuestudy.zv.uni-wuerzburg.de
— chat.uni-wuerzburg.de/invite/TZFubc

https://wuecampus2.uni-wuerzburg.de/
https://wuestudy.zv.uni-wuerzburg.de/
https://chat.uni-wuerzburg.de/invite/TZFubc

	Titel
	Das Problem
	Frage an alle Erstis
	Eine Lösung
	Ein inkrementeller Algorithmus
	Fertig?
	Korrektheit beweisen
	Noch ein Beispiel: Fakultät berechnen
	Selbstkontrolle

