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Algorithmen und Datenstrukturen

Wintersemester 2022/23

1. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Kapitel 1: Sortieren



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Umordnung



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Umordnung



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Umordnung



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

AlgorithmusUmordnung



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

• Je zwei Zahlen lassen sich vergleichen.



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.



2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.



3

Frage an alle Erstis



3

Frage an alle Erstis

Wie sortieren Sie?



4

Eine Lösung

InsertionSort

Zeichnung aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]



4

Eine Lösung

InsertionSort
• Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

Zeichnung aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]



4

Eine Lösung

InsertionSort
• Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

• Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen
die Karten in der linken Hand.

Zeichnung aus:
”
Introduction to Algorithms“ [Cormen et al., MIT Press, 2. Aufl., 2001]



4

Eine Lösung

InsertionSort
• Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

• Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen
die Karten in der linken Hand.
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Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.
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Selbstkontrolle

• Bringen Sie Fragen in die Übung mit!

• Bleiben Sie von Anfang an am Ball!

• Schreiben Sie sich in die Vorlesung ein:

• Programmieren Sie InsertionSort in Java!

• Lesen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Übungsaufgaben wie möglich!

Zählen Sie Vergleiche
für verschiedene Eingaben.

– wuecampus2.uni-wuerzburg.de

– wuestudy.zv.uni-wuerzburg.de

– chat.uni-wuerzburg.de/invite/TZFubc

https://wuecampus2.uni-wuerzburg.de/
https://wuestudy.zv.uni-wuerzburg.de/
https://chat.uni-wuerzburg.de/invite/TZFubc
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