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Lecture 11:
Beyond Planarity

Drawing Graphs with Crossings

Part I:
Graph Classes and Drawing Styles

Alexander Wolff

Visualization of Graphs

Partially based on slides by Fabrizio Montecchini, Michalis Bekos, and Walter Didimo.



2 - 1

Planar Graphs

Planar graphs admit drawings in the plane
without crossings.



2 - 2

Planar Graphs

Planar graphs admit drawings in the plane
without crossings.



2 - 3

Planar Graphs

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.



2 - 4

Planar Graphs

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Planarity is recognizable in linear time.



2 - 5

Planar Graphs

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Different drawing styles...

Planarity is recognizable in linear time.



2 - 6

Planar Graphs

1 2

3

4 5

6

straight-line drawing

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Different drawing styles...

Planarity is recognizable in linear time.



2 - 7

Planar Graphs

1 2

3

4 5

6

straight-line drawing

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Different drawing styles...

orthogonal drawing

1

2

3

4 5

6

Planarity is recognizable in linear time.



2 - 8

Planar Graphs

1 2

3

4 5

6

1 23

4 5

6

grid drawing with
bends & 3 slopes

straight-line drawing

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Different drawing styles...

orthogonal drawing

1

2

3

4 5

6

Planarity is recognizable in linear time.



2 - 9

Planar Graphs
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Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with a plane
embedding = rotation system.

Different drawing styles...

orthogonal drawing
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And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing hierarchical drawing

Maybe not all crossings are equally bad?

orthogonal layouts
(via planarization)

block crossings

1
2
3
4
5
6
7

Which crossings feel worse?
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Eye-Tracking Experiment

eye movements smooth and fast

(back-and-forth movements at crossing points)

[Eades, Hong & Huang 2008]

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

Results: no crossings

large crossing angles eye movements smooth but slightly slower

small crossing angles eye movements no longer smooth and very slow
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right-angle crossing

topological graphs geometric graphs
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X X
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Some Beyond-Planar Graph Classes

k-planar (k = 1) k-quasi-planar (k = 3) fan-planar RAC

X X X X

fan-crossing-free skewness-k (k = 2)

We define aesthetics for edge crossings and
avoid/minimize “bad” crossing configurations.

There are many more beyond-planar graph classes. . .
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Some Beyond-Planar Graph Classes

k-planar (k = 1) k-quasi-planar (k = 3) fan-planar RAC

X X X X

fan-crossing-free skewness-k (k = 2)

We define aesthetics for edge crossings and
avoid/minimize “bad” crossing configurations.

There are many more beyond-planar graph classes. . .

IC (independent crossing)

X X X
combinations, . . .

right-angle crossing
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Drawing Styles for Crossings

orthogonal slanted orthogonalRAC

X

right-angle crossing
block / bundled crossings

circular layout: 28 invididual
vs. 12 bundle crossings

cased crossings symmetric partial
edge drawing

1/4-SHPED
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rot.
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

GD beyond planarity: a taxonomy
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maximal
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system

many
families

NP-hard poly-time poly-time
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NP-hard

- RAC
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Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

GD beyond planarity: a taxonomy
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Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

Proof sketch.

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.



10 - 6

Density of 1-Planar Graphs

Proof sketch.

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

Grb

Theorem. [Ringel 1965, Pach & Tóth 1997]
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� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with
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Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Observe that each green edge joins two faces in Grb.
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Density of 1-Planar Graphs

Proof sketch.

⇒ m ≤ mrb +mg ≤ 6n− 12

⇒

mrb ≤ 3n− 6

mg ≤ 3n− 6

Observe that each green edge joins two faces in Grb.

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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⇒
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Observe that each green edge joins two faces in Grb.

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

Proof sketch.

⇒ m ≤ mrb +mg ≤ 6n− 12

⇒

mrb ≤ 3n− 6

mg ≤ 3n− 6

Observe that each green edge joins two faces in Grb.

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with

Planar structure:
2n− 4 edges

n− 2 faces

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

Proof sketch.

⇒ m ≤ mrb +mg ≤ 6n− 12

⇒

mrb ≤ 3n− 6

mg ≤ 3n− 6

Observe that each green edge joins two faces in Grb.

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with

Planar structure:
2n− 4 edges

n− 2 faces

Edges per face: 2 edges

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

Proof sketch.

⇒ m ≤ mrb +mg ≤ 6n− 12

⇒

mrb ≤ 3n− 6

mg ≤ 3n− 6

Observe that each green edge joins two faces in Grb.

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

� Let the red edges be those that do not cross.
� Each blue edge crosses a green edge.
� This yields a red-blue plane graph Grb with

� and a green plane graph Gg with

Planar structure:
2n− 4 edges

n− 2 faces

Edges per face: 2 edges

Total: 4n− 8 edges

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

n = 12,m = 40

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.
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Density of 1-Planar Graphs

n = 12,m = 40

A 1-planar graph with n vertices is called
optimal if it has exactly 4n− 8 edges.

Theorem. [Ringel 1965, Pach & Tóth 1997]
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A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.



11 - 4

Density of 1-Planar Graphs

Theorem. [Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices
and 45/17n−O(1) edges.

n = 12,m = 40

A 1-planar graph with n vertices is called
optimal if it has exactly 4n− 8 edges.

A 1-planar graph is called maximal if adding any
edge would result in a non-1-planar graph.

≈ 2.65n

Theorem. [Ringel 1965, Pach & Tóth 1997]
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[Pach & Tóth 1997]

[Didimo et al. 2011]

[Cheong et al. 2013]

[Dehkordi et al. 2013]
[Auer et al. 2016]

[Bekos et al. 2017]

[Agarwal et al. 1997]

[Ackerman 2015]

[Binucci et al. 2015]

[Bekos et al. 2018]

bipartite RAC
3n − 7

bipart. fan-planar
≤ 4n − 12

[Angelini et al. 2018]

≤ 3.5n − 7 3.5n± cbipart. 2-planar [Dehkordi et al. 2013]
[Auer et al. 2016]

outer fan-planar
3n − 5



13 - 10

GD Beyond Planarity: a Hierarchy

4-planar
6n − 12

3-planar
5.5n − 11 5.5n± c

[Pach & Tóth 1997]
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Crossing Ratios
Family Forbidden Configurations Lower Upper

k-planar An edge crossed more than k times Ω(n/k) O(k
√

kn)

k-quasi-planar k pairwise crossing edges Ω(n/k3) f(k)n2 log2 n

Fan-planar
Two independent edges crossing a third or two

adjacent edges crossing another edge from
different “side”

Ω(n) O(n2)

(k, l)-grid-free
Set of k edges such that each edge crosses each

edge from a set of l edges.
Ω
( n

kl(k + l)

)
g(k, l)n2

k-gap-planar
More than k crossings mapped to an edge in an

optimal mapping Ω(n/k3) O(k
√

kn)

Skewness-k Set of crossings not covered by at most k edges Ω(n/k) O(kn + k2)

k-apex Set of crossings not covered by at most k vertices Ω(n/k) O(k2n2 + k4)

Planarly connected
Two crossing edges that do not have two of their

endpoint connected by a crossing-free edge Ω(n2) O(n2)

k-fan-crossing-free An edge that crosses k adjacent edges Ω(n2/k3) O(k2n2)

Straight-line RAC Two edges crossing at an angle < π
2 Ω(n2) O(n2)

k, l = 2

k = 2

k = 3

k = 1

k = 1

k = 1

k = 2

Table from “Crossing Numbers of Beyond-Planar Graphs Revisited”
[van Beusekom, Parada & Speckmann 2021]
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Lecture 11:
Beyond Planarity

Drawing Graphs with Crossings

Part III:
Recognition

Alexander Wolff

Visualization of Graphs
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rot.
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

GD beyond planarity: a taxonomy
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Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]
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GD Beyond Planarity: a Taxonomy
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1-plan.

GD Beyond Planarity
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embedding
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- book emb.
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simult.
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- k-plan.

- book emb.
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Taken from: G. Liotta, Invited talk at SoCG 2017
“Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

GD beyond planarity: a taxonomy
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Lecture 11:
Beyond Planarity

Drawing Graphs with Crossings

Part IV:
RAC Drawings

Alexander Wolff

Visualization of Graphs
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GD beyond planarity: a taxonomy
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RAC Drawings With Enough Bends

X

Every graph admits a RAC drawing . . .
. . . if we use enough bends.

How many do we need at most in total or per edge?
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drawing where every edge has at most 3 bends.
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w.r.t. {z, w}

Let S ⊂ E(G′) s.t. no two
edges in S lie on the same face

. . . and their opposite vertices do
not have an edge in E(G′).

Add set T of edges
connecting

opposite vertices.

The resulting graph G is a kite-triangulation.

Proof.
Let G′ be the underlying plane trian-
gulation of G. Let G′′ = G′ − S.
Construct straight-line drawing of G′′.

u

vw

z
strictly convex face otherwise

z vu

w

Fill faces as follows:

Note: optimal 1-planar graphs ⊂ kite-triangulations.
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Lecture 11:
Beyond Planarity

Drawing Graphs with Crossings

Part V:
1-Planar 1-Bend RAC Drawings

Alexander Wolff

Visualization of Graphs
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1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G admits a 1-planar 1-bend RAC drawing.
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Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G admits a 1-planar 1-bend RAC drawing.

If a 1-planar embedding of G is given as part of the input,
such a drawing can be computed in linear time.
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1-Planar 1-Bend RAC Drawings

Observation.
In a triangulated 1-plane graph (not necessarily simple),
each pair of crossing edges of G forms a(n empty) kite,
except for at most one pair if their crossing point is on
the outer face of G.

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]
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1-Planar 1-Bend RAC Drawings

Observation.
In a triangulated 1-plane graph (not necessarily simple),
each pair of crossing edges of G forms a(n empty) kite,
except for at most one pair if their crossing point is on
the outer face of G.

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G admits a 1-planar 1-bend RAC drawing.

If a 1-planar embedding of G is given as part of the input,
such a drawing can be computed in linear time.

Theorem. [Chiba, Yamanouchi & Nishizeki 1984]
For every plane graph G with outer face Ck and every convex k-gon P ,
there exists a strictly convex planar straight-line drawing of G whose outer
face coincides with P . Such a drawing can be computed in linear time.
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Algorithm Outline

input

output

G+

G?

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding

may change)G
simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Outline

input

output

G+

G?

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding

may change)G
simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 1: Augmentation

G: simple 1-plane graph
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.

2. Remove those
multiple edges that
belong to G.

3. Remove one
(multiple) edge from
each face of degree
two (if any).
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.

2. Remove those
multiple edges that
belong to G.

3. Remove one
(multiple) edge from
each face of degree
two (if any).

4. Triangulate faces
of degree > 3 by
inserting a star
inside them.
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.

2. Remove those
multiple edges that
belong to G.

3. Remove one
(multiple) edge from
each face of degree
two (if any).

4. Triangulate faces
of degree > 3 by
inserting a star
inside them.
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.

2. Remove those
multiple edges that
belong to G.

3. Remove one
(multiple) edge from
each face of degree
two (if any).

4. Triangulate faces
of degree > 3 by
inserting a star
inside them.

G+: triangulated 1-plane
(multi-edges)
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Algorithm Outline

input

output

G+

G?

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding

may change)G
simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)
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G+

triangulated 1-plane
(multi-edges)

� triangular faces
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G+

triangulated 1-plane
(multi-edges)

� triangular faces

� multiple edges
never crossed

� only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

� triangular faces

� multiple edges
never crossed

� only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

� triangular faces

� multiple edges
never crossed

� only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G?

hierarchical
contraction of G+

G+
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Algoritm Step 2: Hierarchical Contractions

G?

hierarchical
contraction of G+

G+

simple 3-connected
triangulated

1-plane graph
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Algorithm Outline

input

output

G+

G?

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding

may change)G
simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure

remove crossing
edges
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

3-connected
plane graph
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

apply Chiba et al.

3-connected
plane graph
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

apply Chiba et al.

3-connected
plane graph

convex faces &
prescribed outer

face
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prescribed outer

face

reinsert
crossing
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3-connected
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face

reinsert
crossing
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

apply Chiba et al.

3-connected
plane graph

convex faces &
prescribed outer

face

reinsert
crossing

edges
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

apply Chiba et al.

3-connected
plane graph

convex faces &
prescribed outer

face

reinsert
crossing

edges

partial drawing
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure

remove
crossing edges
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Algorithm Step 3: Drawing Procedure

remove
crossing edges
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Algorithm Step 3: Drawing Procedure

apply Chiba et al.
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Algorithm Step 3: Drawing Procedure

reinsert
crossing edges
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure

remove
crossing edges
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Algorithm Step 3: Drawing Procedure

remove
crossing edges
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Algorithm Step 3: Drawing Procedure

apply Chiba et al.
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Algorithm Step 3: Drawing Procedure

reinsert
crossing edges
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure

Γ+: 1-bend 1-planar RAC drawing of G+
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Algorithm Outline

input

output

G+

G?

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding

may change)G
simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 4: Removal of Dummy Vertices
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Algorithm Step 4: Removal of Dummy Vertices

Γ: 1-bend 1-planar RAC drawing of G
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Algorithm Step 4: Removal of Dummy Vertices

G: simple 1-plane graph Γ: 1-bend 1-planar RAC drawing of G
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rot.
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

GD beyond planarity: a taxonomy
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- RAC

- circ. RAC
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simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

[Didimo, Liotta & Montecchiani, ACM Comput. Surv. 2019]
A Survey on Graph Drawing Beyond Planarity.

[Kobourov, Liotta & Montecchiani, Compu. Sci. Review 2017]
An Annotated Bibliography on 1-Planarity.

GD beyond planarity: a taxonomy
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