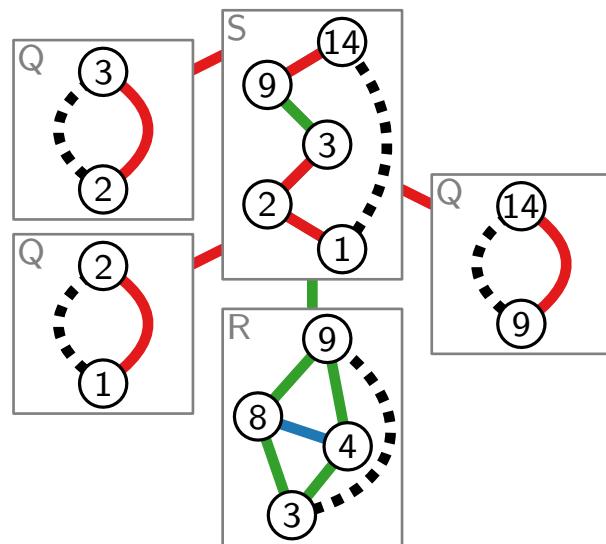


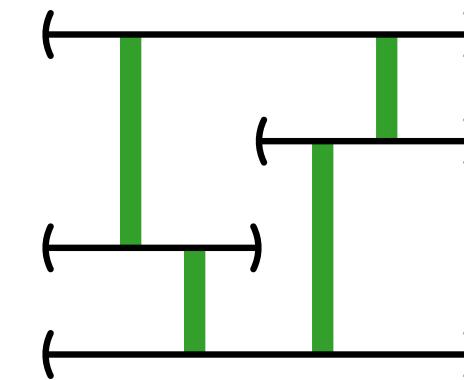
Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension



Part I: Problem Definition

Alexander Wolff



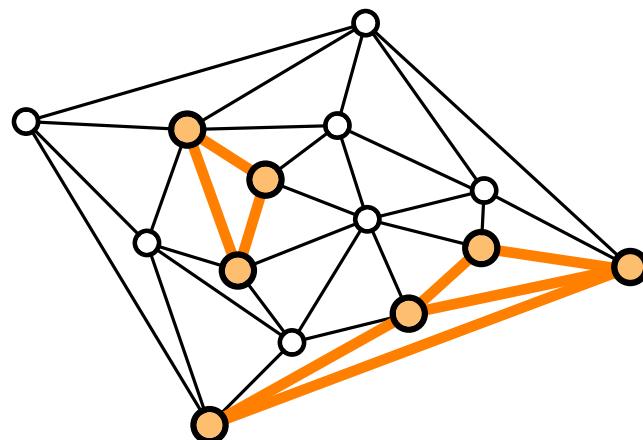
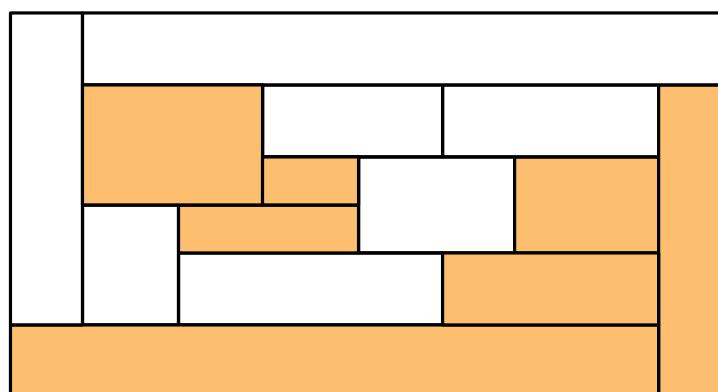
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$

Let Γ_H be a representation of H .

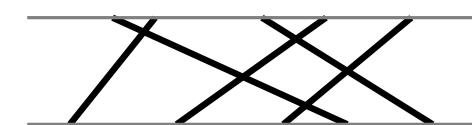
Find a representation Γ_G of G that *extends* Γ_H



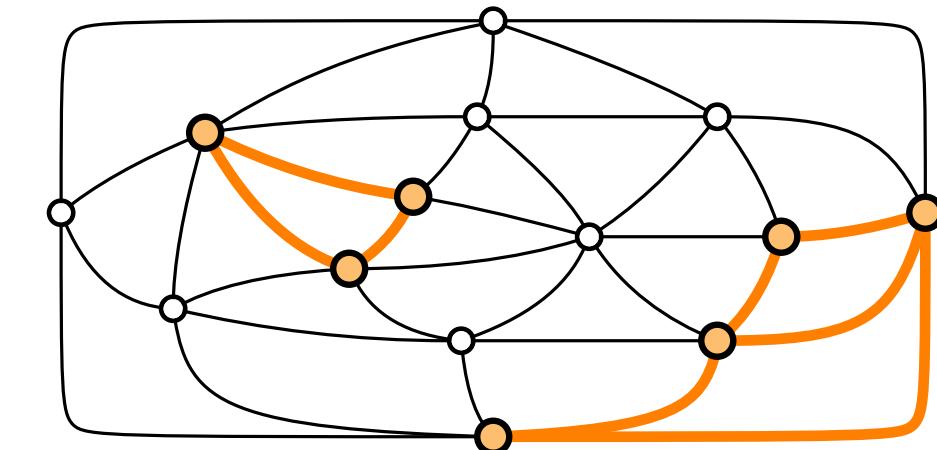
Polytime for:

- (unit) interval graphs

- permutation graphs



- circle graphs

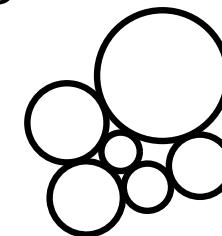


NP-hard for:

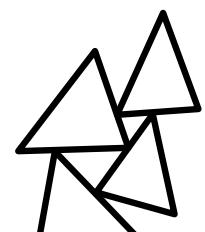
- planar straight-line drawings

- contacts of

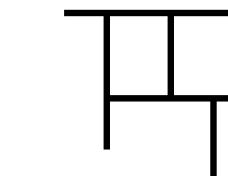
- disks



- triangles

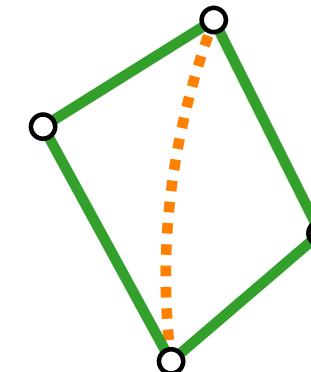
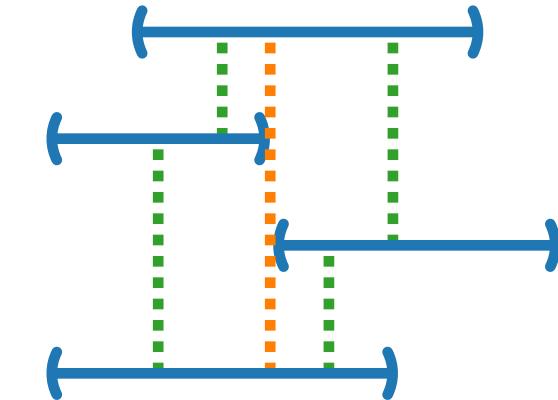


- orthogonal segments



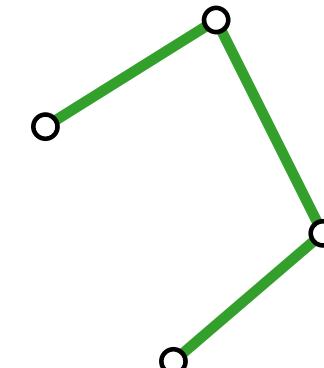
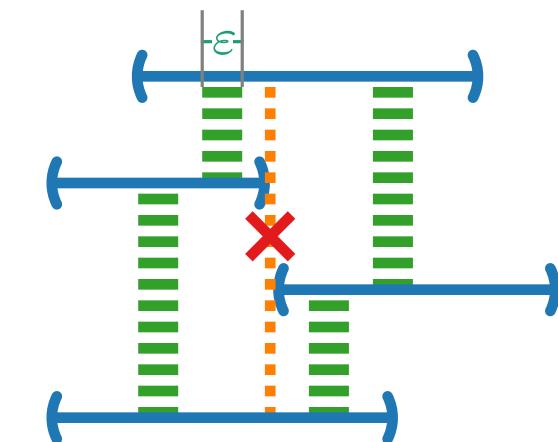
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

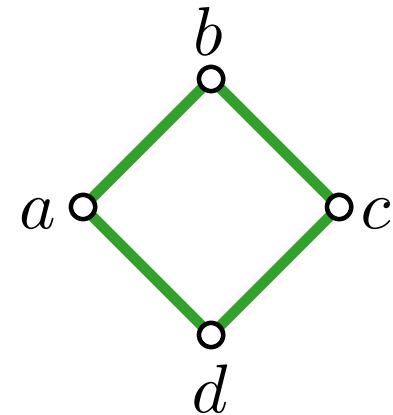
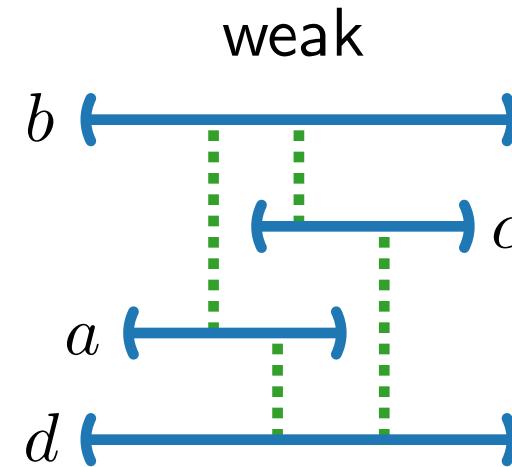
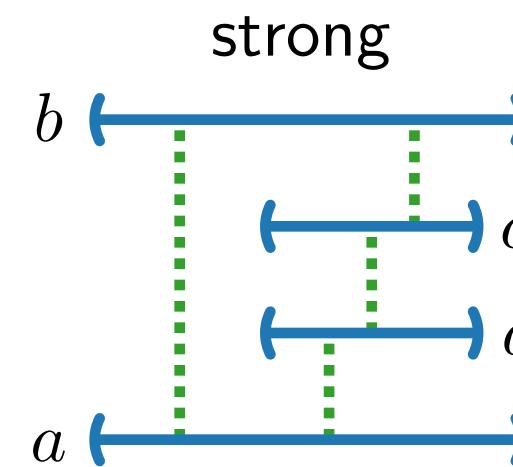
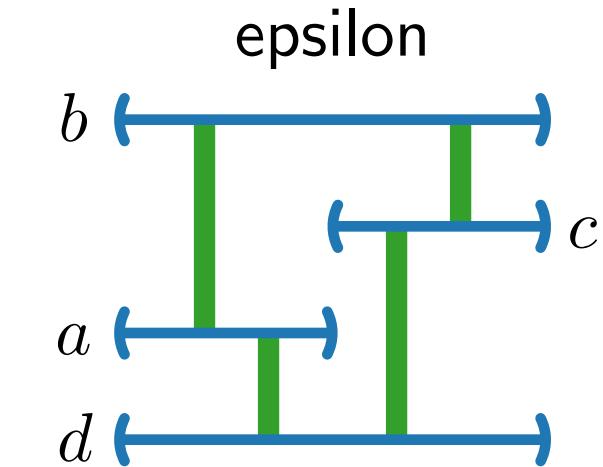


Models.

- **Strong:**
Edge $uv \Leftrightarrow$ unobstructed **0-width** vertical lines of sight.
- **Epsilon:**
Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for $\varepsilon > 0$.
- **Weak:**
Edge $uv \Rightarrow$ unobstructed vertical sightlines exists, i.e., any subset of *visible* pairs



Problems



Recognition Problem.

Given a graph G , **decide** whether there exists a weak/strong/ ε bar visibility representation ψ of G .

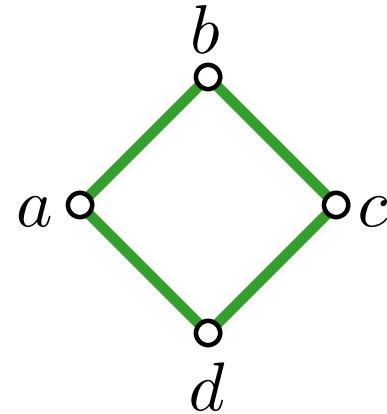
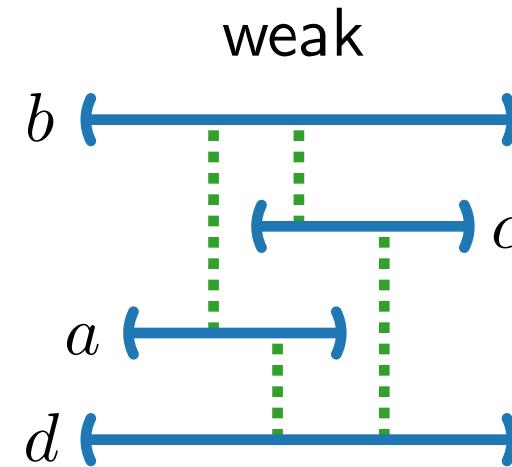
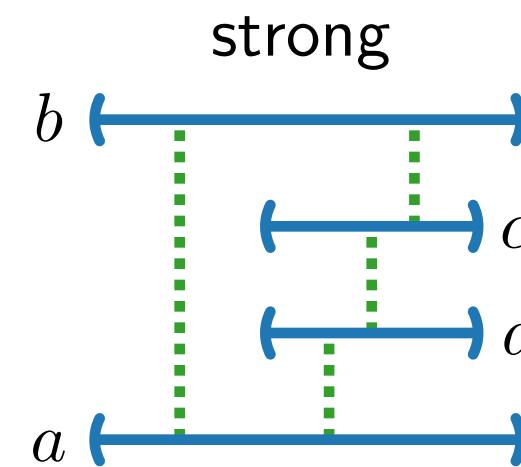
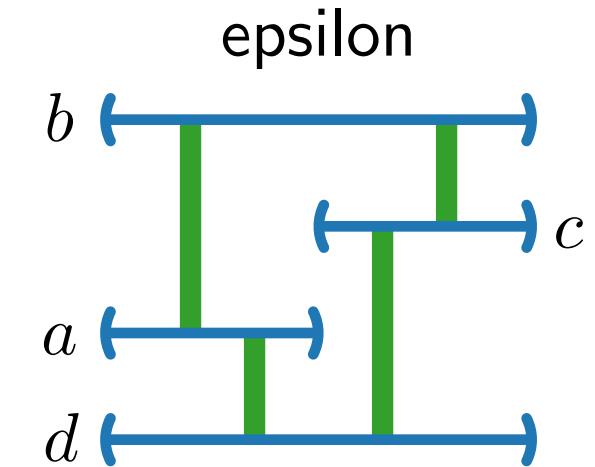
Construction Problem.

Given a graph G , **construct** a weak/strong/ ε bar visibility representation ψ of G – if one exists.

Partial Representation Extension Problem.

Given a graph G and a **set of bars** ψ' of $V' \subset V(G)$, **decide** whether there exists a weak/strong/ ε bar visibility representation ψ of G **where** $\psi|_{V'} = \psi'$ (and **construct** ψ if a representation exists).

Background



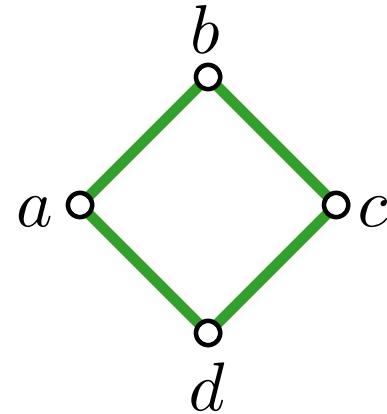
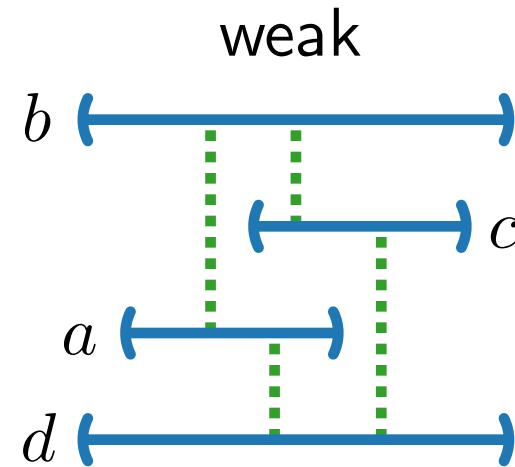
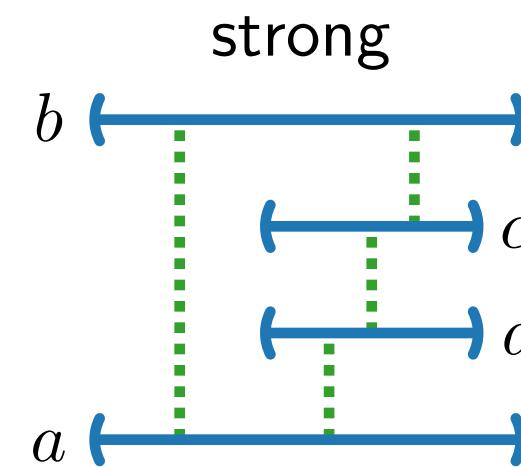
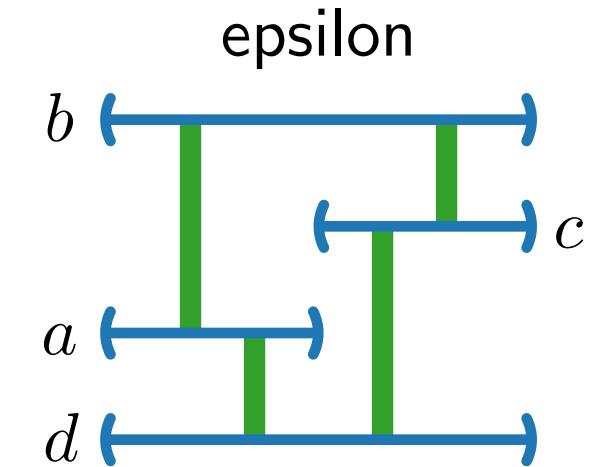
Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

- NP-complete to recognize [Andreae '92]

Background

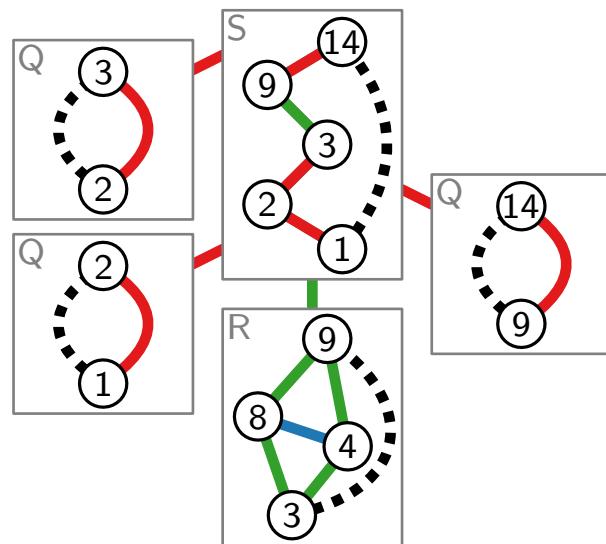


ε -Bar Visibility.

- Planar graphs that can be embedded with all **cut vertices** on the outerface. [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension? **This Lecture!**

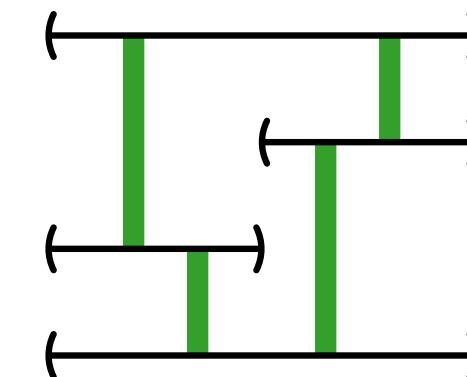
Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension



Part II:
Recognition & Construction

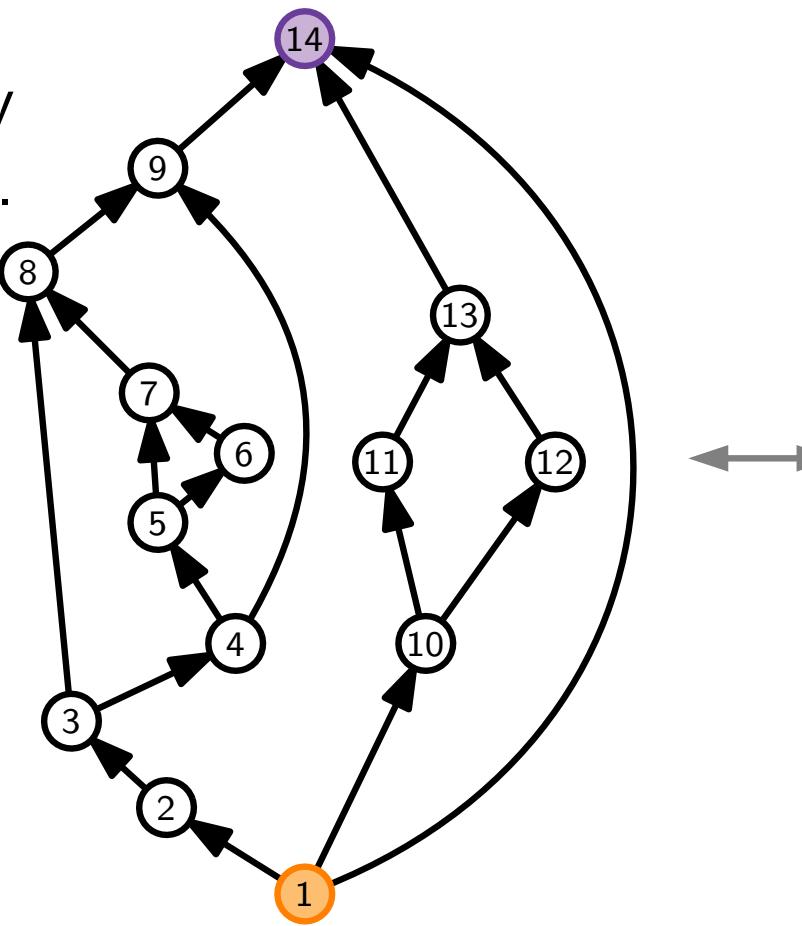
Alexander Wolff



ε -bar Visibility and st -Graphs

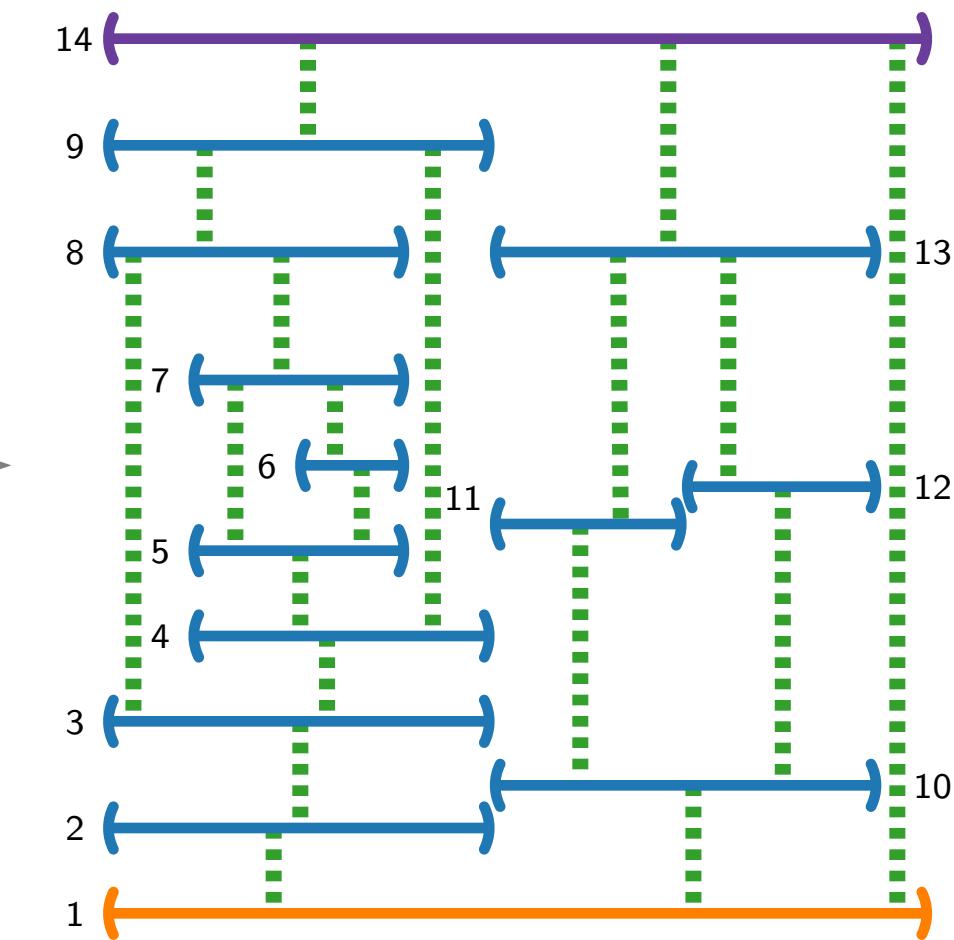
Recall that an **st -graph** is a planar digraph G with exactly one **source s** and one **sink t** where s and t occur on the outer face of an embedding of G .

- ε -bar visibility testing is easily done via st -graph recognition.
- Strong bar visibility recognition... open!
- In a **rectangular** bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.



Observation.

st -orientations correspond to ε -bar visibility representations.



Results and Outline

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n \log^2 n)$ time for *st*-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}(n^2)$

Theorem 2.

[Chaplick et al. '18]

ε -Bar Visibility Representation Extension is NP-complete.

- Reduction from PLANAR MONOTONE 3-SAT

Theorem 3.

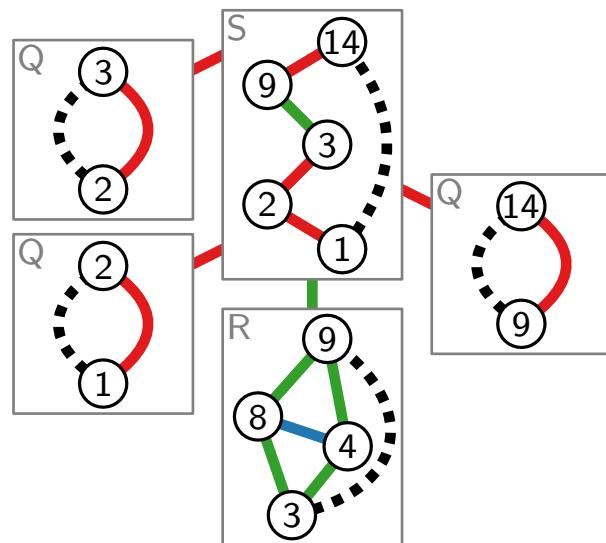
[Chaplick et al. '18]

ε -Bar Visibility Representation Extension is NP-complete for (series-parallel) *st*-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

- Reduction from 3-PARTITION

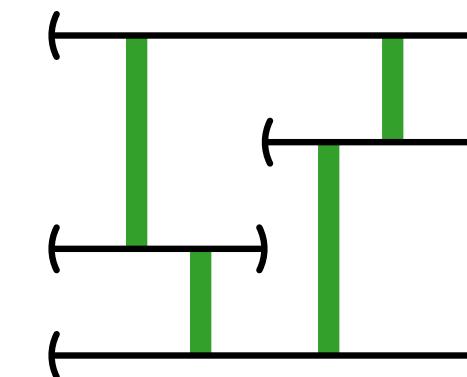
Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension



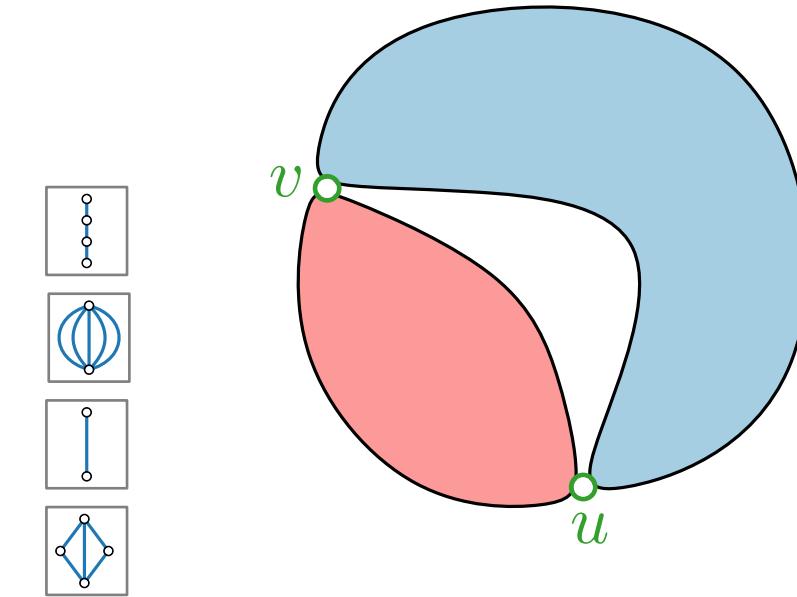
Part III:
SPQR-Trees

Alexander Wolff

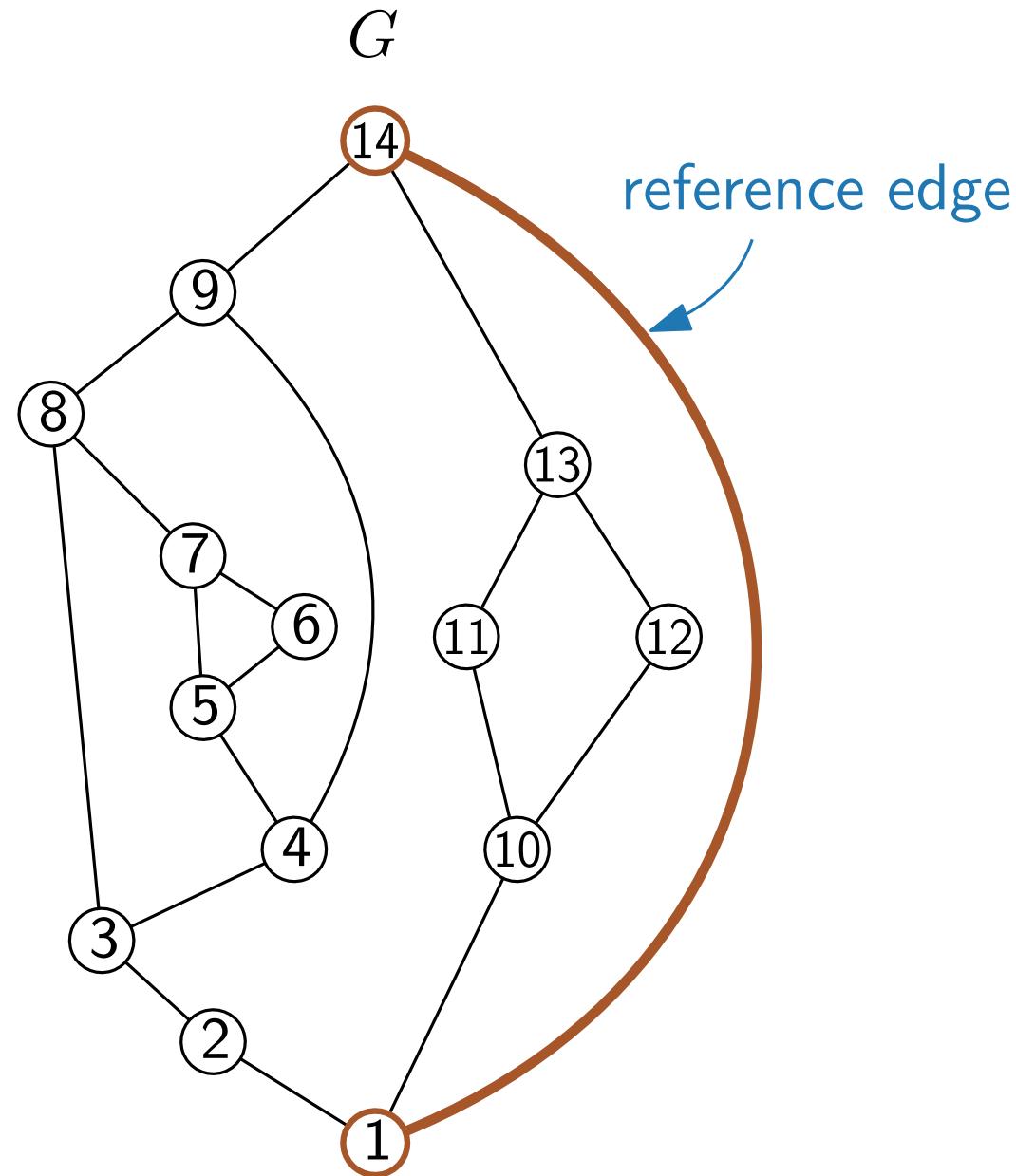
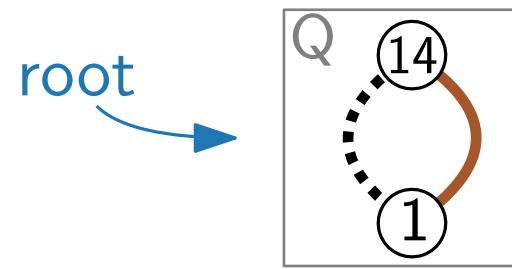


SPQR-Tree

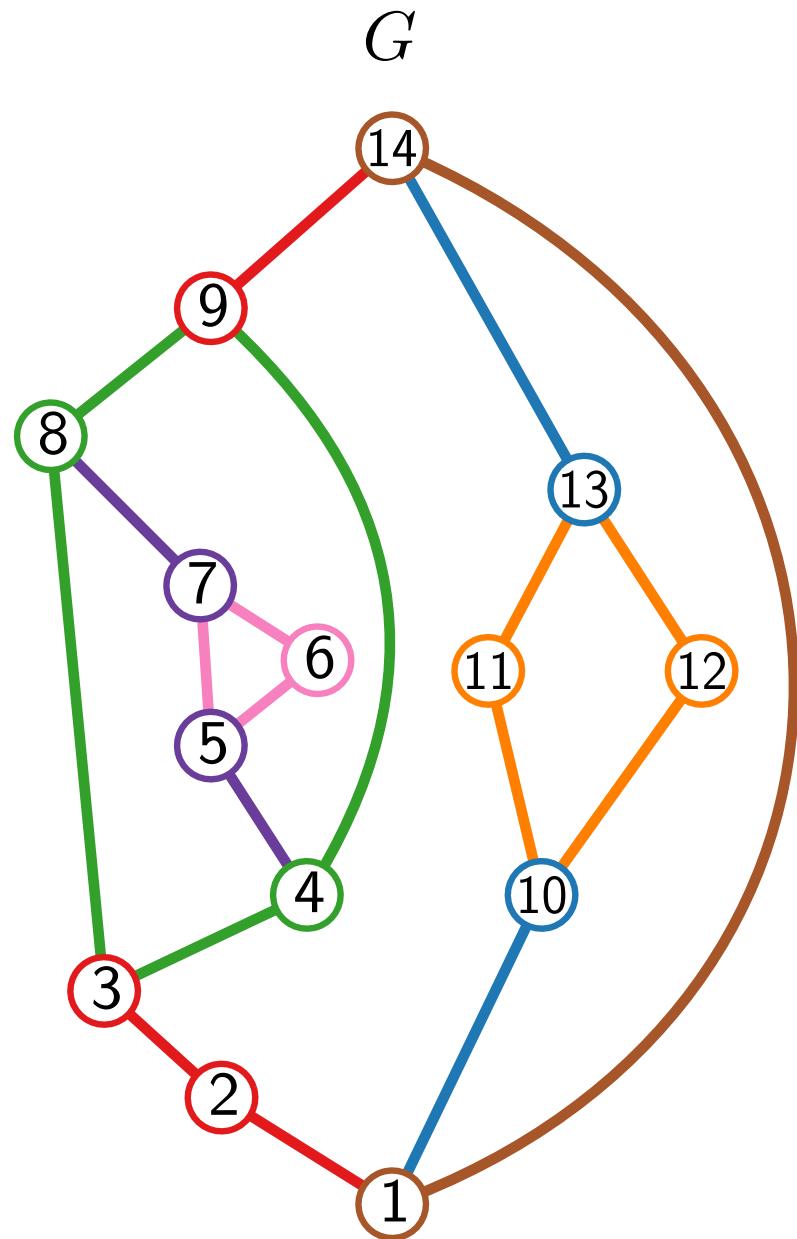
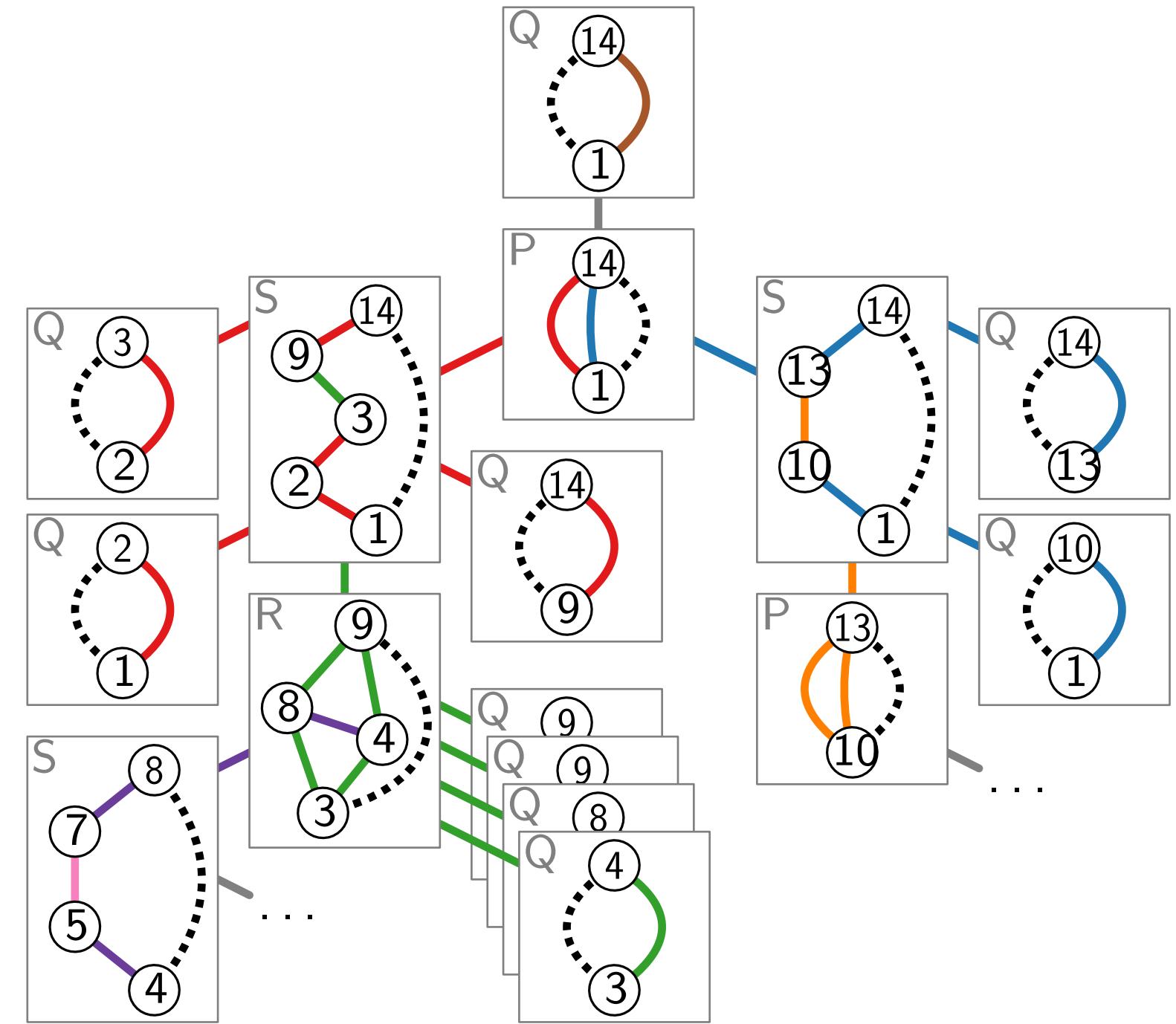
- An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.
- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - **P**-nodes represent a parallel composition
 - **Q**-nodes represent a single edge
 - **R**-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without **R**-nodes.
- T represents all planar embeddings of G .
- T can be computed in $\mathcal{O}(n)$ time. [Gutwenger, Mutzel '01]



SPQR-Tree Example



SPQR-Tree Example

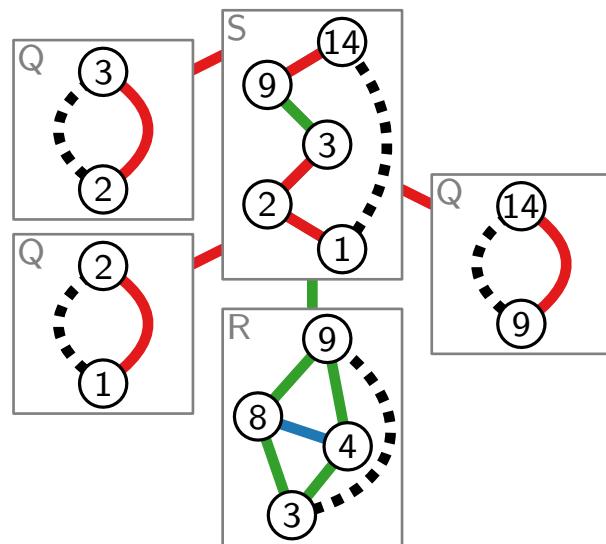
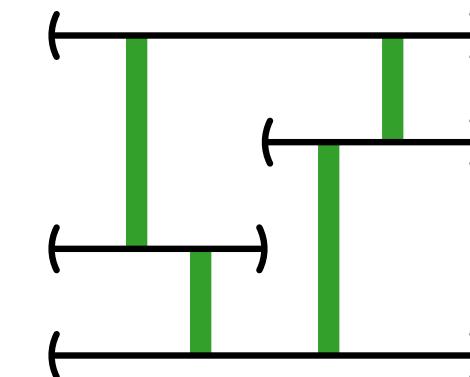


Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension

Part IV:
Rectangular
Representation Extension

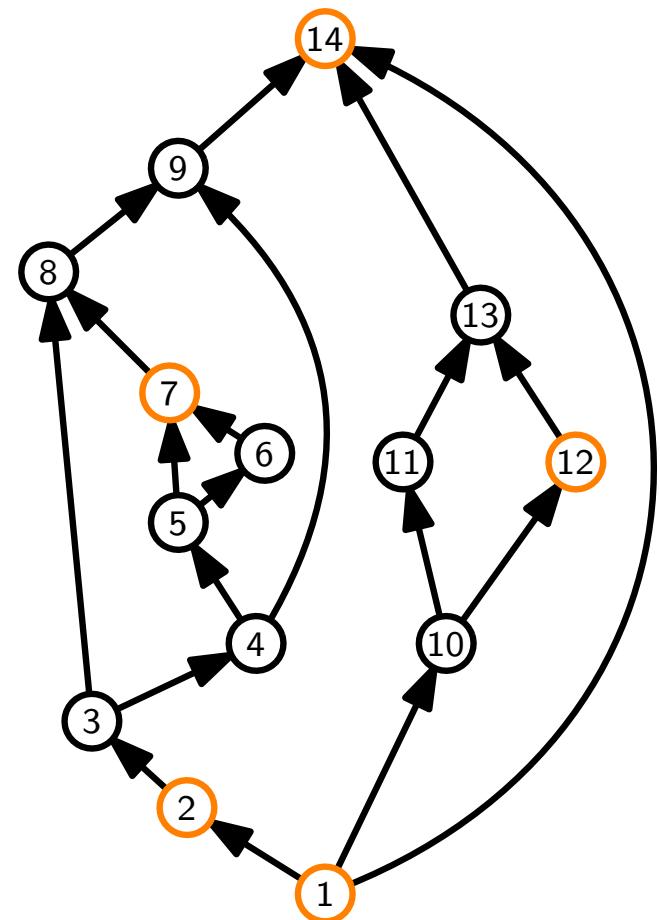
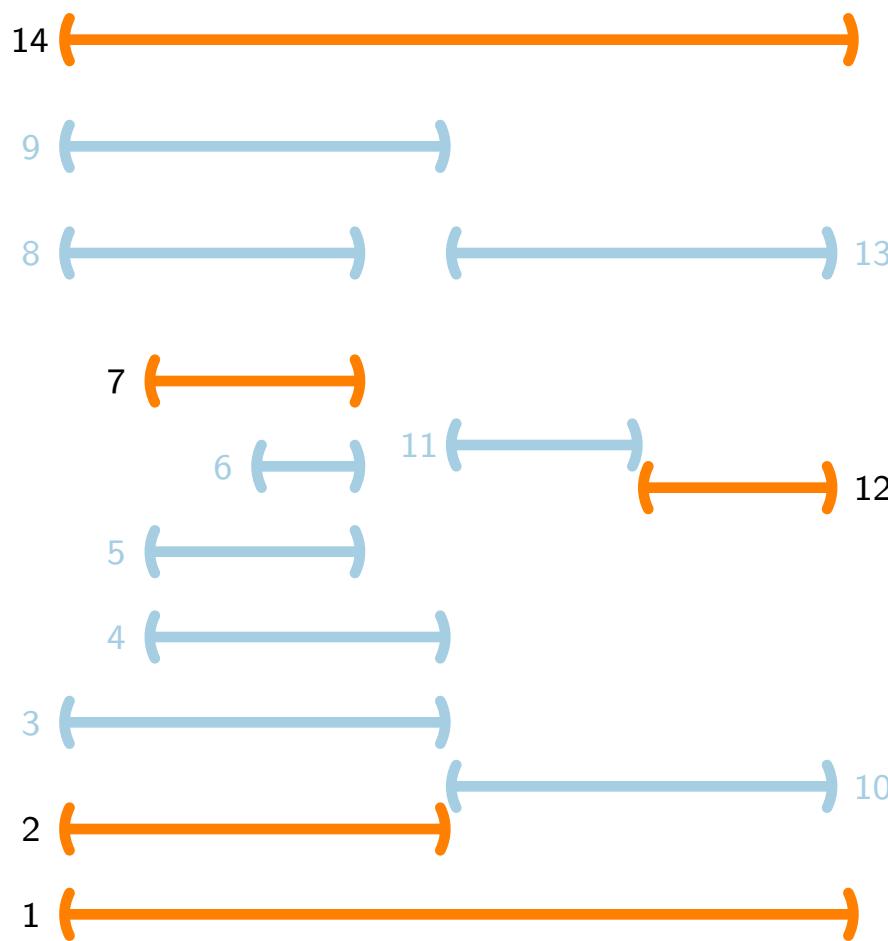
Alexander Wolff



Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n^2)$ time for *st*-graphs.

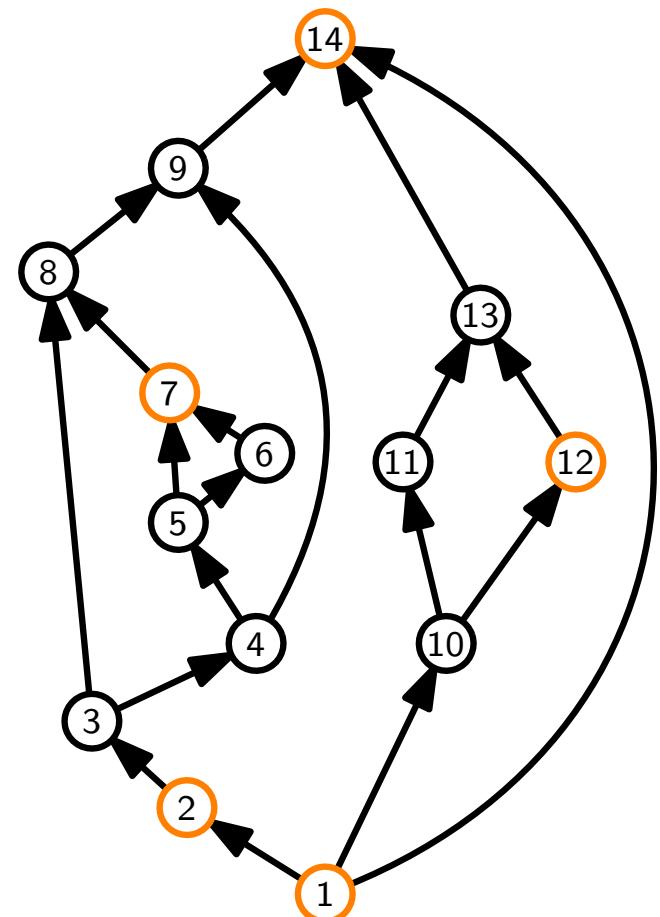
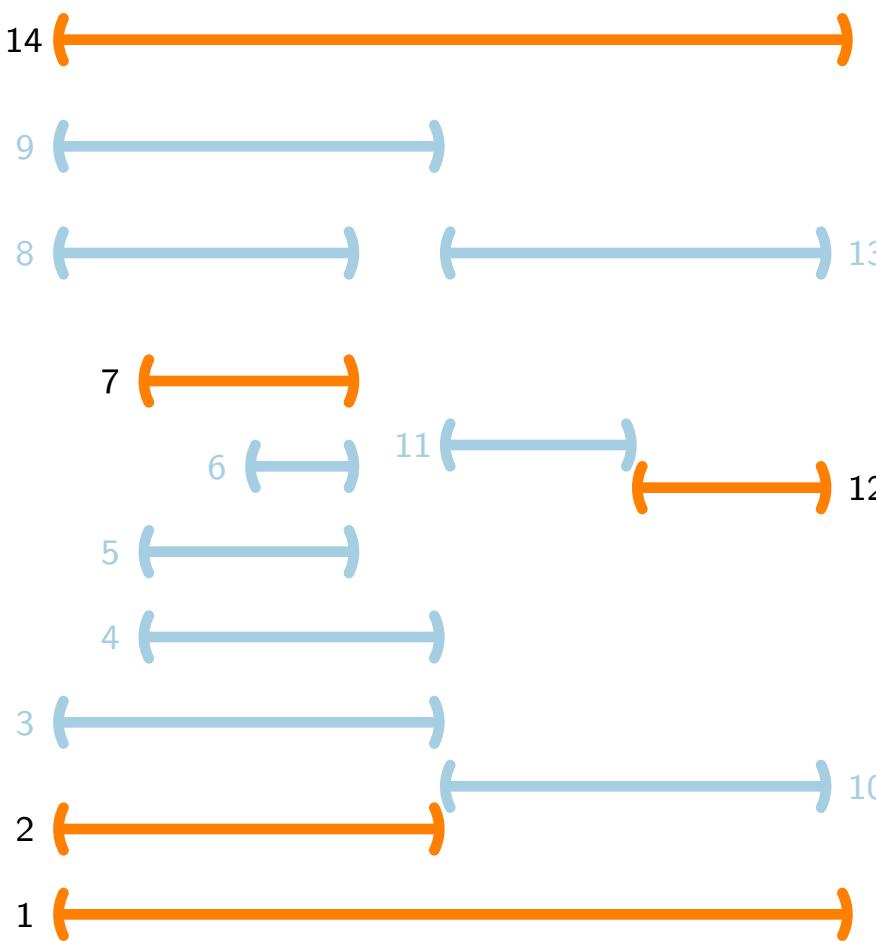


■ Simplify with assumption on y-coordinates

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n^2)$ time for *st*-graphs.



- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
- Solve problems for **S**-, **P**-, and **R**-nodes
- Dynamic program via SPQR-tree

y-Coordinate Invariant

- Let $G = (V, E)$ be an st -graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y: V \rightarrow \mathbb{R}$ such that
 - for each $v \in V'$, $y(v) =$ the y-coordinate of $\psi'(v)$.
 - for each edge (u, v) , $y(u) < y(v)$.

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$

G has a representation extending ψ'

where the y-coordinates of the bars are as in y .

We can now assume that all y-coordinates are given!

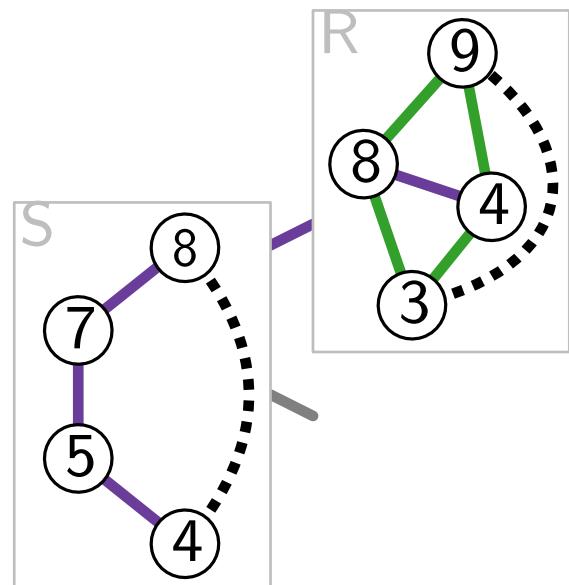
Proof idea. The relative positions of **adjacent** bars must match the order given by y .

So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

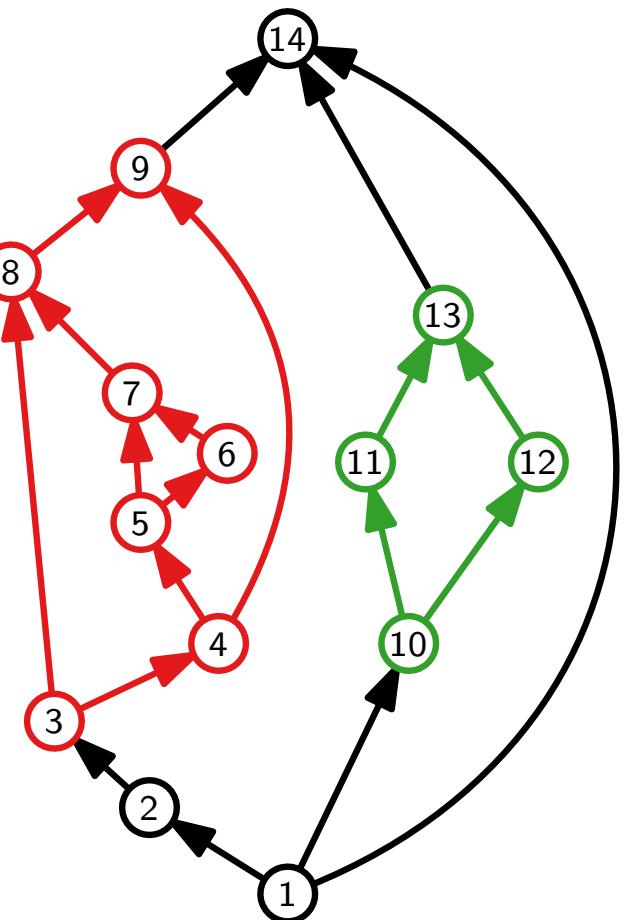
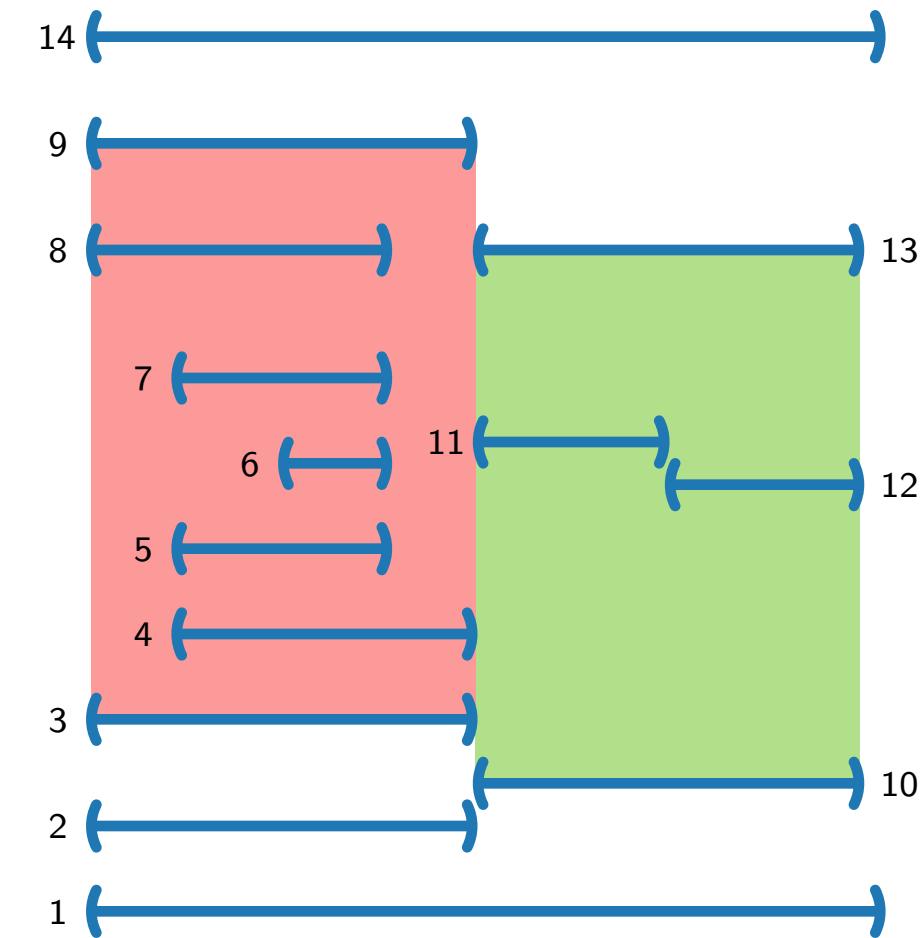
But why do SPQR-Trees help?

Lemma 2.

The SPQR-tree of an st -graph G induces a recursive **tiling** of any ε -bar visibility representation of G .

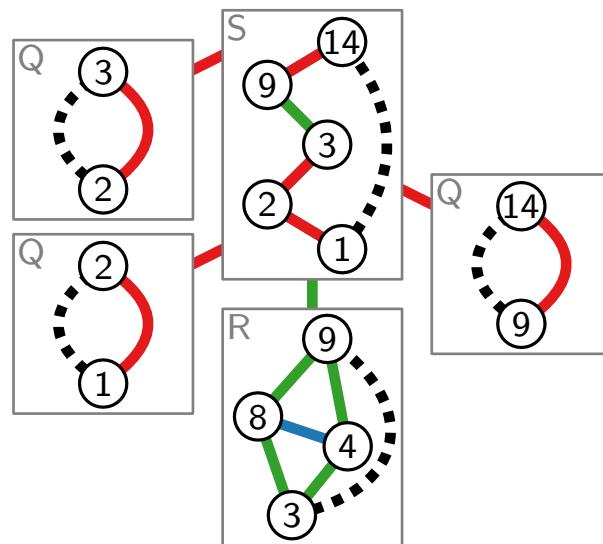


Solve tiles
bottom-up



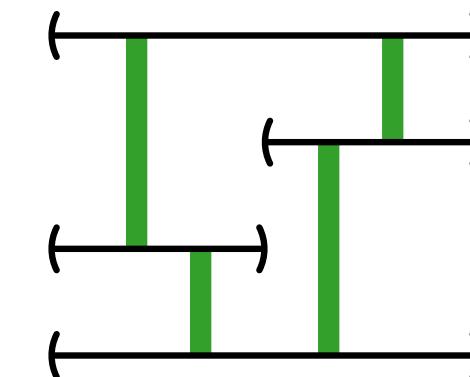
Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension



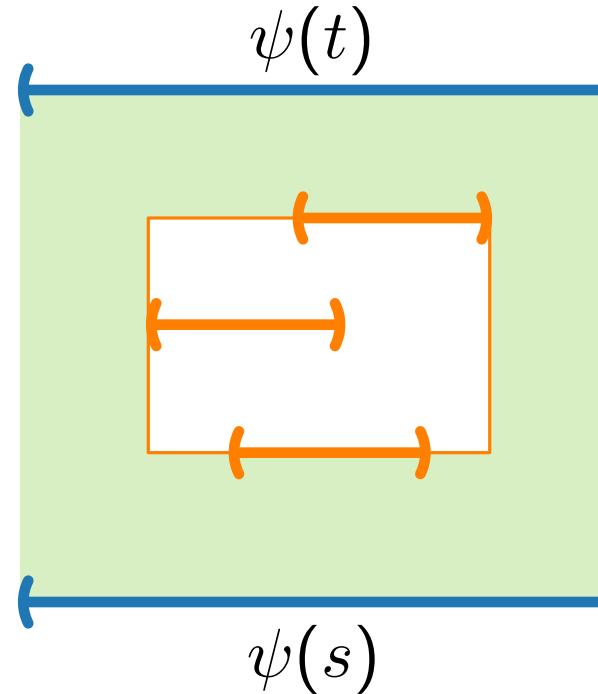
Part V:
Dynamic Program

Alexander Wolff



Tiles

Convention. **Orange** bars are from the partial representation

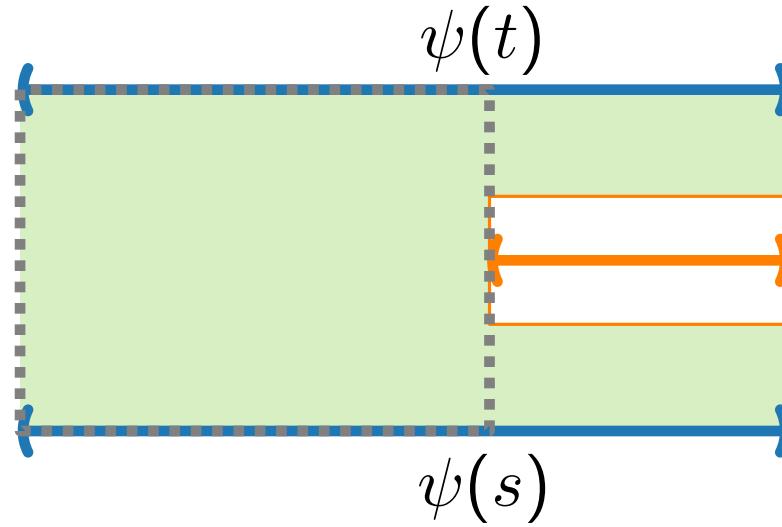


Observation.

The bounding box (tile) of any solution ψ **contains** the bounding box of the partial representation.

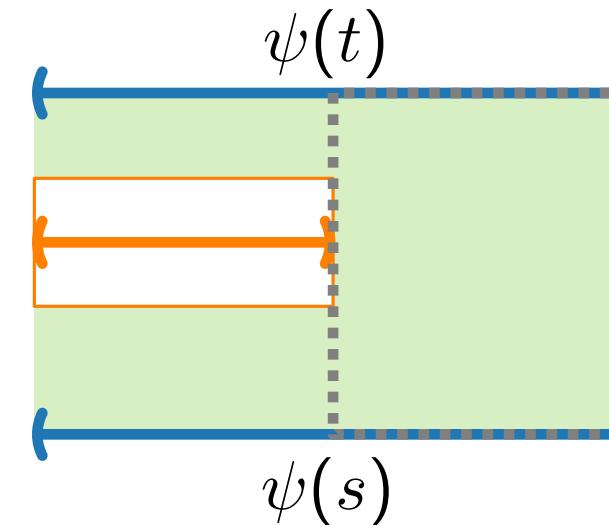
How many different **types** of tiles are there?

Types of Tiles



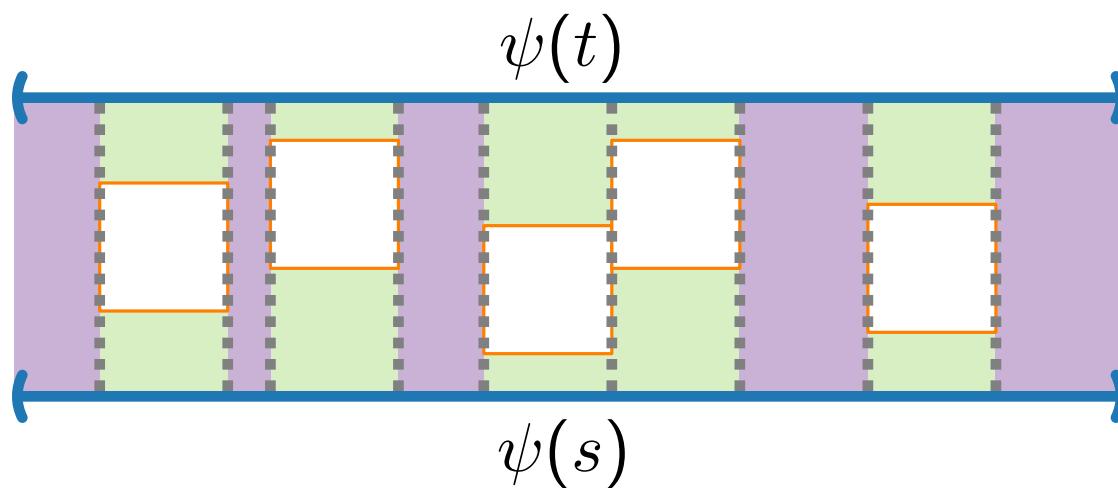
- Left **Fixed** – due to the orange bar
- Right **Loose** – due to the orange bar

- Right **Fixed** – due to the orange bar
- Left **Loose** – due to the orange bar



Four different types: **FF**, **FL**, **LF**, **LL**

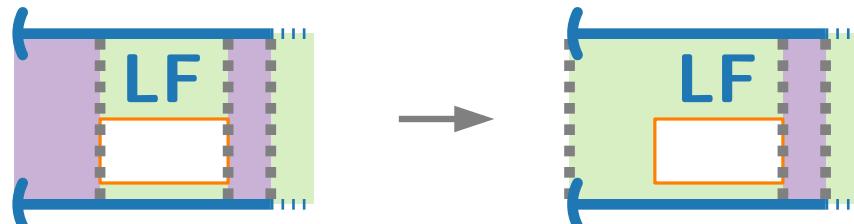
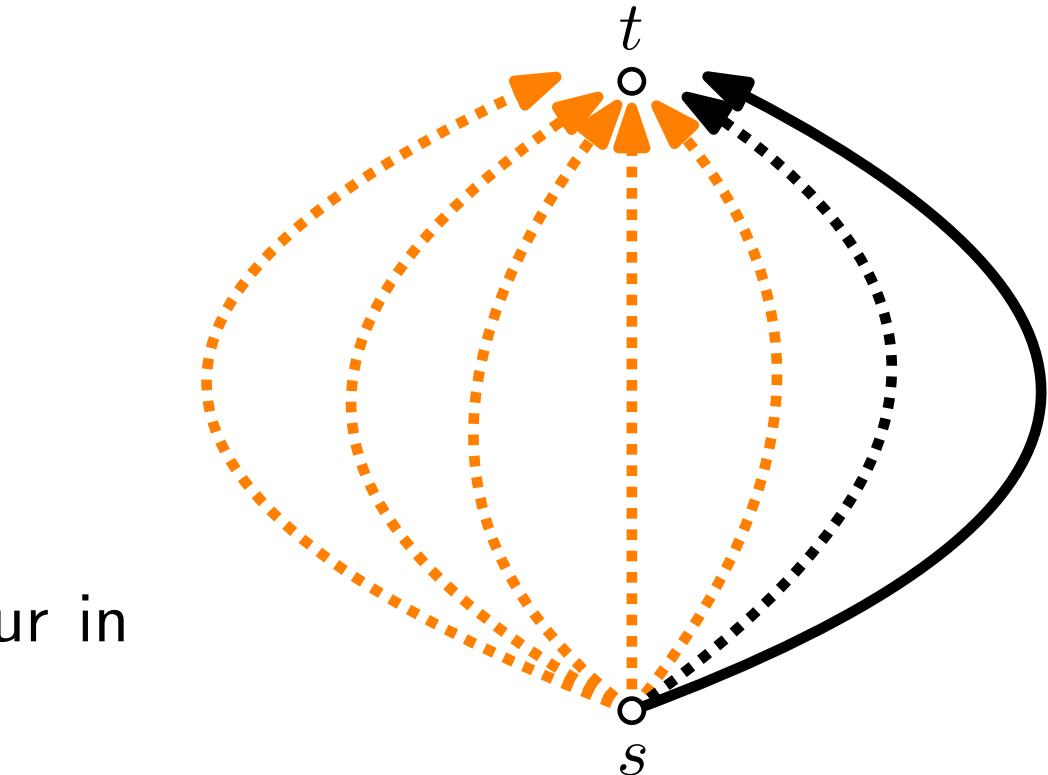
P-Nodes



- Children of P-node with **prescribed bars** occur in given left-to-right order
- But there might be some **gaps**...

Idea.

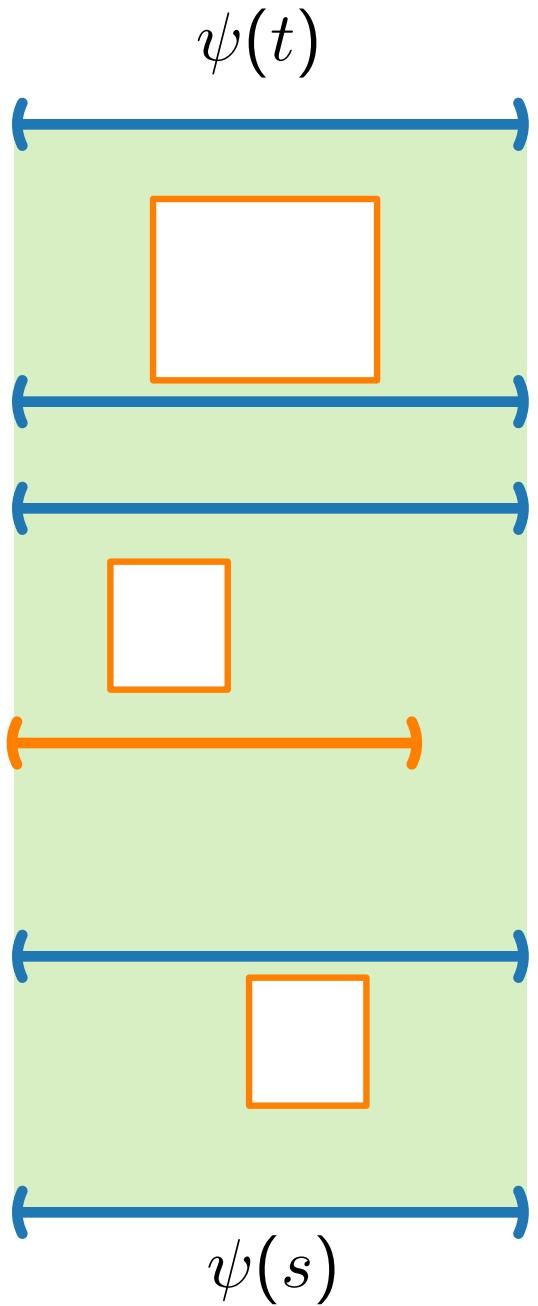
Greedily *fill* the **gaps** by preferring to “stretch” the children with prescribed bars.



Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

S-Nodes

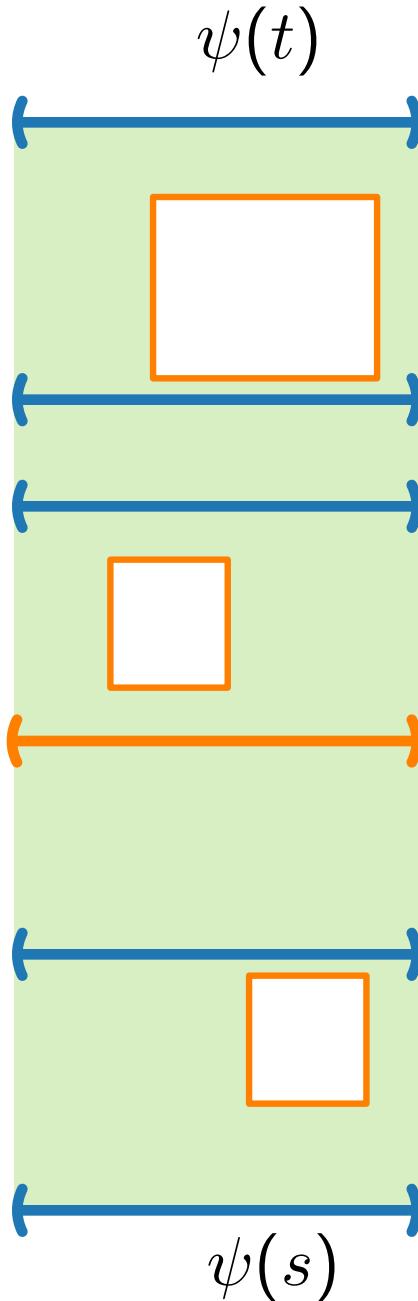


t

s

This **fixed vertex**
means we can only
make a **Fixed-Fixed**
representation!

S-Nodes

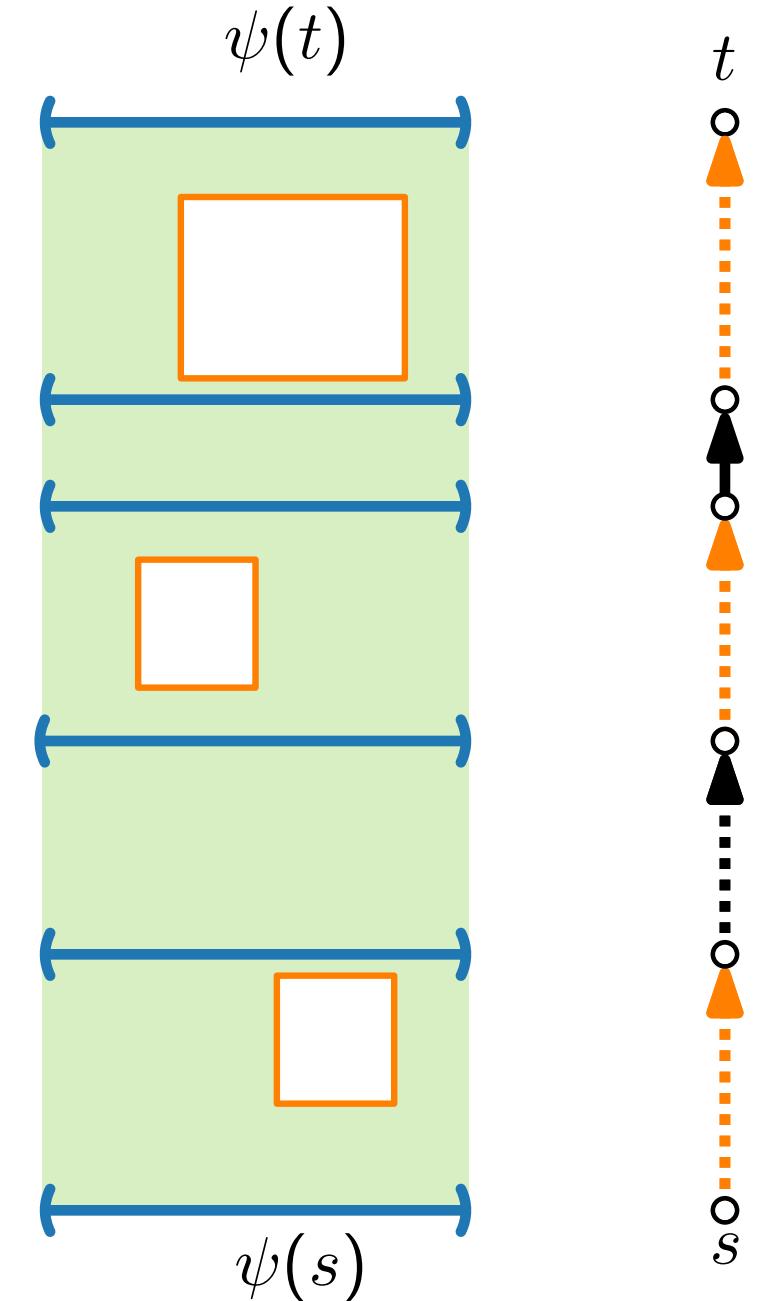


t

s

This **fixed vertex**
means we can only
make a Fixed-Fixed
representation!

Here we have a
chance to make all
(**LL**, **FL**, **LF**, **FF**)
types.

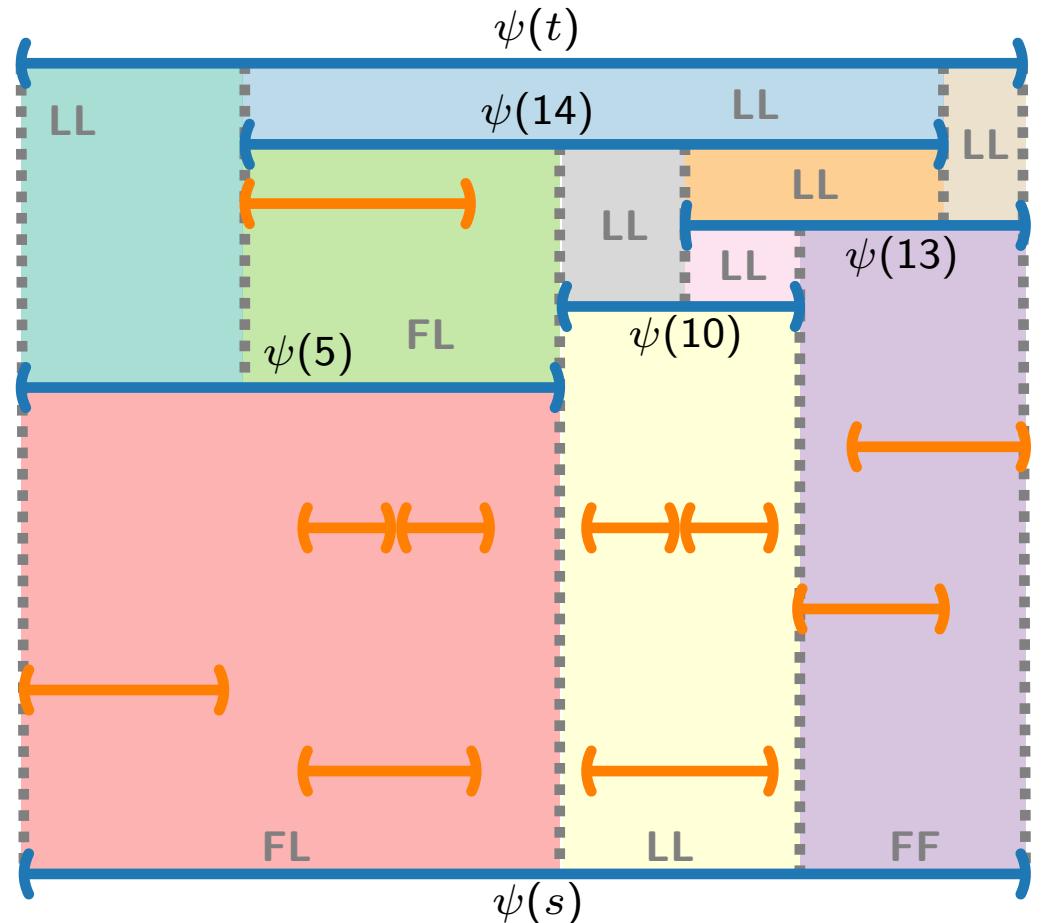
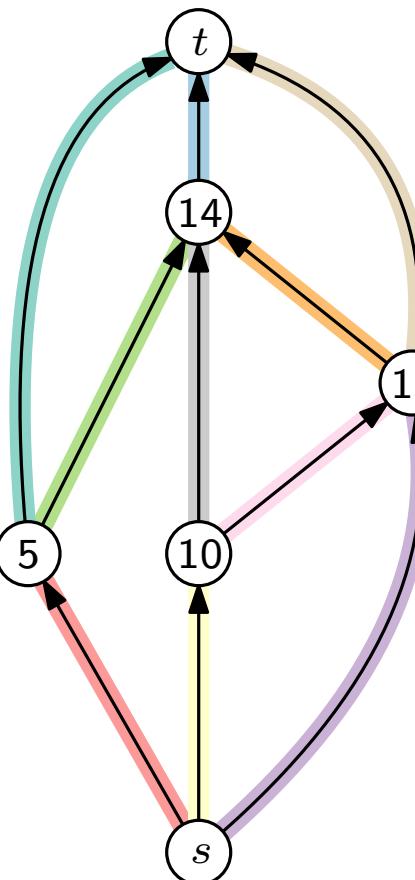
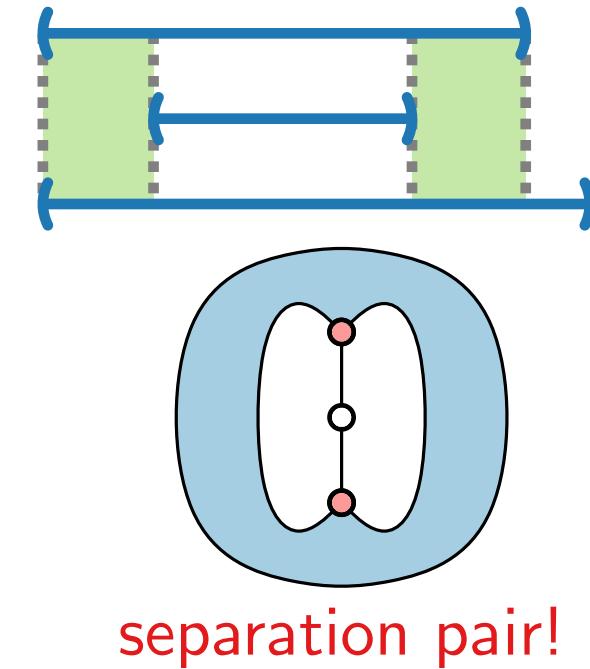


t

s

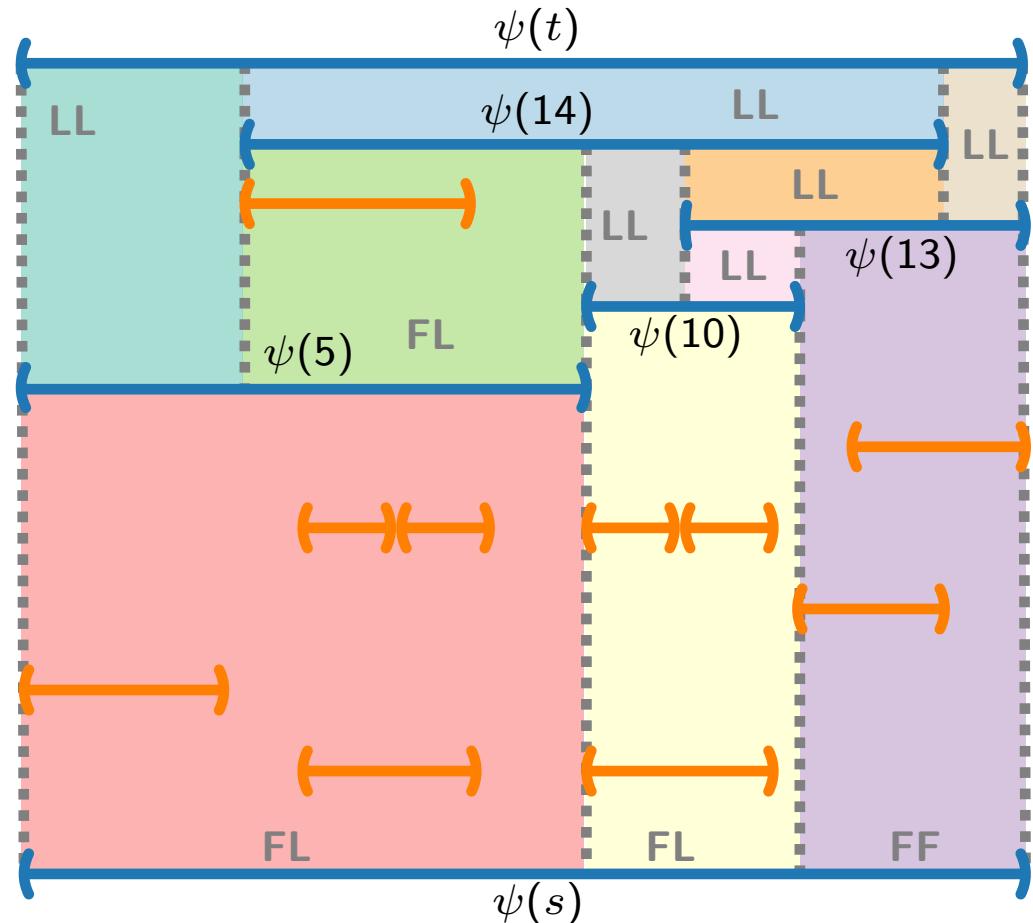
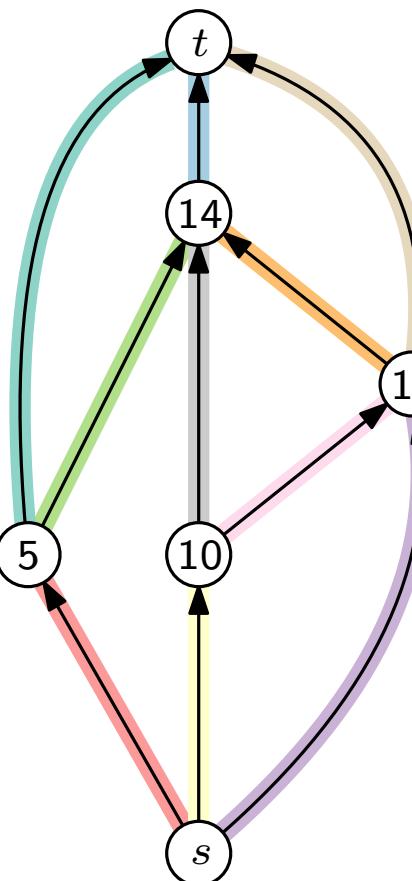
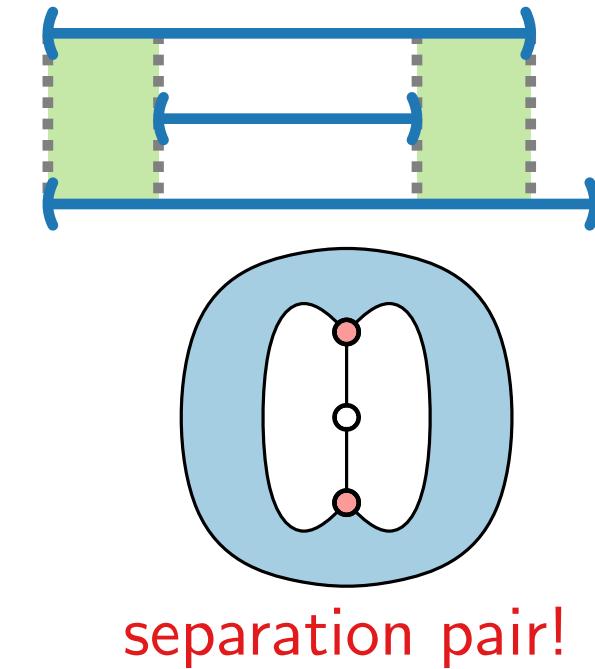
R-Nodes with 2-SAT Formulation

- for each child (edge) e :
 - find all types of $\{\text{FF,FL,LF,LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses



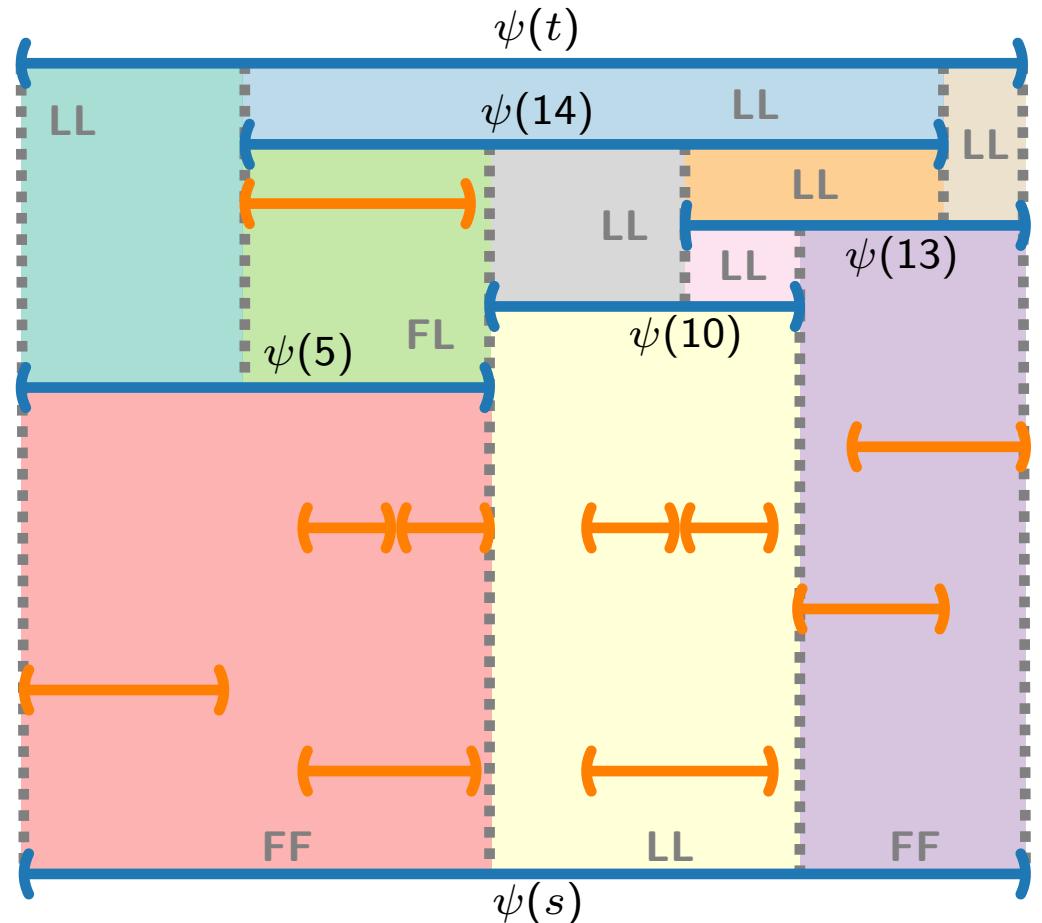
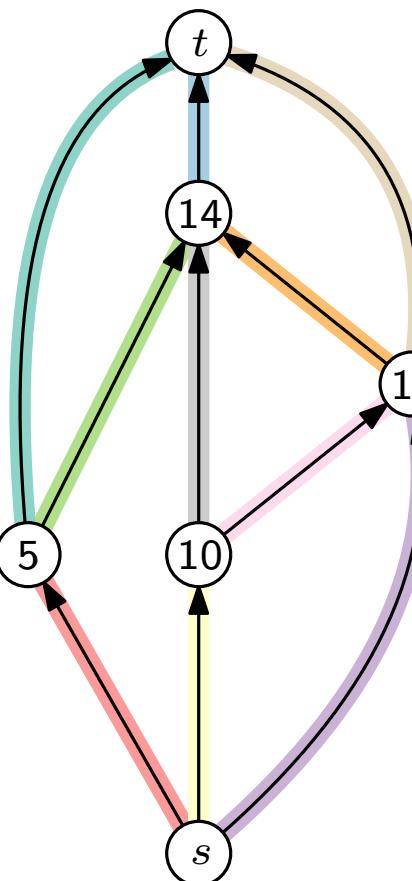
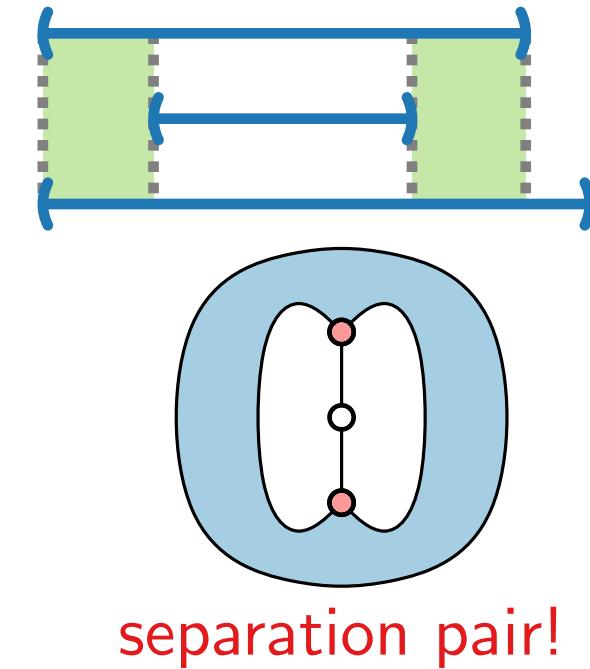
R-Nodes with 2-SAT Formulation

- for each child (edge) e :
 - find all types of $\{\text{FF,FL,LF,LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses



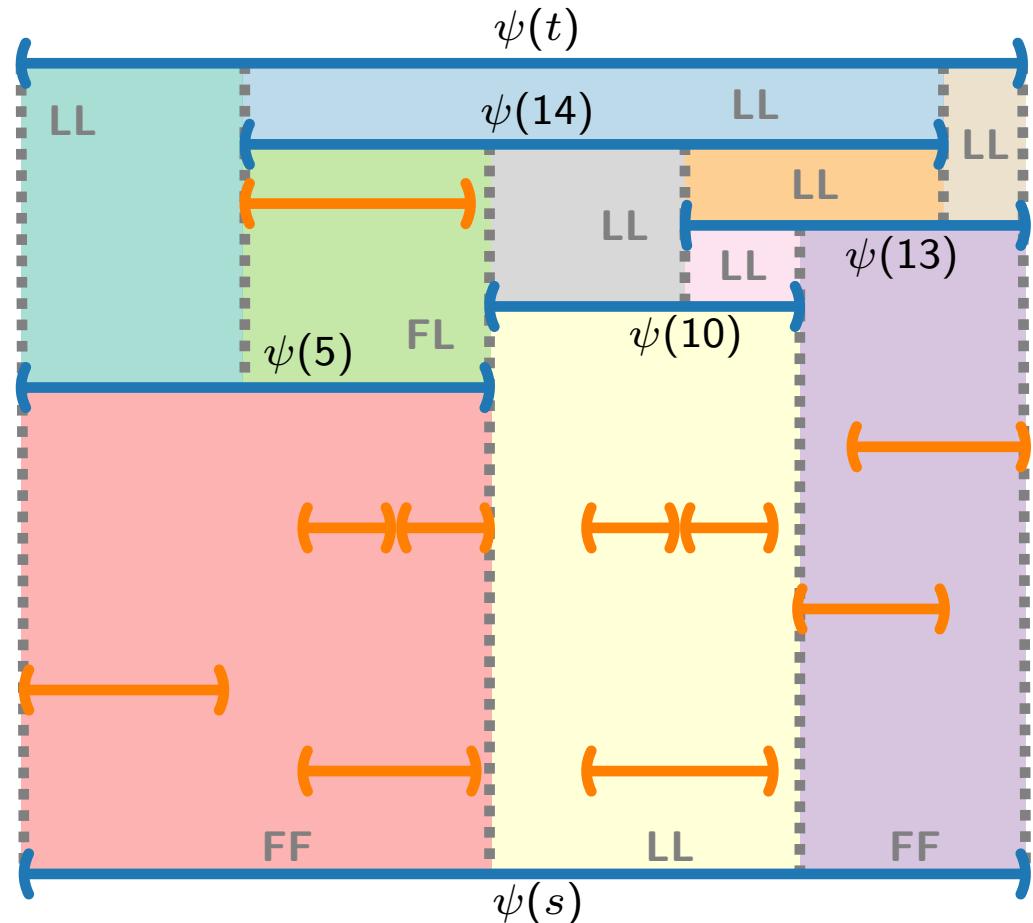
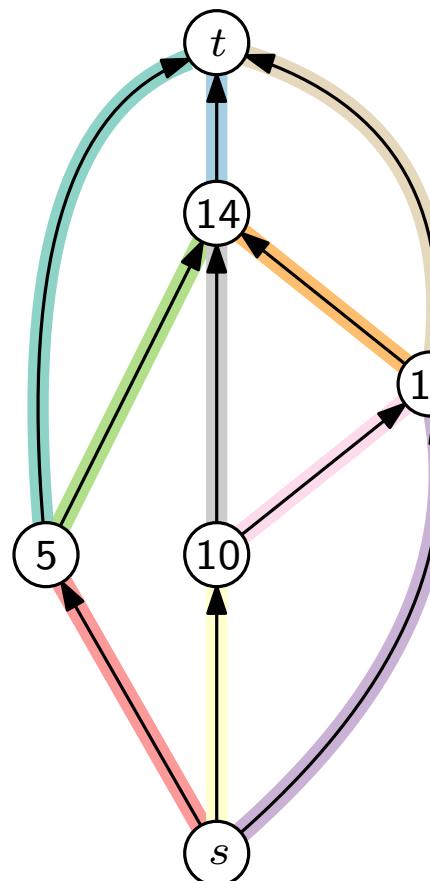
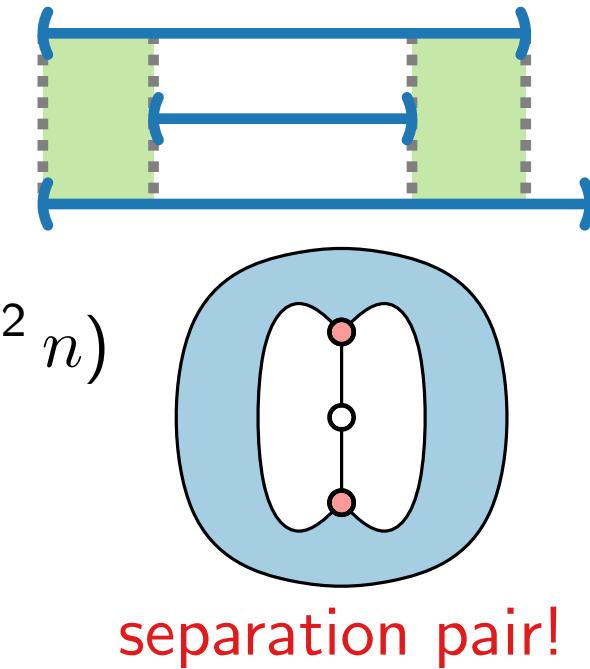
R-Nodes with 2-SAT Formulation

- for each child (edge) e :
 - find all types of $\{\text{FF,FL,LF,LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses



R-Nodes with 2-SAT Formulation

- for each child (edge) e :
 - find all types of $\{\text{FF,FL,LF,LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses – $O(n^2)$ many, but can be reduced to $O(n \log^2 n)$

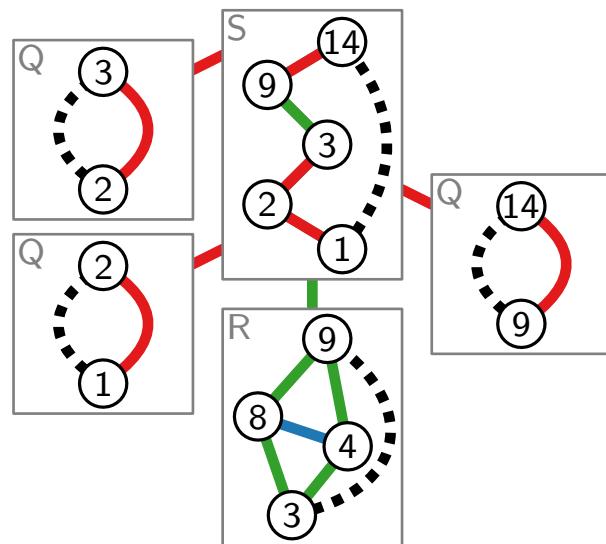
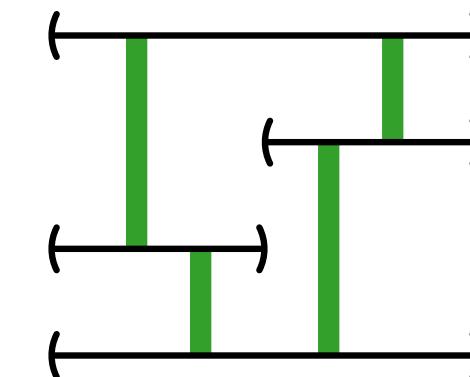


Visualization of Graphs

Lecture 9: Partial Visibility Representation Extension

Part VI:
NP-Hardness
of the General Case

Alexander Wolff



NP-Hardness of RepExt in the General Case

Theorem 2.

ε -Bar Visibility Representation Extension is NP-complete.

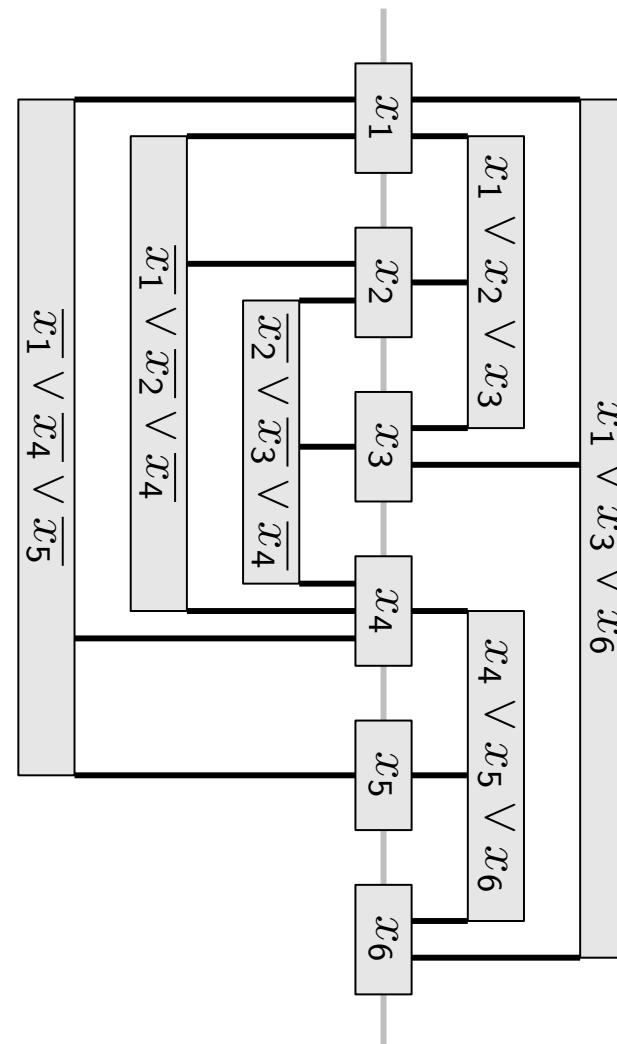
- Reduction from Planar Monotone 3-SAT

NP-Hardness of RepExt in the General Case

Theorem 2.

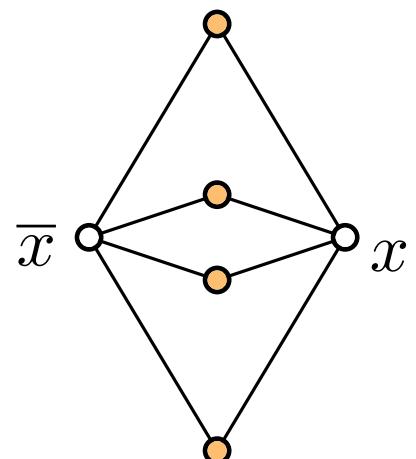
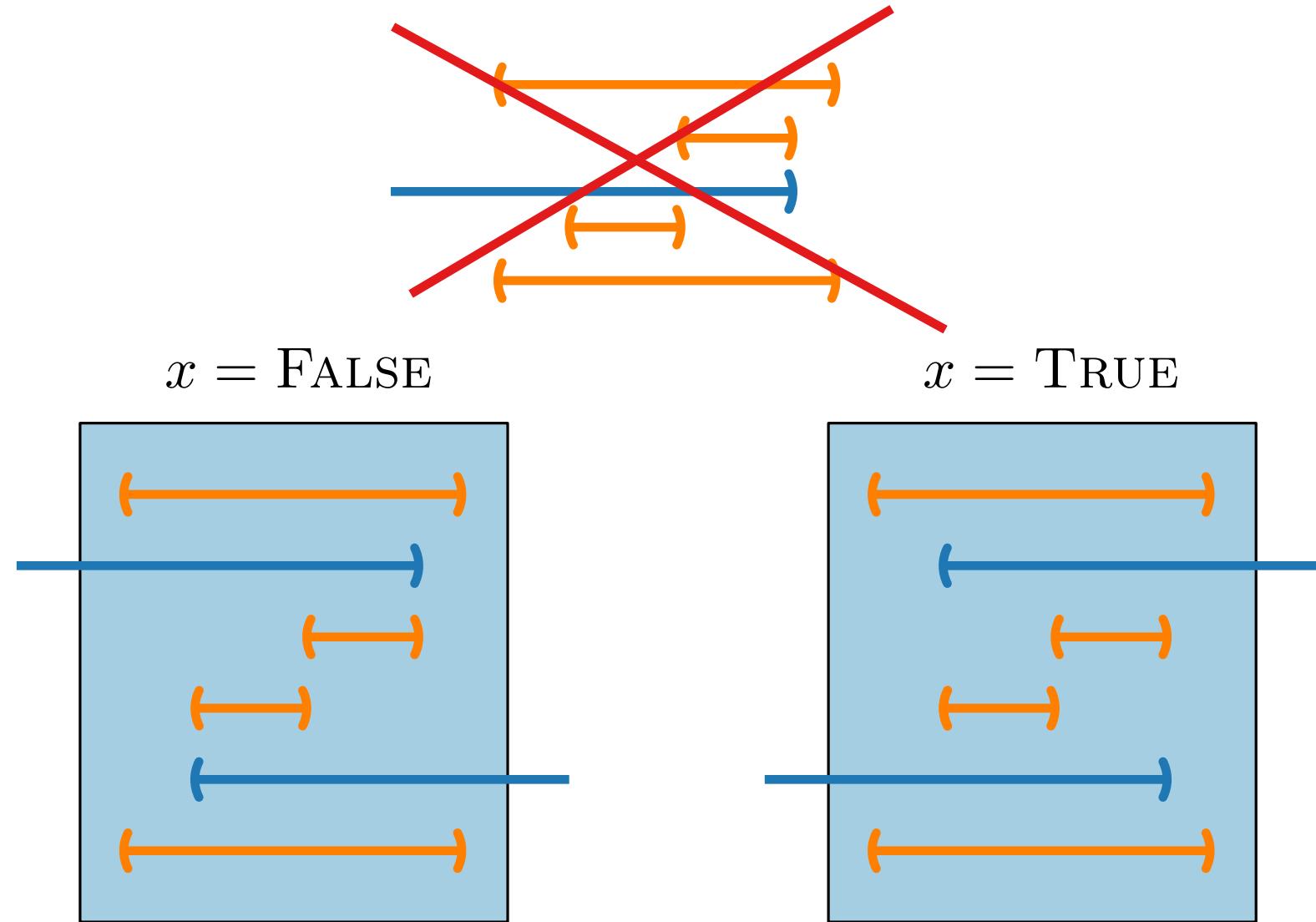
ε -Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT



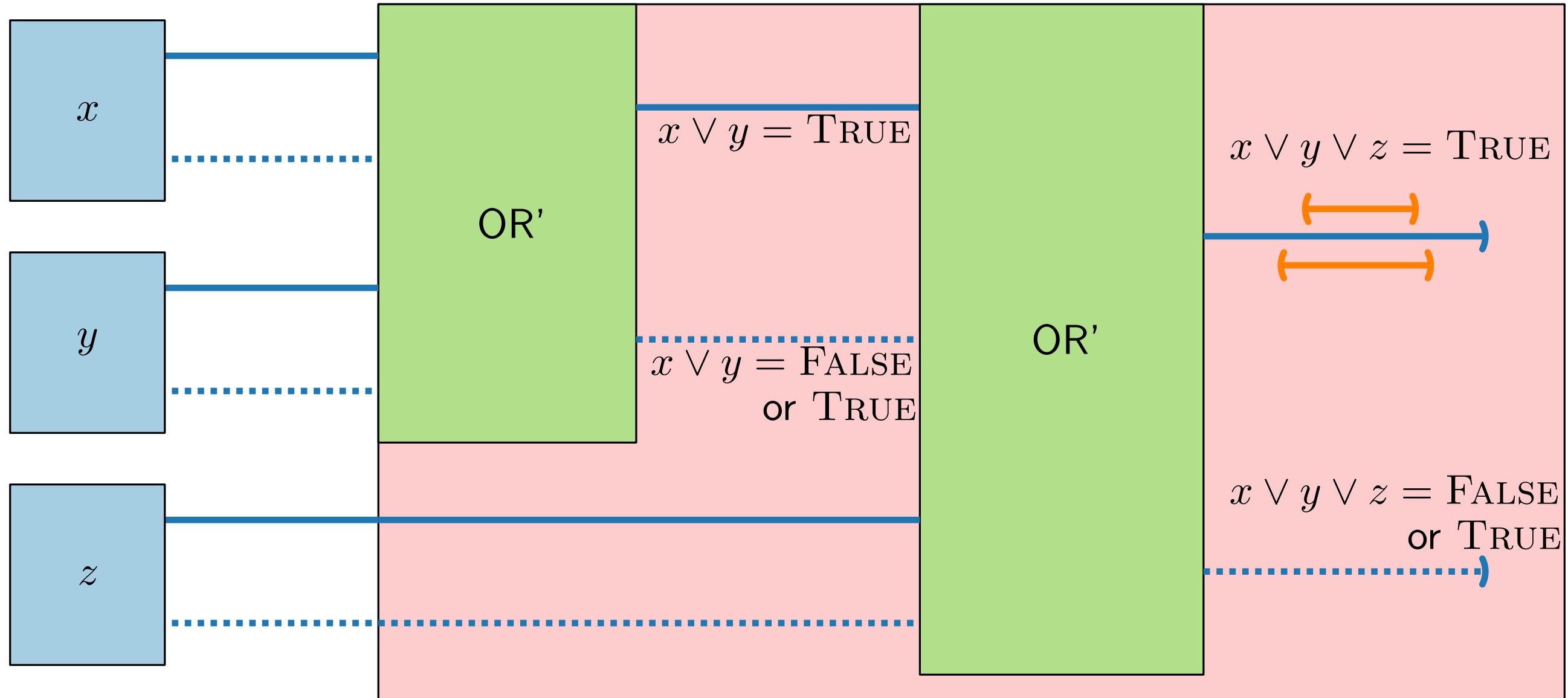
- NP-complete
[Berg & Khosravi '10]

Variable Gadget

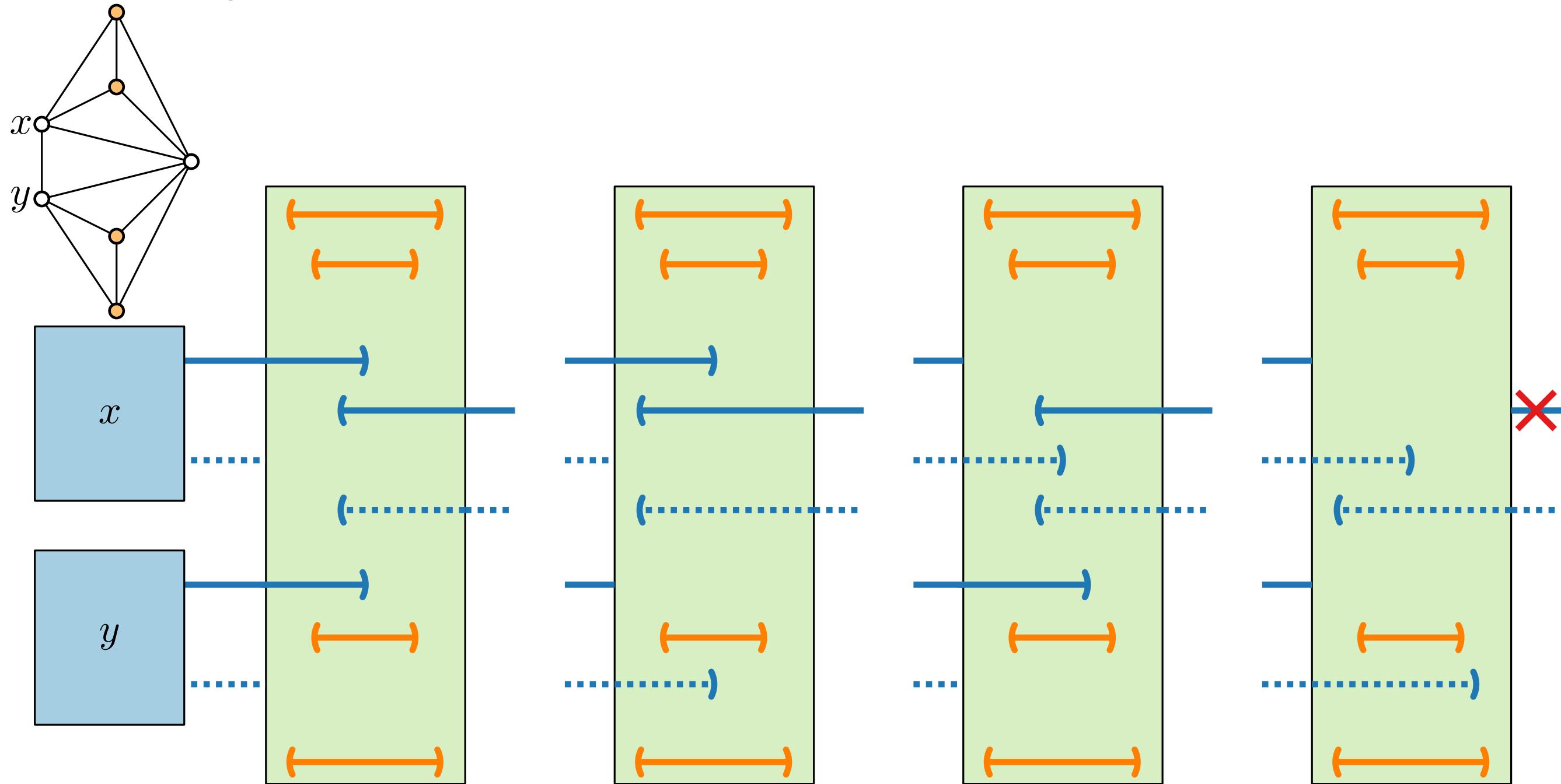


Clause Gadget

$$x \vee y \vee z$$



OR' Gadget



Discussion

- *Rectangular* ε -Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for *st*-graphs.
- ε -Bar Visibility Representation Extension is NP-complete.
- ε -Bar Visibility Representation Extension is NP-complete for (series-parallel) *st*-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can ~~rectangular~~ ε -Bar Visibility Representation Extension be solved in polynomial time for *st*-graphs? For DAGs?
- Can **Strong** Bar Visibility Recognition / Representation Extension can be solved in polynomial time for *st*-graphs?

Literature

Main source:

- [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]
The Partial Visibility Representation Extension Problem

Referenced papers:

- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Andreea '92] Some results on visibility graphs
- [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14]
Contact representations of planar graphs: Extending a partial representation is hard