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e Rechte Hand nimmt Karten phacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
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\

Korrektheit: am Ende sind alle Karten in der linken Hand —
und zwar sortiert!
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InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P—i_1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung



Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.




Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier:




Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema , F": Wir brauchen noch drei Zutaten. ..
1.) Initialisierung
Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier:  klar, denn fiir j = 2 gilt:
A[l..j — 1] = A[L..1] ist unverandert und ,sortiert".



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P—i_1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:



Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:  Eigentlich: Invariante fiir while-Schleife aufstellen

und beweisen!



Korrektheit beweisen

InsertionSort(int[] A) I‘{IGI’ enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
key = A[Jj]

e Beginn des Algorithmus —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:  Beob.: Elemente werden so lange nach rechts
geschoben wie notig. key wird korrekt eingefiigt.



Korrektheit beweisen

InsertionSort(int[] A) I‘{IGI’ enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
key = A[Jj]

e Beginn des Algorithmus —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:  Beob.: Elemente werden so lange nach rechts
geschoben wie notig. key wird korrekt eingefiigt.



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:  Verletzte Schleifenbedingung ist j > A.length.



Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:  Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1.



Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:  Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv.



Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:  Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. = korrekt!



Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
/ v 4 ¥

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:  Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. = korrekt!



Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung  2.) Aufrechterhaltung  3.) Terminierung



Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultat .= k! .=



Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultit . =k!:=1-2-...-(k—1) -k



Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1

J =72

while j < k do

L

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1

J =72

while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if kK <0 then error(...)
f=1

J =72

while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if Kk <Othenerror(...)  Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?
J p—
while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <Othenerror(...)  \Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?

J = _ _ _

while j < k do Dannist j > k. Daj=2=
f=1~-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if k<Othenerror(...)  Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?

J = Co .

while j < k do Dannist j > k. Daj=2=
f=1-j k =0 oder k =1. Also k! =
Jj=Jj+1

return f

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if k <Othenerror(...)  \Was passiert, wenn die Schleife gar

,.f:21 nicht betreten wird?

J = L. :

while j < k do Dannist j > k. Daj=2=
f=1F-j k =0 oder k =1. Also k! = 1.
j=j+1

return f

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <0 thenerror(...)  Was passiert, wenn die Schleife gar
,.6221 nicht betreten wird?
J = L .
Lf:f-j k=0 oder k=1. Also k! = 1.
J=4+1 Riickgabewert ist f = 1.
return f
Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,

wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <0 thenerror(...)  Was passiert, wenn die Schleife gar
,.6221 nicht betreten wird?
J = Co .
Lf:f-j k=0 oder k=1. Also k! = 1.
J=J+1 Riickgabewert ist f = 1. = korrekt.
return f
Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,

wobel 0l =1, 11 =1, 21 =2 31 =6, ...



Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Schleifeninvariante:

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return




Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return




Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.
Hier:



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier:  klar, denn fiir j = 2 gilt:
f=2-1)=1=1



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier:  klar, denn fiir j = 2 gilt:
f=2-1)=1=1



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierung/ 2.) Aufrechterhaltung



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert =



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhoht =



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=(—1)!

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhoht = f =(j —1)!



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhdht = f=( —1)! = INV



Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhdht = f=( —1)! = INV



Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
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Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.
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e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

e Bringen Sie Fragen in die Ubung mit!
e Bleiben Sie von Anfang an am Ball!

e Schreiben Sie sich in die Vorlesung ein:
— wuecampus2.uni-wuerzburg.de
— wuestudy.zv.uni-wuerzburg.de
— chat.uni-wuerzburg.de/invite/TZFubc


https://wuecampus2.uni-wuerzburg.de/
https://wuestudy.zv.uni-wuerzburg.de/
https://chat.uni-wuerzburg.de/invite/TZFubc

	Titel
	Das Problem
	Frage an alle Erstis
	Eine Lösung
	Ein inkrementeller Algorithmus
	Fertig?
	Korrektheit beweisen
	Noch ein Beispiel: Fakultät berechnen
	Selbstkontrolle

