Statistikvorkurs

Tag1: Grundlagen zur Statistik

Bedeutung der Statistik in der Biologie

- klinische Studien zur Wirksamkeit von Medikamenten
- gesundheitliche Wirksamkeit bestimmter Nahrungsmittel
- Vermehrung und Ausbreitung verschiedener Bakterien und Viren
- Verhaltensweisen von Tieren
- Einflüsse bestimmter Faktoren auf die Umweltökologie
- → Insgesamt besteht die Biologie aus einer Vielzahl komplexer Systeme die sich statistisch beschreiben lassen

Grundbegriffe der Statistik

- n: Umfang der Stichproben
- $x_1, x_2, ..., x_n$: gemessene Werte (Ausprägung des untersuchten Merkmals)

- H₁, H₂, ...: absolute Häufigkeiten
- h₁, h₂, ...: relative Häufigkeit

Zentralmaße

Arithmetische Mittel

$$\tilde{\chi} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne den Mittelwert

Zentralmaße

Median

$$\tilde{x} = x_{(n+1)/2}$$
 für ungerades n

$$\tilde{x} = \frac{1}{2} (x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$$
 für gerades n

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne den Median

Zentralmaße

Modus

Häufigster Wert/Häufigste Werte

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne den Modus

Streumaße

Varianz

$$V(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne die Varianz

Streumaße

Standardabweichung

$$s = \sqrt{V(x)}$$

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne die Standardabweichung

Streumaße

Standardfehler

$$SE = \frac{s}{\sqrt{n}}$$

Zehn Frauen werden nach ihrer Körpergröße (KG. in cm) befragt

Nr.	1	2	3	4	5	6	7	8	9	10
KG.	168	170	161	168	162	172	164	167	170	158

Berechne den Standardfehler