
1

Lecture 11:
The Crossing Lemma

and Its Applications

Part I:
Definition and Hanani–Tutte
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Crossing Number and Topological Graphs

For a graph G, the crossing number cr(G)
is the smallest number of edge crossings in
a drawing of G (in the plane).
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Example.
cr(K3,3) = 1

For a graph G, the crossing number cr(G)
is the smallest number of edge crossings in
a drawing of G (in the plane).
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Crossing Number and Topological Graphs

In a crossing-minimal drawing of G

� no edge is self-intersecting,

� edges with common endpoints do
not intersect,

� two edges intersect at most once,

Example.
cr(K3,3) = 1

� and, w.l.o.g., at most two edges
intersect at the same point.

For a graph G, the crossing number cr(G)
is the smallest number of edge crossings in
a drawing of G (in the plane).



2 - 16

Crossing Number and Topological Graphs

In a crossing-minimal drawing of G

� no edge is self-intersecting,

� edges with common endpoints do
not intersect,

� two edges intersect at most once,

Example.
cr(K3,3) = 1

� and, w.l.o.g., at most two edges
intersect at the same point.
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a drawing of G (in the plane).
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K5 and K3,3 must have a pair of
edges that crosses an odd number of times.
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Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K5 and K3,3 must have a pair of
edges that crosses an odd number of times.

Every non-planar graph has K5 or K3,3 as a minor, so there are two
paths that cross an odd number of times.
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K5 and K3,3 must have a pair of
edges that crosses an odd number of times.

Every non-planar graph has K5 or K3,3 as a minor, so there are two
paths that cross an odd number of times.

Hence, there must be two edges on these paths that cross an odd
number of times.
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of
pairs of edges that cross oddly in a drawing of G.



3 - 6

Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
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Corollary. ocr(G) = 0⇒ cr(G) = 0
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Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of
pairs of edges that cross oddly in a drawing of G.

Is ocr(G) = cr(G)? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with ocr(G) < cr(G) ≤ 10

The pairwise crossing number pcr(G) of G is the smallest number
of pairs of edges that cross in a drawing of G.

Corollary. ocr(G) = 0⇒ cr(G) = 0
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Computing the Crossing Number

� Computing cr(G) is NP-hard. [Garey & Johnson ’83]
... even if G is a planar graph plus one edge! [Cabello & Mohar ’08]
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Other Crossing Numbers

� Schaefer [Schae20] offers a huge survey on dif-
ferent crossings numbers (and more precise de-
finitions)

� One-sided crossing minimization . . .

� Fixed Linear Crossing Number
1 2 3 4 65

� In book embeddings

� Crossings of edge bundles

� On other surfaces, such as donuts

� Weighted crossings

� Crossing minimization is NP-hard for most variants.
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Rectilinear Crossing Number

Definition.
For a graph G, the rectilinear (straight-line)
crossing number cr(G) is the smallest number of
crossings in a straight-line drawing of G.
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Lemma 1. [Bienstock, Dean ’93]
For k ≥ 4, there exists a graph Gk with
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Rectilinear Crossing Number

Separation.
cr(K8) = 18, but cr(K8) = 19.

G1

� Each straight-line drawing of G1 has at least
one crossing of the following types:

or

Even more . . .

Lemma 1. [Bienstock, Dean ’93]
For k ≥ 4, there exists a graph Gk with
cr(Gk) = 4 and cr(Gk) ≥ k.

Definition.
For a graph G, the rectilinear (straight-line)
crossing number cr(G) is the smallest number of
crossings in a straight-line drawing of G.
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Rectilinear Crossing Number

Separation.
cr(K8) = 18, but cr(K8) = 19.

G1

� Each straight-line drawing of G1 has at least
one crossing of the following types:

or

� From G1 to Gk do

k

Even more . . .

Lemma 1. [Bienstock, Dean ’93]
For k ≥ 4, there exists a graph Gk with
cr(Gk) = 4 and cr(Gk) ≥ k.

Definition.
For a graph G, the rectilinear (straight-line)
crossing number cr(G) is the smallest number of
crossings in a straight-line drawing of G.
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I(n, k) ≤ c(n2/3k2/3 + n + k).



14 - 20

Application 1: Point–Line Incidences

� For a set P ⊂ R2 of points and a set L of
lines, let I(P,L) = number of point–line
incidences in (P,L).

� Define I(n, k) = max
|P |=n,|L|=k

I(P,L).

3

2

2
3

⇒ I(P,L) = 10

9

L
P

� For example: I(4, 4) =

8
9

3

Proof.

G

� #(points on `)− 1 = #(edges on `)

� cr(G) ≤ k2

� ⇒ I(n, k)− k ≤ m (sum up over L)

� Crossing Lemma: 1
64

m3

n2 ≤ cr(G)

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97]
I(n, k) ≤ c(n2/3k2/3 + n + k).



14 - 21

Application 1: Point–Line Incidences

� For a set P ⊂ R2 of points and a set L of
lines, let I(P,L) = number of point–line
incidences in (P,L).

� Define I(n, k) = max
|P |=n,|L|=k

I(P,L).

3

2

2
3

⇒ I(P,L) = 10

9

L
P

� For example: I(4, 4) =

8
9

3

Proof.

G

� #(points on `)− 1 = #(edges on `)

� ⇒ ∃c : c(I(n, k)− k)3/n2 ≤ cr(G)

� cr(G) ≤ k2

� ⇒ I(n, k)− k ≤ m (sum up over L)

� Crossing Lemma: 1
64

m3

n2 ≤ cr(G)

Theorem 1.
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[Szemerédi, Trotter ’83, Székely ’97]
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U(n) < 6.7n4/3



15 - 8

Application 2: Unit Distances

For a set P ⊂ R2 of points, define

� U(P ) = number of pairs in P at unit distance and

� U(n) = max|P |=n U(P ).

Proof.

G

P

Theorem 2.
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U(n) < 6.7n4/3



15 - 11

Application 2: Unit Distances

For a set P ⊂ R2 of points, define

� U(P ) = number of pairs in P at unit distance and

� U(n) = max|P |=n U(P ).

Proof.

G
� U(P ) ≤ c′m

P

� cr(G) ≤ 2n2

� cU(P )3

n2 ≤ cr(G) ≤ 2n2

Theorem 2.
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