

Visualization of Graphs

Lecture 11: The Crossing Lemma and Its Applications

Part I: Definition and Hanani–Tutte

Alexander Wolff

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 9?$

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

Example. $\operatorname{cr}(K_{3,3}) = 1$

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example. $\operatorname{cr}(K_{3,3})=1$

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once, ?
- and, w.l.o.g., at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once, ?
- and, w.l.o.g., at most two edges intersect at the same point.

Example. $\operatorname{cr}(K_{3,3})=1$

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once, ?
- and, w.l.o.g., at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of ${\cal G}$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once, ?
- and, w.l.o.g., at most two edges intersect at the same point.

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as a minor, so there are two paths that cross an odd number of times.

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as a minor, so there are two paths that cross an odd number of times.

Hence, there must be two edges on these paths that cross an odd number of times.

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)?$

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem. [Pach & Tóth '00] If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ , then G can be drawn such that no edge in E_0 is involved in any crossings.

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem. [Pelsmajer, Schaefer & Štefankovič '08] [Pach & Tóth '00] If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ , then G can be drawn such that no edge in E_0 is involved in any crossings and no new pairs of edges cross.

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

The **pairwise crossing number** pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

The **pairwise crossing number** pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \leq pcr(G) \leq cr(G)$

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

The **pairwise crossing number** pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \le pcr(G) \le cr(G)$ Is pcr(G) = cr(G)?

Theorem. [Hanani '43, Tutte '70] A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$\operatorname{ocr}(G) = 0 \Rightarrow \operatorname{cr}(G) = 0$$

 $\mathsf{Is} \, \mathsf{ocr}(G) = \mathsf{cr}(G)? \quad \mathsf{No!}$

Theorem.[Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]There is a graph G with $ocr(G) < cr(G) \le 10$

The **pairwise crossing number** pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \le pcr(G) \le cr(G)$ Is pcr(G) = cr(G)? Open!

Visualization of Graphs

Lecture 11: The Crossing Lemma and its Applications

Part II: Computation & Variations

Alexander Wolff

Computing cr(G) is NP-hard.

[Garey & Johnson '83]

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

- Computing cr(G) is NP-hard.
 ... even if G is a planar graph plus one edge!
- cr(G) often unknown, only conjectures exist
 for K_n it is only known for up to ~ 12 vertices

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

- cr(G) often unknown, only conjectures exist
 for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

- cr(G) often unknown, only conjectures exist
 for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

- cr(G) often unknown, only conjectures exist
 for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,

[Garey & Johnson '83] [Cabello & Mohar '08]

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

- cr(G) often unknown, only conjectures exist
 for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

[Garey & Johnson '83] [Cabello & Mohar '08]

Computing cr(G) is NP-hard.
... even if G is a planar graph plus one edge!

cr(G) often unknown, only conjectures exist

- for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,

heuristics, . . .

For exact computations,

check out http://crossings.uos.de!

- Computing cr(G) is NP-hard.
 ... even if G is a planar graph plus one edge!
- \blacksquare cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, . . .

For exact computations,

check out http://crossings.uos.de!

• cr(G) is a measure of how far G is from being planar.

- Computing cr(G) is NP-hard.
 ... even if G is a planar graph plus one edge!
- \blacksquare cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

For exact computations,

check out http://crossings.uos.de!

- **c**r(G) is a measure of how far G is from being planar.
- Planarization, where we replace crossings with dummy vertices, also uses only heuristics.

Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, such as donuts

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, such as donuts
- Weighted crossings

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, such as donuts
- Weighted crossings

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G. Separation. $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more ...

Lemma 1. [Bienstock, Dean '93] For $k \ge 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \ge k$.

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more ...

Lemma 1. [Bienstock, Dean '93] For $k \ge 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \ge k$.

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more ...

Lemma 1. [Bienstock, Dean '93] For $k \ge 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \ge k$.

Each straight-line drawing of G₁ has at least one crossing of the following types:

Definition.

For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more ...

Lemma 1. [Bienstock, Dean '93] For $k \ge 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \ge k$.

Each straight-line drawing of G₁ has at least one crossing of the following types:

From G_1 to G_k do

Visualization of Graphs

Lecture 11: The Crossing Lemma and its Applications

Alexander Wolff

$$\begin{bmatrix} \text{Theorem.} & [\text{Guy '60}] \\ \operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3) \end{bmatrix}$$

Theorem.

$$[Guy '60] \\ \operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

0 0 0 0

Theorem.

$$[Guy '60]$$

$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

9 - 3

0-0

0---0

Theorem.

$$\begin{bmatrix}
\text{Guy '60} \\
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem.

$$[Guy '60] \\ \operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem.

$$\begin{bmatrix}
\text{Guy '60}\\
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem.

$$\begin{bmatrix}
\text{Guy '60} \\
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. Conjecture. [Guy '60

$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. Conjecture. [Guy '60]

$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is tight for $n \leq 12$.

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Sylvester's four-point problem

Bound is tight for $n \leq 12$.

Theorem.[Zarankiewicz '54, Urbaník '55] $cr(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Sylvester's four-point problem

Bound is tight for $n \leq 12$.

[Zarankiewicz '54, Urbaník '55] Theorem. $\operatorname{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$ Turán's brick factory problem (1944) Pál Turán

*1910 – 1976 Budapest, Hungary

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Sylvester's

four-point problem

Bound is tight for $n \leq 12$.

Theorem. Conjecture.[Zarankiewicz '54, Urbaník '55] $cr(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$

Turán's brick factory problem (1944)

© TruckinTim

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Sylvester's four-point problem

Bound is tight for $n \leq 12$.

Theorem. Conjecture.[Zarankiewicz '54, Urbaník '55] $cr(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$ Theorem.[Lovász et al. '04, Aichholzer et al. '06] $\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is tight for $n \leq 12$.

Theorem. Conjecture.[Zarankiewicz '54, Urbaník '55] $cr(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$ Theorem.[Lovász et al. '04, Aichholzer et al. '06] $\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$

Exact numbers are known for $n \leq 27$.

Sylvester's four-point problem

Theorem. Conjecture. [Guy '60
$$\operatorname{cr}(K_n) \stackrel{\checkmark}{=} \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is tight for $n \leq 12$.

Theorem. Conjecture.[Zarankiewicz '54, Urbaník '55] $\operatorname{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$ Theorem.[Lovász et al. '04, Aichholzer et al. '06] $\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{\operatorname{cr}}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$

Exact numbers are known for $n \leq 27$.

Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html!

Sylvester's four-point problem

Lemma 2.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge m - 3n + 6.$$

Lemma 2. For a graph G with n vertices and m edges,

 $\operatorname{cr}(G) \ge m - 3n + 6.$

Proof.

Consider a drawing of G with cr(G) crossings.

Lemma 2.

For a graph G with n vertices and m edges,

 $\operatorname{cr}(G) \ge m - 3n + 6.$

- Consider a drawing of G with cr(G) crossings.
- Obtain a graph H by turning crossings into dummy vertices.

Lemma 2.

For a graph G with n vertices and m edges,

 $\operatorname{cr}(G) \ge m - 3n + 6.$

- Consider a drawing of G with cr(G) crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- *H* has n + cr(G) vertices and m + 2cr(G) edges.

Lemma 2.

For a graph ${\cal G}$ with n vertices and m edges,

 $\operatorname{cr}(G) \ge m - 3n + 6.$

Proof.

- Consider a drawing of G with cr(G) crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- *H* has n + cr(G) vertices and m + 2cr(G) edges.

H is planar, so

$$m + 2\mathrm{cr}(G) \le 3(n + \mathrm{cr}(G)) - 6.$$

Lemma 2.

For a graph G with n vertices and m edges,

 $\operatorname{cr}(G) \ge m - 3n + 6.$

Proof.

- Consider a drawing of G with cr(G) crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- *H* has n + cr(G) vertices and m + 2cr(G) edges.

H is planar, so

$$m + 2\mathrm{cr}(G) \le 3(n + \mathrm{cr}(G)) - 6.$$

Lemma 3.

For a non-planar graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \cdot \binom{\lfloor m/r \rfloor}{2} \in \Omega\left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Lemma 3.

For a non-planar graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \cdot \binom{\lfloor m/r \rfloor}{2} \in \Omega\left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.

Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.

Lemma 3.

For a non-planar graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \cdot \binom{\lfloor m/r \rfloor}{2} \in \Omega\left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.

- **Take** $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.

Lemma 3.

For a non-planar graph ${\cal G}$ with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \cdot \binom{\lfloor m/r \rfloor}{2} \in \Omega\left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.

- **Take** $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
- For every i < j, any edge of G_j induces at least one crossings with G_i.
 (If not, swap edges to reduce cr(G_i).)

Lemma 3.

For a non-planar graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \cdot \binom{\lfloor m/r \rfloor}{2} \in \Omega\left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Consider this bound for graphs with $\Theta(n)$ and $\Theta(n^2)$ many edges.

Proof sketch.

- **Take** $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
- For every i < j, any edge of G_j induces at least one crossings with G_i.
 (If not, swap edges to reduce cr(G_i).)

Visualization of Graphs

Lecture 11: The Crossing Lemma and its Applications

Alexander Wolff

■ 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.

■ 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.

In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Consider this bound for graphs with $\Theta(n)$ and $\Theta(n^2)$ many edges.

Bound is asymptotically tight.

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

- Bound is asymptotically tight.
- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

- Bound is asymptotically tight.
- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).
- We go through the proof from "THE BOOK" by Chazelle, Sharir, and Welzl.

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(m^3/n^2)$.
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

- Bound is asymptotically tight.
- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).
- We go through the proof from "THE BOOK" by Chazelle, Sharir, and Welzl.
- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

Consider a crossing-minimal drawing of G.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).

Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2, $cr(G_p) - m_p + 3n_p \ge 6$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G. $\blacksquare \mathbb{E}(n_p) =$ and $\mathbb{E}(m_p) =$
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G. $\blacksquare \mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) =$
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

- Consider a crossing-minimal drawing of G. $\blacksquare \mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].

$$\mathbb{E}(X_p) =$$

 \blacksquare $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$

- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

$$\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m$$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

•
$$\mathbb{E}(n_p) = pn$$
 and $\mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

$$0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

$$\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m$$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

•
$$\mathbb{E}(n_p) = pn$$
 and $\mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

•
$$\operatorname{cr}(G) \geq \frac{p^2m - 3pn}{p^4}$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

•
$$\mathbb{E}(n_p) = pn$$
 and $\mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

•
$$\operatorname{cr}(G) \geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $cr(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

•
$$\mathbb{E}(n_p) = pn$$
 and $\mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

$$cr(G) \ge \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$$

• Set
$$p = \frac{4n}{m}$$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

•
$$\mathbb{E}(n_p) = pn$$
 and $\mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

• $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ = $p^4 \operatorname{cr}(G) - p^2 m + 3pn$

•
$$\operatorname{cr}(G) \ge \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$$

• Set
$$p = \frac{4n}{m}$$

• $cr(G) \ge$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

• $\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

• $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ = $p^4 \operatorname{cr}(G) - p^2 m + 3pn$

•
$$\operatorname{cr}(G) \ge \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$$

• Set
$$p = \frac{4n}{m}$$
.

• $\operatorname{cr}(G) \ge \frac{m^3}{16n^2} - \frac{3m^3}{64n^2}$

Crossing Lemma. For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in (0, 1].
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

By Lemma 2,
$$\operatorname{cr}(G_p) - m_p + 3n_p \ge 6$$
.
 $\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \ge 0$.

• $\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m$

$$\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$$

$$cr(G) \ge \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$$

• Set
$$p = \frac{4n}{m}$$

•
$$\operatorname{cr}(G) \ge \frac{m^3}{16n^2} - \frac{3m^3}{64n^2} = \frac{1}{64} \frac{m^3}{n^2}$$

Visualization of Graphs

Lecture 11: The Crossing Lemma and its Applications

> Part V: Applications

Alexander Wolff

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

• Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

• Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$

For example: I(4, 4) =

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

• Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$

For example: I(4, 4) =

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) =

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) =

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le 2.7n^{2/3}k^{2/3} + 6n + 2k.$

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

• Define
$$I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$$

For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

Proof.

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

For example: I(4, 4) = 9

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

• $\operatorname{cr}(G) \leq k^2$

Proof.

• Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$

For example: I(4, 4) = 9

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

Proof.

• #(points on $\ell) - 1 = #(edges on \ell)$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

Proof.

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

Proof.

• $\operatorname{cr}(G) \leq k^2$

• $\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell)$

 $\blacksquare \Rightarrow I(n,k) - k \le m \quad (\text{sum up over } \mathcal{L})$

Crossing Lemma:
$$\frac{1}{64} \frac{m^3}{n^2} \leq cr(G)$$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

Proof.

• $\operatorname{cr}(G) \leq k^2$

• $\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell)$

 $\blacksquare \Rightarrow I(n,k) - k \le m \quad (\text{sum up over } \mathcal{L})$

- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq cr(G)$
- $\blacksquare \Rightarrow \exists c \colon c(I(n,k)-k)^3/n^2 \leq cr(G)$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

Proof.

• $\operatorname{cr}(G) \leq k^2$

• $\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell)$

 $\blacksquare \Rightarrow I(n,k) - k \le m \quad (\text{sum up over } \mathcal{L})$

Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq cr(G)$

 $\blacksquare \Rightarrow \exists c \colon c(I(n,k)-k)^3/n^2 \leq cr(G) \leq k^2$

For a set P ⊂ ℝ² of points and a set L of lines, let I(P, L) = number of point–line incidences in (P, L).

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

Proof.

• $\operatorname{cr}(G) \leq k^2$

• #(points on ℓ) – 1 = #(edges on ℓ)

 $\blacksquare \Rightarrow I(n,k) - k \le m \quad (\text{sum up over } \mathcal{L})$

- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq cr(G)$
- $\blacksquare \Rightarrow \exists c \colon c(I(n,k)-k)^3/n^2 \leq cr(G) \leq k^2$

If m < 4n,

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}) .

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L}).$
- For example: I(4, 4) = 9

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

Proof.

• $\operatorname{cr}(G) \leq k^2$

• #(points on ℓ) - 1 = #(edges on ℓ)

 $\blacksquare \Rightarrow I(n,k) - k \le m \quad (\text{sum up over } \mathcal{L})$

- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq cr(G)$
- $\blacksquare \Rightarrow \exists c \colon c(I(n,k)-k)^3/n^2 \leq cr(G) \leq k^2$
- If m < 4n, then $I(n,k) k \leq 4n$.

Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

For a set $P \subset \mathbb{R}^2$ of points, define

• U(P) = number of pairs in P at unit distance and

 $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

For a set $P \subset \mathbb{R}^2$ of points, define

 \blacksquare U(P) = number of pairs in P at unit distance and

Theorem 2.

$$U(P) \le c'm$$

$$\operatorname{cr}(G) \leq 2n^2$$

$$c\frac{U(P)^3}{n^2} \le \operatorname{cr}(G) \le 2n^2$$

16 - 1

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) –

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \circ

0

0

0

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? ~

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \sim

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

Point set spans drawing Γ of K_n .

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n .

We will analyze the number of crossings in a random perfect matching in Γ !

crossings

6

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{cr}(K_n)$

crossings

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$

crossings

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ crossings

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) =$

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\operatorname{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx$

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}(K_n)} > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\operatorname{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 .

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 .

 $\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq$

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) >$

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n) / \operatorname{pot}(K_n) > \frac{1}{8}$.

6

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \ll

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so

pairs of edges.

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \ll

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n) / \operatorname{pot}(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} =$

pairs of edges.

6

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}(K_n)} > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\operatorname{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges.

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{cr}(K_n)/pot(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges. By linearity of expectation, the expected number of crossings in M is >

6

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{cr}(K_n)/pot(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges. By linearity of expectation, the expected number of crossings in M is $> \frac{1}{8}\binom{n/2}{2} =$

6

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{cr}(K_n)/pot(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges. By linearity of expectation, the expected number of crossings in M is $> \frac{1}{8}\binom{n/2}{2} = \frac{1}{64}n(n-2)$

6

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching? \leq

```
Point set spans drawing \Gamma of K_n.
```

We will analyze the number of crossings in a random perfect matching in Γ !

Number of crossings in $\Gamma \geq \overline{\mathrm{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$ Number of edges in K_n : $\binom{n}{2}$ Number of *potential crossings* (all pairs of edges): $\mathrm{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1 and e_2 . $Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{cr}(K_n)/pot(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has n/2 edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges. By linearity of expectation, the expected number of crossings in M is $> \frac{1}{8}\binom{n/2}{2} = \frac{1}{64}n(n-2) \in \Theta(n^2)$.

Literature

- [Aigner, Ziegler] Proofs from THE BOOK [https://doi.org/10.1007/978-3-662-57265-8]
- [Schaefer '20] The Graph Crossing Number and its Variants: A Survey
- Terrence Tao's blog post "The crossing number inequality" from 2007
- [Garey, Johnson '83] Crossing number is NP-complete
- [Bienstock, Dean '93] Bounds for rectilinear crossing numbers
- [Székely '97] Crossing Numbers and Hard Erdős Problems in Discrete Geometry
- Documentary/Biography "N Is a Number: A Portrait of Paul Erdős"
- Exact computations of crossing numbers: http://crossings.uos.de