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Lecture 9:
Partial Visibility Representation Extension

Part I:
Problem Definition
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Partial Representation Extension Problem

Let G = (V,E) be a graph.

Let V ′ ⊆ V and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs
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Bar Visibility Representation

� Vertices correspond to horizontal open line seg-
ments called bars.

� Edges correspond to unobstructed vertical lines of
sight.

� What about unobstructed 0-width vertical lines of
sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for ε > 0.

� Weak:
Edge uv ⇒ unobstructed vertical sightlines exists,
i.e., any subset of visible pairs

ε
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Problems
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Recognition Problem.
Given a graph G, decide whether there
exists a weak/strong/ε bar visibility
representation ψ of G.

Construction Problem.
Given a graph G, construct a
weak/strong/ε bar visibility representation ψ
of G – if one exists.

Partial Representation Extension Problem.
Given a graph G and a set of bars ψ′ of
V ′ ⊂ V (G), decide whether there exists a
weak/strong/ε bar visibility representation ψ
of G where ψ|V ′ = ψ′ (and construct ψ if a
representation exists).
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Background

Strong Bar Visibility.

� NP-complete to recognize [Andreae ’92]

Weak Bar Visibility.

� All planar graphs. [Tamassia & Tollis ’86; Wismath ’85]

� Linear time recognition and construction [T&T ’86]

� Representation Extension is NP-complete [Chaplick et al. ’14]
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Background

ε-Bar Visibility.

� Planar graphs that can be embedded with all cut vertices on
the outerface. [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension? This Lecture!
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Lecture 9:
Partial Visibility Representation Extension

Part II:
Recognition & Construction
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ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph
G with exactly one source s and one sink t
where s and t occur on the outer face of an
embedding of G.
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� ε-bar visibility testing is easily
done via st-graph recognition.

� Strong bar visibility recogni-
tion. . . open!

� In a rectangular bar visibility
representation ψ(s) and ψ(t)
span an enclosing rectangle.

Observation.
st-orientations correspond to ε-bar
visibility representations.
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Results and Outline

� Dynamic program via SPQR-trees

� Reduction from Planar Monotone 3-SAT

� Reduction from 3-Partition

� Easier version: O(n2)

Theorem 2. [Chaplick et al. ’18]
ε-Bar Visibility Representation Extension is NP-complete.

Theorem 1. [Chaplick et al. ’18]
Rectangular ε-Bar Visibility Representation Extension can
be solved in O(n log2 n) time for st-graphs.

Theorem 3. [Chaplick et al. ’18]
ε-Bar Visibility Representation Extension is NP-complete
for (series-parallel) st-graphs when restricted to the
integer grid (or if any fixed ε > 0 is specified).
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Lecture 9:
Partial Visibility Representation Extension

Part III:
SPQR-Trees
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SPQR-Tree

� An SPQR-tree T is a decomposition of a planar graph G
by separation pairs.

� The nodes of T are of four types:

� S-nodes represent a series composition

� P-nodes represent a parallel composition

� Q-nodes represent a single edge

� R-nodes represent 3-connected (rigid) subgraphs
u

v

� A decomposition tree of a series-parallel graph is an
SPQR-tree without R-nodes.

� T represents all planar embeddings of G.

� T can be computed in O(n) time. [Gutwenger, Mutzel ’01]
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SPQR-Tree Example
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SPQR-Tree Example
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Lecture 9:
Partial Visibility Representation Extension

Part IV:
Rectangular

Representation Extension
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Representation Extension for st-Graphs

� Simplify with assumption on
y-coordinates

� Look at connection to
SPQR-trees – tiling

� Solve problems for S-, P-,
and R-nodes

� Dynamic program via SPQR-
tree

1

14

2
10

3

4

5

6

7

8

9

11
12

13
8

6

5

4

2

10

11 12

13

7

14

9

3

1

Theorem 1’.
Rectangular ε-Bar Visibility Representation Extension can
be solved in O(n2) time for st-graphs.
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Representation Extension for st-Graphs

� Simplify with assumption on
y-coordinates

� Look at connection to
SPQR-trees – tiling

� Solve problems for S-, P-,
and R-nodes

� Dynamic program via SPQR-
tree
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Theorem 1’.
Rectangular ε-Bar Visibility Representation Extension can
be solved in O(n2) time for st-graphs.
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y-Coordinate Invariant

� Let y : V → R such that

� for each v ∈ V ′, y(v) = the y-coordinate of ψ′(v).

� for each edge (u, v), y(u) < y(v).

� Let G = (V,E) be an st-graph, and let ψ′ be a representation of V ′ ⊆ V .

Proof idea. The relative positions of adjacent bars must
match the order given by y.
So, we can adjust the y-coordinates of any solution to be
as in y by sweeping from bottom to top.

We can now assume that all
y-coordinates are given!

Lemma 1.
G has a representation extending ψ′ ⇔
G has a representation extending ψ′

where the y-coordinates of the bars are as in y.
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But why do SPQR-Trees help?
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Lemma 2.
The SPQR-tree of an st-graph G induces a recursive
tiling of any ε-bar visibility representation of G.
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Lecture 9:
Partial Visibility Representation Extension

Part V:
Dynamic Program
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Tiles

ψ(t)

Convention. Orange bars are from the partial representation

ψ(s)

How many different types of tiles are there?

Observation.
The bounding box (tile) of any solution ψ contains the
bounding box of the partial representation.
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Types of Tiles

� Right Fixed – due to the orange bar

� Left Loose – due to the orange bar

ψ(s)

ψ(t)

� Left Fixed – due to the orange bar

� Right Loose – due to the orange bar

ψ(s)

ψ(t)

Four different types: FF, FL, LF, LL
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P-Nodes

s

t

� Children of P-node with prescribed bars occur in
given left-to-right order

� But there might be some gaps. . .

Idea.
Greedily fill the gaps by preferring to “stretch”
the children with prescribed bars.

Outcome.
After processing, we must know the valid
types for the corresponding subgraphs.

ψ(s)

ψ(t)

LF LF
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S-Nodes

s

t

ψ(s)

ψ(t)

This fixed vertex
means we can only
make a Fixed-Fixed
representation!
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S-Nodes

s

t

This fixed vertex
means we can only
make a Fixed-Fixed
representation!

Here we have a
chance to make all
(LL, FL, LF, FF)
types.

ψ(s)

ψ(t)

s

t

ψ(s)

ψ(t)
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R-Nodes with 2-SAT Formulation

� for each child (edge) e:

� find all types of {FF,FL,LF,LL} that admit a drawing

� 2 variables le, re encoding fixed/loose type of its tile

� consistency clauses
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R-Nodes with 2-SAT Formulation

� for each child (edge) e:

� find all types of {FF,FL,LF,LL} that admit a drawing
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R-Nodes with 2-SAT Formulation

� for each child (edge) e:
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R-Nodes with 2-SAT Formulation

� for each child (edge) e:

� find all types of {FF,FL,LF,LL} that admit a drawing

� 2 variables le, re encoding fixed/loose type of its tile

� consistency clauses
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– O(n2) many, but can be reduced to O(n log2 n)
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Lecture 9:
Partial Visibility Representation Extension

Part VI:
NP-Hardness

of the General Case
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NP-Hardness of RepExt in the General Case

� Reduction from Planar Monotone 3-SAT

Theorem 2.
ε-Bar Visibility Representation Extension is NP-complete.
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NP-Hardness of RepExt in the General Case

� Reduction from Planar Monotone 3-SAT

� NP-complete
[Berg & Khosravi ’10]
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Theorem 2.
ε-Bar Visibility Representation Extension is NP-complete.
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Variable Gadget

xx

x = False x = True
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Clause Gadget

x

y

z

x ∨ y ∨ z

x ∨ y = True

x ∨ y = False

OR’

x ∨ y ∨ z = True

x ∨ y ∨ z = False

OR’

or True

or True
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OR’ Gadget
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Discussion

� Rectangular ε-Bar Visibility Representation Extension can be
solved in O(n log2 n) time for st-graphs.

� ε-Bar Visibility Representation Extension is NP-complete for
(series-parallel) st-graphs when restricted to the Integer Grid
(or if any fixed ε > 0 is specified).

� ε-Bar Visibility Representation Extension is NP-complete.

Open Problems:

� Can rectangular ε-Bar Visibility Representation Extension be
solved in polynomial time for st-graphs? For DAGs?

� Can Strong Bar Visibility Recognition / Representation
Extension can be solved in polynomial time for st-graphs?
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