Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2022 /23
1. Vorlesung

Kapitel 1: Sortieren

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Das Problem

Gegeben: eine Folge A= (a;, as,..., a,) von n Zahlen

Das Problem

Gegeben: eine Folge A= (a;,as,...,a,) von n Zahlen

Gesucht: eine Permutation (a}, a5, ..., a,) von A,

=n

/ / /
sodassa; <a, <...<a,

Das Problem

Gegeben: eine Folge A= (a;,as,...,a,) von n Zahlen
Gesucht: eine Permutation (a7, a5, ..., a,) von A,

/ / /
sodass a; < a, <...<a,

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Gesucht: eine Permutation|(ay, @5, .-, a,)|von A,

/< /< < 7
sodass a; < a, <...<a, Ausgabe

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Crordpes®> l
Gesucht: eine Permutation|(ay, @5, .-, a,)|von A,

/< /< < 7
sodass a; < a, <...<a, Ausgabe

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
@ l Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,

/ < / <
sodass a; < a, <...<a, Ausgabe

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
@ l Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
@ l Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!
Wichtig:

Das Problem

Gegeben:

Gesucht:

Beachte:

Eingabe

eine Folge A=a1,a2,...,a,)| von n Zahlen

@ l Algorithmus

eine Permutation(aj, a5, ..., a,)| von A,
sodass a] < a, <...<a

Ausgabe

Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”
d.h. die Dauer ist unabhangig von n.

Das Problem

Gegeben:

Gesucht:

Beachte:

Noch was:

eine

Folge A=

eine Permutation

so dass a] < a5, <

<31, an, ...

,an)

l Algorithmus

von A,

Eingabe

von n Zahlen

Ausgabe

Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit",

d.h. die Dauer ist unabhangig von n.

0/1]1]0]0]1]|1

1

0

1

—

0

0

0

0

1

1

1

1

1

1

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
@ l Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”,
d.h. die Dauer ist unabhangig von n.

Noch|was: |0]1]1{0{0]1]1]1{0}|1|=——+(0]O]OJOf{1{1]1]1 |11

......‘ ojojojo o]0 |00 0O

4

| X
) M=

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Unerdnur> | Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”,
d.h. die Dauer ist unabhangig von n.

Noch|was: [OfL{1{0|O}1}1{1]|0{L{——|0]OJOJOJ1{1{1{1]1]1

......‘ ojojojo o]0 |00 0O

4

| X
D o

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Unerdnur> | Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”,
d.h. die Dauer ist unabhangig von n.

Noch |was: [OfL{1{0|OJ1}1{1]0{L{——|0]O|OJOJL{L{1{1]1]1

......‘ o000 |0 |06 |06 00 0

4

| X
V1o

Das Problem

Eingabe
Gegeben: eine Folge A=a1,a2,...,a,)| von n Zahlen
Unerdnur> | Algorithmus
Gesucht: eine Permutation|(ay, @, - - -, a’) von A,
/ / /
sodassa; <a, <...<a, Ausgabe

Beachte: = Computerinterne Zahlendarstellung hier unwichtig!

Wichtig: e Je zwel Zahlen lassen sich vergleichen.

e Ein Vergleich dauert , konstante Zeit”,
d.h. die Dauer ist unabhangig von n.

Noch |was: [OfL{1{0|OJ1}1{1]0{L{——|0]O|OJOJL{L{1{1]1]1

......‘ ojojo|jo |0 |06 |00 0 0

4

| X
V1o

Frage an alle Erstis

Frage an alle Erstis

Wie sortieren Sie?

Eine Losung

InsertionSort

Zeichnung aus: , Introduction to Algorithms" [Cormen et al., MIT Press, 2. Aufl., 2001]

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen

die Karten in der linken Hand.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen

die Karten in der linken Hand.

e Linke Hand halt immer eine sortierte Reihenfolge aufrecht.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten phacheinander)\auf und steckt
sie (von rechts kommend) amdie richtige/Position zwischen
die Karten in der linken Hand.

e Linke Hand halt immer eine sortierte Reihenfolge aufrecht.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten phacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand halt immer eine sortierte Reihenfolge aufrecht.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten hacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand hélt@ eine sortierte Reih@aufrecht.

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten hacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand hélt@ eine sortierte Reih@aufrecht.

Invariante! — A

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten phacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand hélt@ eine sortierte Reih@aufrecht.

Invariante! — A

\

Korrektheit

Eine Losung

InsertionSort

e Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

e Rechte Hand nimmt Karten phacheinander\auf und steckt
sie (von rechts kommend) am\die richtige/Position zwischen
die Karten in der linken Hand. inkrementeller Alg.

e Linke Hand hélt@ eine sortierte Reih@aufrecht.

Invariante! — A

\

Korrektheit: am Ende sind alle Karten in der linken Hand —
und zwar sortiert!

Ein inkrementeller Algorithmus

// In Pseudocode

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

\

Name des Alg.

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

\ S . J/
V

Name des Alg. Eingabe

Ein inkrementeller Algorithmus

// In Pseudocode ’/—Typ der Eingabe (hier ein Feld von .. .)
IncrementalAlg(array of ... A)

\ J N\

N

Name des Alg. Eingabe

Ein inkrementeller Algorithmus

// In Pseudocode ’/—Typ der Eingabe (hier ein Feld von .. .)

IncrementalAlg(array of ... A)
= < = Variable

N

Name des Alg. Eingabe

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)
berechne Losung fiir A[1]

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)
berechne Losung fiir A[1] // Initialisierung

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j@;Q to A.length do // Schleifenkopf

Zuweisungoperator

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j@;Q to A.length do // Schleifenkopf

Zuweisungoperator — in manchen Sprachen j :=2
- — in manchen Biichern j 2

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j@;Q to A.length do // Schleifenkopf

Zuweisungoperator — in manchen Sprachen j :=2
- — in manchen Biichern j 2
— In Java Jj =2

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)
berechne Losung fiir A[1] // Initialisierung

for j@?2 tod@.lengt>do // Schleifenkopf

Y Anzahl der Elemente des Feldes A
Zuweisungoperator — in manchen Sprachen j :=2
- — in manchen Biichern j 2
— In Java Jj =2

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen
berechne Losung fiir A[1..j] mithilfe der fiir A[1..j — 1]

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen
berechne Losung fiir mithilfe der fiir A[1..j — 1]

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen
berechne Losung fiir mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

// In Pseudocode
IncrementalAlg(array of ... A)

berechne Losung fiir A[1] // Initialisierung
for j = 2 to A.length do // Schleifenkopf

// Schleifenkorper; wird (A.length — 1)-mal durchlaufen
berechne Losung fiir mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

IncrementalAlg(array of ... A)

berechne Losung fiir A[1]
for j = 2 to A.length do

berechne Losung fiir A[1..j] mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

InsertionSort

tnerementalAlg(array of Int A) int
berechne Losung fiir A[1]
for j = 2 to A.length do

berechne Losung fiir A[1..j] mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do

berechne Losung fiir A[1..j] mithilfe der fiir A[1..j — 1]

return Losung

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do
// berechne Losung fiir A[1..j] mithilfe der fiir A[1..j — 1]

.. kommt noch ...

return Losung

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do
// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]

.. kommt noch ...

return-Losung // nicht nétig — das aufrufende Programm

hat Zugriff auf das sortierte Feld A

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do
// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein

Al
AlL.j — 1 l

Ve

214141713[1[38[6

1 J

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein
key = AlJ]

AlJ]
A[l.i— 1] l key =3

2141417131186
1 j

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein
key = AlJ]

1= —1

AlJ]
A[l.i— 1] l key =3

2141417311816
1 i

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int

berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert
for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein

key = AlJ]

1= —1

while / > 0 and A[/] > key do

AlJ]

B All..j — 1] l key =3

Ve

B 2141417311816
1 i

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int

berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert
for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein
key = AlJ]

1= —1

while / > 0 and A[/] > key do

Wie verschieben wir die Ein- AlJ]
trage groBer key nach rechts? A[l..j . 1] l key = 3

Va

B 2(41417(31118]6
1 i

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert
for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]

// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein

key = AlJ]

=5 —1

while / > 0 and A[/] > key do

Ali + 1] = A/ AlJ]

i=1i—1 A[l..j—l]lkey:3

Ve

B 2141417311816
1 i

Ein inkrementeller Algorithmus

InsertionSort

trerementatAlg(array of It A) int
berechnetosunrgfirAHR] // nix zu tun: A[1..1] ist sortiert

for j = 2 to A.length do

// berechne Losung fiir A[1..j] mithilfe der fiir A[l..j — 1]
// hier: fiige A[Jj] in die sortierte Folge A[l..j — 1] ein

key = A[J]

=5 —1

while / > 0 and A[/] > key do

Ali + 1] = Al AL
=01 A[l..j—l]lkey:3

Ali 1] = key 2Tala[7[3]1]8]6

1 -

Fertig?

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

e Ist der Algorithmus korrekt?

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

e Ist der Algorithmus korrekt?

e Welche Laufzeit hat der Algorithmus?

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

e Ist der Algorithmus korrekt?
e Welche Laufzeit hat der Algorithmus?

e Wie viel Speicherplatz benétigt der Algorithmus?

Fertig?
Nicht ganz. ..

Wir interessieren uns heute (und im Rest dieser Vorlesung) fiir
folgende zentrale Fragen:

e Ist der Algorithmus korrekt?
e \Welche Laufzeit hat der Algorithmus?

e Wie viel Speicherplatz benétigt der Algorithmus?

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do

key = A[j]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do

key = A[j]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do

key = A[j]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:
Wo?
Was?

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do

key = A[j]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .
Was?

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <
key = A[j]
i=j—1
while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .
Was?

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <
key = A[j]
i=j—1
while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .

Was?

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <
key = A[j]
i=j—1
while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .

Was? |WANTED: Bedingung, die
a) an dieser Stelle immer erfiillt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .

Was? |WANTED: Bedingung, die

a) an dieser Stelle immer erfiillt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

|dee der Schleifeninvariante:

Wo? am Beginn jeder Iteration der for-Schleife. . .

Was? |WANTED: Bedingung, die
a) an dieser Stelle immer erfiillt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P—i_1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P—i_1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier:

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema , F": Wir brauchen noch drei Zutaten. ..
1.) Initialisierung
Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier: klar, denn fiir j = 2 gilt:
A[l..j — 1] = A[L..1] ist unverandert und ,sortiert".

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P—i_1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:

Korrektheit beweisen

InsertionSort(int[] A)
for j = 2 to A.length do <

key = A[J]

i=j—1

while i > 0 and A[i/] > key do
L Ali + 1] = A[i]

=1 —1

| Al + 1] = key

Hier enthalt A[l..j — 1]
dieselben Elemente wie zu
Beginn des Algorithmus —
jedoch sortiert.

Schleifeninvariante

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: Eigentlich: Invariante fiir while-Schleife aufstellen

und beweisen!

Korrektheit beweisen

InsertionSort(int[] A) I‘{IGI’ enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
key = A[Jj]

e Beginn des Algorithmus —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: Beob.: Elemente werden so lange nach rechts
geschoben wie notig. key wird korrekt eingefiigt.

Korrektheit beweisen

InsertionSort(int[] A) I‘{IGI’ enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
key = A[Jj]

e Beginn des Algorithmus —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: Beob.: Elemente werden so lange nach rechts
geschoben wie notig. key wird korrekt eingefiigt.

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJlr—l] 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.
L Ali + 1] = AJi]

P i1 Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.

Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1.

Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv.

Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F“: Wir brauchen noch drei Zutaten. ..
1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. = korrekt!

Korrektheit beweisen

InsertionSort(int[] A) Hier enthalt A[l./ o 1]
for j = 2 to A.length do < dieselben Elemente wie zu
I’?iyj:_ﬁ[f] Beginn des Algorithmus —
while i > 0 and A[i] > key do jedoch sortiert.
L ,A[:Ij'r—l]f A Schleifeninvariante
| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
/ v 4 ¥

Zeige: Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. = korrekt!

Korrektheit beweisen

Hier enthalt A[l..j — 1]

InsertionSort(int[] A)

for j = 2 to A.length do < dieselben Elemente wie zu
hey = /;[j] Beginn des Algorithmus —
| =] —

while i > 0 and A[i] > key do ' |Jedoch sortiert.

L IA[:IJ,F—H 1: A Schleifeninvariante

| Al + 1] = key

Beweis nach Schema ,,F": Wir brauchen noch drei Zutaten. ..

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultat .= k! .=

Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultit . =k!:=1-2-...-(k—1) -k

Noch ein Beispiel: Fakultat berechnen

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1

J =72

while j < k do

L

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1

J =72

while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if kK <0 then error(...)
f=1

J =72

while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if Kk <Othenerror(...) Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?
J p—
while j < k do

f=f-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <Othenerror(...) \Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?

J = _ _ _

while j < k do Dannist j > k. Daj=2=
f=1~-j
J=J+1

return

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if k<Othenerror(...) Was passiert, wenn die Schleife gar

'.(:21 nicht betreten wird?

J = Co .

while j < k do Dannist j > k. Daj=2=
f=1-j k =0 oder k =1. Also k! =
Jj=Jj+1

return f

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?

if k <Othenerror(...) \Was passiert, wenn die Schleife gar

,.f:21 nicht betreten wird?

J = L. :

while j < k do Dannist j > k. Daj=2=
f=1F-j k =0 oder k =1. Also k! = 1.
j=j+1

return f

Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,
wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <0 thenerror(...) Was passiert, wenn die Schleife gar
,.6221 nicht betreten wird?
J = L .
Lf:f-j k=0 oder k=1. Also k! = 1.
J=4+1 Riickgabewert ist f = 1.
return f
Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,

wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Korrekt?
if k <0 thenerror(...) Was passiert, wenn die Schleife gar
,.6221 nicht betreten wird?
J = Co .
Lf:f-j k=0 oder k=1. Also k! = 1.
J=J+1 Riickgabewert ist f = 1. = korrekt.
return f
Zur Erinnerung: k Fakultit .= k!:=1-2-...-(k—1) -k,

wobel 0l =1, 11 =1, 21 =2 31 =6, ...

Noch ein Beispiel: Fakultat berechnen

Factorial(int k) Schleifeninvariante:

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.
Hier:

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier: klar, denn fiir j = 2 gilt:
f=2-1)=1=1

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl

Zeige: Invariante ist beim 1. Schleifendurchlauf erfiillt.

Hier: klar, denn fiir j = 2 gilt:
f=2-1)=1=1

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierung/ 2.) Aufrechterhaltung

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier:

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert =

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)

if kK <0 then error(...)
f=1
J =72
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhoht =

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=(—1)!

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhoht = f =(j —1)!

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhdht = f=(—1)! = INV

Noch ein Beispiel: Fakultat berechnen

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

Schleifeninvariante:
f=({U—1)

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/

Zeige: Wenn die Invariante vor dem j. Schleifendurchlauf
erfiillt ist, dann auch vor dem j + 1.

Hier: ~ Vor dem j. Durchlauf gilt INV, d.h. f = (j — 1)!
Dann wird f mit j multipliziert = f =
Dann wird j um 1 erhdht = f=(—1)! = INV

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierung/ 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier:

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.
Verletzte Schleifenbedingung: j > k

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.
Verletzte Schleifenbedingung: j > k, also j = k + 1.

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.
Verletzte Schleifenbedingung: j > k, also j = k + 1.
Einsetzen von ,,j = k+ 1" in INV liefert

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) lnitia/isierungl 2.) Aufrechterha/tun‘g/ 3.) Terminierung

Zeige: Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Hier: Algo terminiert, da j in jedem Durchlauf erhoht wird.

Verletzte Schleifenbedingung: j > k, also j = k + 1.
Einsetzen von ,,j = k+ 1" in INV liefert f = k!

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
7 v v

Noch ein Beispiel: Fakultat berechnen

Schleifeninvariante:
f=({U—1)

Factorial(int k)
if kK <0 then error(...)
f=1
j=2
while j < k do

f=f-j
J=J+1

return

1.) Initialisierung, 2.) Aufrechterhaltung, 3.) Terminierung
7 v v

Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

e Bringen Sie Fragen in die Ubung mit!

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

e Bringen Sie Fragen in die Ubung mit!

e Bleiben Sie von Anfang an am Ball!

Selbstkontrolle

e Programmieren Sie InsertionSort in Java!

Zahlen Sie Vergleiche
flir verschiedene Eingaben.

o [esen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Ubungsaufgaben wie méglich!

e Bringen Sie Fragen in die Ubung mit!
e Bleiben Sie von Anfang an am Ball!

e Schreiben Sie sich in die Vorlesung ein:
— wuecampus2.uni-wuerzburg.de
— wuestudy.zv.uni-wuerzburg.de
— chat.uni-wuerzburg.de/invite/TZFubc

https://wuecampus2.uni-wuerzburg.de/
https://wuestudy.zv.uni-wuerzburg.de/
https://chat.uni-wuerzburg.de/invite/TZFubc

	Titel
	Das Problem
	Frage an alle Erstis
	Eine Lösung
	Ein inkrementeller Algorithmus
	Fertig?
	Korrektheit beweisen
	Noch ein Beispiel: Fakultät berechnen
	Selbstkontrolle

