Julius-Maximilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs
il Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Part I:
The Framework

Tim Hegemann



Hierarchical Drawings — Motivation




Hierarchical Drawings — Motivation

16‘2/ 12 4
N\
28‘_2\ /'15\

S —
3

‘ 2
2 /

4
17
3

4
5
2 T P13

6
N

v




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards




Hierarchical Drawing

Problem Statement. o D
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards

B edge crossings minimized




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards

B edge crossings minimized

B edges as short as possible




Hierarchical Drawing

Problem Statement.
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards

B edge crossings minimized

B edges as short as possible

B vertices evenly spaced




Hierarchical Drawing

Problem Statement. o D
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards

B edge crossings minimized

B edges as short as possible

B vertices evenly spaced

Criteria can be contradictory!



Hierarchical Drawing — Applications

yEd Gallery: Java profiler JProfiler using yFiles

) ViewActionDemo - JProfiler 7.2.2 ) e X
Session View Profiling GoTo Window Help
G d 39 Z2 PR 0 6 @ &= 8 Y
Start Save Add ! Record Record Start d Session  iew d d Take d ! GoTo = Show
By D g ey e UGS g BT Mowmy @RU Teddw  Sohen Scies el Snapshot Back Forward o\ v NSNS
lﬁ Heap Walker Object Graph a
The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships and connections. @
Memory Views
[ Use ..~ H & show Paths To GC Root || o Find path between two selected nodes |

Heaﬁlker
&

[T I

CPU Views == & | e
=y ?
& —
Thread Views

Monitor Views

a
c

& = '|
= re =
WM Telemetry Views e R -
pre— ) e ‘
s e 2 :\\
* =\
@® N\ — = ||
_ ,

!

ipaiar =)

| ———
\E

JEE & Probes

%

e

%.%
it

o
I

LEEEEEE

I

Tomin

el

] Teaite

lg
T
H

p

|
|

ﬂ

4

Selaction step 2 : Class
E 1 instance of y.view.GraphzD

Selection step 1 : All objects after full GC
39240 objects in 1104 classes, 15172 arrays

| Classes [ Allacations Biggest Objects References [ Time Inspections Graph

Y XIll 6317 &7 Profiing




H Iera rCh Ica | D raWI ng _ Ap pI ICatIOnS yEd Gallery: Java profiler JProfiler using yFiles

= ViewActionDemo - JProfiler 7.2.2 ) e X
Session View Profiling GoTo Window Help
Gatd 39 42 BFR 04 @ @ &= Bd
CS::tr:r kel Snapshot Erecigiigles Boi?':ark ::::or?y Rs;rﬂd Tritcili-:\g g:tsts:‘gr; S;i::\vgs el Snlztiot Beels o] gtoaTrto |s:|23§von
& Heap Walker Object Graph a
The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships and connections. Dl——l
Memory Views
[ Use ..~ ] | & show Paths To GC Root || o Find path between two selected nodes |
H E%lk : ﬂ; — |
eap Walker | i
I |
& === /| | )_

—R2-D2

' HEWIE
(=Fe2-D,

R YYIT)

. : = /__-/-"_CHW;-.E—/—\_/

HEWIE

Star Wars (Original Trilogy)

+

STAR WARS

’“"\ (ORIGINAL TRILOGY)
———————— ﬂfm \W

/L = —

—— ﬁj
HAN:
HELNE
e ———
EGA- - — - S e o ——-mm--i—;;l-wa
TSI O YOI
n . . . L
Seloction step 1 : Al objects after full GC Source: " Design Considerations for Optimizing
| || 39240 cblects in 1104 classes, 15172 arays Storyline Visualizations” Tanahashi et al.
— Classes %] Allocations Biggest Objects References [ Time Inspections Graph

Y Ad= 53117 & Profiling




Hierarchical Drawing —

Applications

COADH OF SOTCK MY THOL GO AL FICUS:

i

el
o - L ]
~ 0 )
o . @
L
" L AR
w. mmuﬂ“’ﬁ
L. A 0@
- =—
L L e
® - B9 - Tk (% o9~
oy o s
ST e/ el 2
I h. ) m“ el T S ) ®
B @socqgo O o, =
J I | o = iy #@i
| 3 .
% ‘f hu.m ® ot ./‘ — )
-4 i L) s | ) < i [ ] ;"
fi e O 4 y nBTE %) @ T
/! A W eS| WL s S
o w=Foee 6.3 Q2= o
' R L, o g
T 2e = o~ ey e
e
[ i
s
(o
® s B
T Q‘" MQ o]
LEGEND OF THE MYTH
CaMLY MTUC MY Y ISEE MR s
7]
=1 L)
BER ey - — s
[P : e 5 o O @ o [ ] [ ]
o e e e Py o { ab { ) ® 0
e —~r 20209020
e I T
ooy y M
CRCLEIM T T —— f = A —

" K
TES MRS WL B MWy op LR

Source: Vishalization that won
the Graph ' Drawing Contest 2016. Klawitter & Mchedlidze

yEd Gallery: Java profiler JProfiler using yFiles

ViewActionDemo - JProfiler 7.2.2

4 @ & &= 84

Take GoTo = Show
Snapshct Start |Selection

e
Settings

Help Back Formward

t set is changed. You can add objects from different object sets and explore their relationships and connections.

hd path between two selected nodes |

(G
G
(=

R YYIT)

s/ Star Wars (Original Trilogy)

+ +

B

Source: " Design Considerations for Optimizing
Storyline Visualizations” Tanahashi et al.

jects || References [ Time [Z] Inspections [34] Graph

Y Ad= 53117 & Profiling




Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input

6




Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input

6




Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ———» Cycle Breaking




Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle Breaking » Leveling




Classical Approach — Sugiyama Framework

[Sugiyama, Tagawa, Toda '81]

Input ———» Cycle Breaking

» Leveling ——

5. Crossing
Minimization



Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle Breaking » Leveling ——

Vertex
Minimization Positioning

5. Crossing >



Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle Breaking » Leveling ——

Vertex
Minimization Positioning Drawing

5. Crossing




Julius-Maximilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs
il Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Part |I:
Cycle Breaking

Jonathan Klawitter



Step 1: Cycle breaking

Input —» Cycle Breaking » Leveling ——

Vertex
Minimization Positioning Drawing

5. Crossing > »  Edge




Step 1: Cycle breaking

Approach.




Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).

B Input: directed graph G = (V, F)
m Output:



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).

B Input: directed graph G = (V, F)
B QOutput: min. set £~ C FE, so that G — E™ acyclic



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK % SET (FIS).

B Input: directed graph G = (V, F)

B QOutput: min. set £ C F, so that M* acyclic
G- E"+ E7



Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK % SET (FIS).

B Input: directed graph G = (V, F)
B QOutput: min. set £ C F, so that M* acyclic
G—-E"+ L7

... NP-hard ()



Heuristic 1
[Berger, Shor "90]



Heuristic 1

[Berger, Shor "90] \V
v

N7 (v) = Aw,uw)|(v,u) € E}



Heuristic 1

[Berger, Shor "90] X
(%

: {(v,u)|(v,u) € E}
N (v) = {(u,v)|(u,v) € E}

2
1

S

|



Heuristic 1

[Berger, Shor "90] X
(%

N7 (v) = Aw,uw)|(v,u) € E}
N (v) = {(u,v)|(u,v) € E}
N(w) = N (v)UN" (v)



Heuristic 1
[Berger, Shor "90]

(%
GreedyMakeAcyclic(Digraph G = (V, E)) /f'\

= {(v,u)|(v,u) € F}
N (v) = {(u,v)|(u,v) € E}
N(v) = UNT(v)



Heuristic 1
[Berger, Shor "90]

(%
GreedyMakeAcyclic(Digraph G = (V, E)) /f'\
E' '+ 0

= {(v,u)|(v,u) € F}
N (v) = {(u,v)|(u,v) € E}
N(v) = UNT(v)

return (V, £")



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E)) /f'\
E' 0
foreach v € V do
— {(vu)|(v,u) € F}
N (v) = {(u,v)|(u,v) € E}
N(v) = UN"(v)

return (V, E')



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E)) /f'\
E' '+
foreach v € V do
if | | > |N" (v)] then = {(v,u)|(v,u) € E}
N (v) = {(u,v)|(u,v) € E}
N(v) = UN"(v)

return (V, E')



Heuristic 1
[Berger, Shor "90]

v
GreedyMakeAcyclic(Digraph G = (V, E)) /f'\
E' '+
foreach v € V do
if | / | ? |IN""(v)| then = {(v,u)|(v,u) € E}
| B« E'U N @) = {(u,v)|(u,v) € E}
N(v) = UN"(v)

return (V, E')



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E
foreach v € V do
if | | > |[NT (v)] then
L E' « E' U

return (V, E’)

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 10



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))

E 0
foreach v € V do
if | | > |N" (v)| then
/ /
L E' « E' U N (v)
else
N
| E'« E'UN“(v) (v)

return (V, E’)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 11



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))

E 0
foreach v € V do
if | | > |N" (v)| then
/ /
L E' « E' U N (v)
else
N
| E'« E'UN“(v) (v)

return (V, E’)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 12



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

AN

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 13



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

AN

B G =(V,E)is a DAG

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 14



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

AN

B G =(V,E)is a DAG

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 15



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG /K\

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 16



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 17



Heuristic 1
[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))
E
foreach v € V do
if | | > |[NT (v)] then
/ /
L E' « E' U N (v)

else
| B« E'UN"(v) N(v)

_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

A

(v, u)|(v,u) € B}
{(u,v)|(u,v) € £}
UN" (v)

- 18



Heuristic 1
[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))
E
foreach v € V do
if | | > |[NT (v)] then
/ /
L E' « E' U N (v)

else
| B« E'UN"(v) N(v)

_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

A

(v, u)|(v,u) € B}
{(u,v)|(u,v) € £}
UN" (v)

- 19



Heuristic 1
[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))
E
foreach v € V do
if | | > |[NT (v)] then
/ /
L E' « E' U N (v)

else
| B« E'UN"(v) N(v)

_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

A

(v, u)|(v,u) € B}
{(u,v)|(u,v) € £}
UN" (v)

- 20



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 21



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

(v, u)|(v,u) € E}
{(u,v)|(u,v) € E}
UN" (v)

- 22



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

Yy

- 23



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

Y Y

- 24



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

4 4 4
4 4 4
’ ’ ’

- 25



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

4 4 4
4 4 4
’ ’ ’

- 26



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

B [ime:

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

4 4 4
4 4 4
’ ’ ’

- 27



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

N*(v)
N(v)

A

= {(v,u)|(v,u) € F}
= {(u,v)|(u,v) € F}
= UNT (v)

B Time: O(n+m)

4 4 4
4 4 4
’ ’ ’

- 28



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

A

= {(v,u)|(v,u) € F}
N (v) = {(u,v)|(u,v) € E}
N(v) = UNT (v)

B Time: O(n+m)

B Quality guarantee: |E'| >

4 4 4
4 4 4
’ ’ ’

- 29



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG ﬂ

B F\ F'is a feedback set

A

= {(vu)l(v.u) € E)
N (v) = {(u,v)|(u,v) € E}
N(v) = UNT (v)

B Time: O(n+m)
B Quality guarantee: |E’'| > |E|/2

4 4 4
4 4 4
’ ’ ’

- 30



Heuristic 2
[Eades, Lin, Smyth '93]




Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do

L




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)




Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)

- 10



Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)

- 11



Heuristic 2
[Eades, Lin, Smyth '93]
E 0
while V # () do
while in V exists a sink v do
E' < E'"UN"(v)
L remove v and N* (v)

- 12



Heuristic 2
[Eades, Lin, Smyth 93]
E 0
while V # () do
while in V exists a sink v do
E' < E'UN"(v)
L remove v and N* (v)

- 13



Heuristic 2
[Eades, Lin, Smyth 93]
E 0
while V # () do
while in V exists a sink v do
E' < E'UN"(v)
L remove v and N* (v)

Remove all isolated vertices from V

_14



Heuristic 2
[Eades, Lin, Smyth 93]
E 0
while V # () do
while in V exists a sink v do
E' < E'UN"(v)
L remove v and N* (v)

Remove all isolated vertices from V

- 15



Heuristic 2
[Eades, Lin, Smyth 93]
E 0
while V # () do
while in V exists a sink v do
E' < E'UN"(v)
L remove v and N* (v)

Remove all isolated vertices from V

- 16



Heuristic 2
[Eades, Lin, Smyth '93]

E 0
while V # () do

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

L

while in V' exists a sink v do

Remove all isolated vertices from V

do

- 17



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L

L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

while in V' exists a sink v do

Remove all isolated vertices from V

do

- 18



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L

L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

while in V' exists a sink v do

Remove all isolated vertices from V

do

\

- 19



Heuristic 2
[Eades, Lin, Smyth 93]

E «— 0

while V # () do

L

L

E' < E'UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

while in V' exists a sink v do

Remove all isolated vertices from V

do

- 20



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

while in V' exists a sink v do

Remove all isolated vertices from V

do

- 21



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

- 22



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

- 23



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |
E' + E'"U

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

24



Heuristic 2
[Eades, Lin, Smyth 93]

E «— 0

while V # () do

L
L

E' < E'UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |
E' + E'"U

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

- 25



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |
E' + E'"U
remove v and N(v)

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

- 26



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

E' < E'"UN"(v)
remove v and N* (v)

while in V' exists a

E +— FE' U
remove v and

if VV # ( then

let v € V such that |
E' + E'"U
remove v and N(v)

while in V' exists a sink v do

do

Remove all isolated vertices from V

| — [NT (v)| maximal

- 27



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 28



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 29



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 30



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

-31



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 32



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 33



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 34



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 35



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 36



Heuristic 2
[Eades, Lin, Smyth '93]
E B Time: O(n+m)
while V # () do
while in V' exists a sink v do
E' < E'UN"(v)
L remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do
E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)

remove v and N(v)

- 37



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # () do
while in V exists a sink v do E'| > |E|/2+|V]/6

L
L

B Time: O(n+m)
B Quality guarantee:

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V # () then

let v € V such that |V " (v)| — |N" (v)] maximal
E' < E'UN "(v)
remove v and N(v)

- 38



Julius-Max imilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs
il Lecture 7:

Hierarchical Layouts:
Sugiyama Framework

Part |1l
Leveling

Jonathan Klawitter



Step 2: Leveling

Input ———» Cycle Breaking

» Leveling —

5. Crossing > V.e.rte>.<
Minimization Positioning

»  Edge

Drawing

11 -



Step 2: Leveling

Problem.

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)
m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)
m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers,

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(1)

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(V)]
B length of the longest edge,

11 -



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(V)]
B length of the longest edge, i.e. max,,cx y(v) — y(u)

11 -



11-10

Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(V)]
B length of the longest edge, i.e. max,,cx y(v) — y(u)
B width,



11-11

Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(V)]
B length of the longest edge, i.e. max,,cx y(v) — y(u)
B width, i.e. max{|L;| |1 <7 <h}



11-12

Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e. [y(V)]

B length of the longest edge, i.e. max,,cx y(v) — y(u)
B width, i.e. max{|L;| |1 <7 <h}

B total edge length,



Step 2: Leveling

Problem.
B Input: acyclic digraph G = (V, E)
m Output: Mapping y: V — {1,...n},
so that for every uwv € F, y(u) < y(v).
Objective is to minimize . ..

B number of layers, i.e. [y(V)]
B length of the longest edge, i.e. max,,cx y(v) — y(u)
B width, i.e. max{|L;| |1 <7 <h}

B total edge length, i.e. number of dummy vertices

11-13



Min Number of Layers

Algorithm.

12 -



Min Number of Layers

Algorithm.

B for each
set =1

12 -



Min Number of Layers

Algorithm.

B for each
set =1

12 -



Min Number of Layers

Algorithm.

B for each
set =1

12 -



12 -

Min Number of Layers

Algorithm.

B for each
set =1

B for each non-source v
set y(v) := max{y(u) |uv € E} +1




12 -

Min Number of Layers

Algorithm.

B for each
set =1

B for each non-source v
set y(v) := max{y(u) |uv € E} +1

Observation.

m y(v)



Min Number of Layers

Algorithm.

B for each
set =1

B for each non-source v
set y(v) := max{y(u) |uv € E} +1

Observation.

v

B y(v) is length of the longest path from a to v plus 1.

—




Min Number of Layers

Algorithm.
B for each
set =1 A
B for each non-source v v
set y(v) := max{y(u) |uv € E} +1 =
Observation.
B y(v) is length of the longest path from a to v plus 1.

... which is optimal!

—




Min Number of Layers

Algorithm.

B for each
set =1

B for each non-source v
set y(v) := max{y(u) |uv € E} +1

Observation.

v

B y(v) is length of the longest path from a to v plus 1.

... which is optimal!

B Can be implemented in linear time with recursive algorithm.

—




13-1

Example

18

16

13

30

27

28

12

14

17

15

2

3

14

21

20

v

17

I— ]

27

22

26

21

18

20

30




Example




Total Edge Length — ILP

Can be formulated as an integer linear program:

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)eE(y(U) —y(u))
subject to

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)eE(y(U) — y(u))
subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YoeV

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)eE(y(U) — y(u))
subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z Yo eV

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:

B Constraint-matrix is totally unimodular

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:
B Constraint-matrix is totally unimodular

= Solution of the relaxed linear program is integer

14 -



Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:
B Constraint-matrix is totally unimodular
= Solution of the relaxed linear program is integer

B The total edge length can be minimized in polynomial time

14 - 10



Width

[T [ |

Drawings can be very wide.

] O

15



Narrower Layer Assignment

Problem: Leveling With a Given Width.

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
processing time.

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
processing time.

® NP-hard,

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
processing time.

B NP-hard, (2 — 5 )-Approx.,

16 -



Narrower Layer Assignment

Problem: Leveling With a Given Width.
B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
processing time.

B NP-hard, (2 — 5)-Approx., no (5 — €)-Approx. (W > 3).

16 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs

B a job in L is available when all its predecessors have been scheduled

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs
B a job in L is available when all its predecessors have been scheduled

B as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine

17 -



Approximating PCMPS

Input:

Precedence graph

45

N,/

3
\

JegiS ey,
\ / \G

17 -



Approximating PCMPS

Input:

Precedence graph

38
2 / \ ~E
1435:5 SIS, NG
\4/ \ ARG

Number of Machines is W = 2.

17 -



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

17 -



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My

My

t

12345673 910

17 -



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My

1

My

t

12345673 910

17 -



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule
M| 1
My | —

t |1

2
3
2 345 6 7 8 910

17 - 10



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My 1 2 4
My| — 3 —
t 11234567 8910

17 - 11



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My

My

t

12345673 910

17 - 12



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My

1 2 456

My

-3 - -7

t

12345673 910

17 - 13



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

My|1 2 45 6 8
M| -3 - —-T79
t 11234567 8910

17 - 14



Approximating PCMPS

Input: Precedence graph

2 /
1{:3}»5::?3
N,/ ~

Number of Machines is W = 2.

Output:  Schedule

Myl 1 2 456 8 A
My| -3 - -7 9B
t 11234567 8910

17 - 15



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

M;|1 2456 8 AC
M| -3 --79BD
t 11234567 8910

17 - 16



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

M;|1 2456 8 ACE
M| -3 -—-7 9 BDF
t 11234567 8910

17 - 17



Approximating PCMPS

Input: Precedence graph
3
/ 2 \ / \ ~E
— 9 —P ~a
l1—~3— 5 \ \ F
\ /‘ I —=A—D
4 \ ol Ye

Number of Machines is W = 2.

Output:  Schedule

M| 124568 ACESG
M| -3 --79 BDF -
t 11234567 8910

17 - 18



Approximating PCMPS

Input:

Output:

Precedence graph
0N, 6L

l1—3— 5 ::
NS TR

Number of Machines is W = 2.

8
9
A

\
~a XF
/ e

Schedule

M{|1 2 456 8 ACE
M| -3 - -7 9 BDF
t |11 23 456789

Question: Good approximation factor?

17 - 19



Approximating PCMPS - Analysis for W = 2

Precedence graph G-

8
2 o . ~E
14335"6<.'9<.'C>\§F

Schedule

Mi|1 2 456 8 ACEG
My|-—3 - -7 9 BDF -
t |11 23 4567 8 910

The art of the lower bound”

18 -



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1—-3-»5::73AS._’D§§F M- 3 - -7 9BDF -
N, SAFPQ [t 1234567809010

The art of the lower bound”

OPT >



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1—-3-»5::73AS._’D§§F M- 3 - -7 9BDF -
N, N7 | 12345678010

The art of the lower bound”

OPT > [n/2]



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1»3-»5:"73A3D>\§F M- 3 - -7 9BDF -
N, N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT >



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1»3-»5:"73A3D>\§F M- 3 - -7 9BDF -
N, N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule
/4\ /\/E Mi|12 4568 ACESGQG
v 60— ->
1<:3/ ‘7:=A:=D>{F Myl -3 --79 BDF -
D t |11 234567 38 910
D e

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

18 -



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1»3-»5:"73A3D>\§F M- 3 - -7 9BDF -
N, SAFPQ [t 1234567809010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG <

18 -



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/2\C/'E->Ml 124568 ACES®G
1—-3-»5::73AS._’D§§F My|—3==79BDF -
N, SAFPQ [t 1234567809010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG <

18 -



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG <

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18 -



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG < [”TMW

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18- 10



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG < [”TJFQ ~

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18- 11



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG < [2H] =~ [n/2]+¢/2

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18 - 12



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/42\ 6/S\C/'E->Ml 124568 ACES®G
1—>3—>5::73A3D>\£F My|—3==79BDF -
N, SAFPQ [t 1234567809010

The art of the lower bound”

OPT > [n/2] and OPT > _¢ := Number of layers of G

Goal: measur uality of our algorithm using the lower bounds

Bound. ALG < [ZH] =~ [n/2]+¢/2 <

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18- 13



Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG < [2H] ~ [n/2]+£/2 < 3/2.OPT

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G

18- 14



18- 15

Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /£ := Number of layers of G

Goal: measure the quality of our algorithm using the lower bounds

< (2—1/W)- OPT in general case

Bound. ALG < [2H] ~ [n/2]+¢/2 < 3/2-OPT

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G



Julius-Maximilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs

Lecture 7:
Hierarchical Layouts:
Sugiyama Framework

Part IV: 774

Crossing Minimisation

Jonathan Klawitter



Step 3: Crossing Minimization

Input — > Cycle Breaking
3

1 6 7 6

» Leveling ——

Vertex
Minimization Positioning

. Crossing

Drawing

20 -



Step 3: Crossing Minimization

Problem.

20 -



Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V — {1,... n}

20 -



20 -

Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V — {1,... n}

® Output:  (Re-)ordering of vertices in each layer
so that the number of crossings in minimized.



20 -

Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V — {1,... n}

® Output:  (Re-)ordering of vertices in each layer
so that the number of crossings in minimized.

B NP-hard, even for 2 Iayers [Garey & Johnson '83]



Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V — {1,... n}

® Output:  (Re-)ordering of vertices in each layer
so that the number of crossings in minimized.

B NP-hard, even for 2 Iayers [Garey & Johnson '83]

B hardly any approaches optimize over multiple layers :(

20 -



lterative Crossing Reduction — ldea

21 -



lterative Crossing Reduction — ldea

Observation.
The number of crossings only depends on permutations of adjacent layers.

[] [] []

21 -



lterative Crossing Reduction — ldea

Observation.
The number of crossings only depends on permutations of adjacent layers.

[] [] []

L

B Add dummy-vertices for edges connecting “far’” layers.

21 -



lterative Crossing Reduction — ldea

Observation.
The number of crossings only depends on permutations of adjacent layers.

[] [] []

L

B Add dummy-vertices for edges connecting “far’” layers.
m Consider adjacent layers (L1, L), (L2, L3),... bottom-to-top.

21 -



lterative Crossing Reduction — ldea

Observation.
The number of crossings only depends on permutations of adjacent layers.

[] [] []

L

B Add dummy-vertices for edges connecting “far’” layers.
m Consider adjacent layers (L1, L), (L2, L3),... bottom-to-top.

B Minimize crossings by permuting L; 1 while keeping L; fixed.

21 -



lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L

22 -



lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L

(2) iteratively consider adjacent layers L; and L;q

22 -



lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L
(2) iteratively consider adjacent layers L; and L;q

3) minimize crossings by permuting L;,1 and keeping L, fixed
_|_

22 -



lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L

(2) iteratively consider adjacent layers L; and L;q

(3) minimize crossings by permuting L;.1 and keeping L; fixed
(

4) repeat steps (2)—(3) in the reverse order (starting from Lj,)

22 -



lterative Crossing Reduction — Algorithm

1) choose a random permutation of L;

N

) iteratively consider adjacent layers L; and L; 4

4

(

(

(3) minimize crossings by permuting L;.1 and keeping L; fixed
(4) repeat steps (2)—(3) in the reverse order (starting from L)
(

)
5) repeat steps (2)—(4) until no further improvement is achieved



lterative Crossing Reduction — Algorithm

choose a random permutation of L4

iteratively consider adjacent layers L; and ;.

minimize crossings by permuting L;.1 and keeping L; fixed
repeat steps (2)—(3) in the reverse order (starting from Lj,)
repeat steps (2)—(4) until no further improvement is achieved

repeat steps (1)—(5) with different starting permutations

22 -



lterative Crossing Reduction — Algorithm

choose a random permutation of L4

iteratively consider adjacent layers L; and L;.

minimize crossings by permuting L;.1 and keeping L; fixed
repeat steps (2)—(3) in the reverse order (starting from Lj,)
repeat steps (2)—(4) until no further improvement is achieved

repeat steps (1)—(5) with different starting permutations

22 -



lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L one-sided crossing minimization
(2) iteratively consider adjacent layers L; and L;q

(3) minimize crossings by permuting L;.1 and keeping L; fixed

(4) repeat steps (2)—(3) in the reverse order (starting from L)

(5) repeat steps (2)—(4) until no further improvement is achieved
(6)

repeat steps (1)—(5) with different starting permutations

22 -



One-Sided Crossing Minimization

Problem.

N

//é//

I'

11

0

phs]

g G

W

D

Verlag

T
—
c
Q)
—
-
()
c

g

T

nd W

[Kaufmann u

Abb. aus

T
[
]
1
—
()

(c) Spring

23 -



One-Sided Crossing Minimization

Problem.

m Input: bipartite graph G = (L1 U Lo, F),
permutation m; on [

4 5] 3 T 5 = 14 2
‘ ~ "‘
21 a2 20 A 26 2

D 15

4 [r' <] T ‘}
AN\\Nhe e

2

-
0

2

5

13

22

12 15 9 13 1

5 27 20 22 17 30
12 9 1

17 30

11

phs]

r: Drawing Gra

nd Wagne

[Kaufmann u

Abb. aus

(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

4 5] 3 T 5 = 14 2 12 15 0 13 1 11
\ ~ "“‘ /
21 a2 20 A 26 25 2T 20 29 17 310

11

1 i & T D 15 14 3 2 13 12 9 1
— —
NS
.
21 23 29 28 25 26 27 20 22 17 30

Abb. aus [Kaufmann und Wagner: Drawing Graphs]
(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

3 T 5 = 14 2 12 15 0 13 1
~ "“‘ ” /
3 20 A 26 25 2T 20 29 17 310

21 2

11

5 1 2 1

q {
2

Abb. aus [Kaufmann und Wagner: Drawing Graphs]
(c) Springer-Verlag

12 9 1 11
T :

Wiz

3
26 27 2 22 1 30

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

5 T 5} ol 14 2 12 15 0 13 1
Algorithms. ~ é“ ’///

N K

3 29 28 26 25 27 20 22 17 30

21 2

11

5 1 2 1

Abb. aus [Kaufmann und Wagner: Drawing Graphs]

q { 12 9 1 11
2 T :

Wiz

3
26 27 2 22 1 30

(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

5 T 5} ol 14 2 12 15 0 13 1
Algorithms. ~ é“ ’///

N K

3 29 28 26 25 27 20 22 17 30

11

B barycenter heuristic
21 2

5 1 2 1

Abb. aus [Kaufmann und Wagner: Drawing Graphs]

q { 12 9 1 11
2 T :

Wiz

3
26 27 2 22 1 30

(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
|[Eades & Whitesides '94] |4+ 6 3

T 5} ol 14 2 12 15 0 13 1
Algorithms. \~ é“ ’///
N K
21 23 29 28 26 25 27 20 22 17 30

11

B barycenter heuristic

B median heuristic

5 1 2 1

q {
2

Abb. aus [Kaufmann und Wagner: Drawing Graphs]
(c) Springer-Verlag

12 9 1 11
T :

Wiz

3
26 27 2 22 1 30

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

5 T 5} ol 14 2 12 15 0 13 1
Algorithms. ~ é“ ’///

N K

3 29 28 26 25 27 20 22 17 30

11

B barycenter heuristic
21 2

B median heuristic
B Greedy-Switch

5 1 2 1

Abb. aus [Kaufmann und Wagner: Drawing Graphs]

q { 12 9 1 11
2 T :

Wiz

3
26 27 2 22 1 30

(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

5 T 5} ol 14 2 12 15 0 13 1
Algorithms. ~ é“ ’///

N K

3 29 28 26 25 27 20 22 17 30

B barycenter heuristic

11

21 2
B median heuristic

B Greedy-Switch
mILP

5 1 2 1

Abb. aus [Kaufmann und Wagner: Drawing Graphs]

q { 12 9 1 11
2 T :

Wiz

3
26 27 2 22 1 30

(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] |4+ 6

5 T 5} ol 14 2 12 15 0 13 1
Algorithms. ~ é“ ’///

N K

3 29 28 26 25 27 20 22 17 30

B barycenter heuristic

11

21 2
median heuristic

Greedy-Switch
ILP

5 1

Abb. aus [Kaufmann und Wagner: Drawing Graphs]

q { 2 1 12 9 1 11
2 T :

Wiz

3
26 27 2 22 1 30

(c) Springer-Verlag

23 -10



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

xo(u) = bary(u) = degl(u) Z x1(v)

vEN (u)

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

B Vertices with the same barycentre are offset by a small 0.

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

B Vertices with the same barycentre are offset by a small 0.

B linear runtime

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

xo(u) = bary(u) = ! Z x1(v)

B Vertices with the same barycentre are offset by a small 9.

B linear runtime

B relatively good results

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

xo(u) = bary(u) = ! Z x1(v)

Vertices with the same barycentre are offset by a small 0.

linear runtime

relatively good results

optimal if no crossings are required

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

xo(u) = bary(u) = ! Z x1(v)

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results

optimal if no crossings are required

O(+/n)-approximation factor

24 -



Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
the neighbours of w in layer Ly |27 = 4]

xo(u) = bary(u) = ! Z x1(v)

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results

optimal if no crossings are required <€ Exercise!

O(+/n)-approximation factor

24 -



24 - 10

Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of

the neighbours of w in layer Ly |27 = 4] Worst case?

xo(u) = bary(u) = ! Z x1(v)

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results

optimal if no crossings are required <€ Exercise!

O(+/n)-approximation factor



Barycenter Heuristic
[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

The barycentre of u is the mean z-coordinate of

the neighbours of w in layer Ly |27 = 4] Worst case?

. N ] Uy oV
xZ(u) T ary(U) T deg(u) Z :131(?}) 000000000000
'UEN(’U,) g ~ J/ N~~~
-1 k-1

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results
optimal if no crossings are required <€ Exercise!

O(+/n)-approximation factor

24 - 11



Barycenter Heuristic
[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

The barycentre of u is the mean z-coordinate of

the neighbours of w in layer Ly |27 = 4] Worst case?

1 U
ro(u) := bary(u) := r1(v) /&
deg(u) ve;(u) 000000000000

Po1 k-1

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results
optimal if no crossings are required <€ Exercise!

O(+/n)-approximation factor

24 - 12



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

o ra(u) ;= med(u

25 -



Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

- ra(u) == med(u) = {O when N(u) = ()

25 -



Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(’U,) p— @

m1(vrg/21) otherwise

= To(u) := med(u) := {

25 -



Median Heuristic
[Eades & Wormald '94]

B {vy,...,05} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)
. o) = med(u) = {0 when N(u) =
m1(vrg/21) otherwise

B Move vertices v und v by small §, when z3(u) = z2(v)

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N (u)

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

B Linear runtime

0

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

B Linear runtime

B Relatively good results

25 -



Median Heuristic
|[Eades & Wormald '94]

{v1,..., 0} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)

0 when N(u) = ()

m1(vrg/21) otherwise

ra(u) == med(u) = {

Move vertices u und v by small §, when x(u) = x2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise

o ra(u) == med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

3-Approximation factor

25 -



25-10

Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise

o ra(u) == med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11]



25 -11

Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) =10

m1(vrg/21) otherwise

o ra(u) == med(u) = {

Worst case?
B Move vertices v und v by small §, when z3(u) = z2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11}



25 - 12

Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) =10

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

Worst case?

B Move vertices v und v by small §, when z2(u) = x2(v) m

Linear runtime ~ = =~ =~

Relatively good results

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11}



25-13

Median Heuristic
[Eades & Wormald '94]

B {vy,...,05} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)
-~ ra(u) == med(u) = {O when N(u) =
m1(vrg/21) otherwise

Worst case?

B Move vertices v und v by small §, when z2(u) = x2(v) m

Linear runtime ~— = M~ =~
k. k+1 k41 k

Relatively good results ok + 1)+ K vs. (k+1)2

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11}



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease

B Runtime O(L;) per iteration; at most |L,| iterations

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L;) per iteration; at most |L,| iterations

B Suitable as post-processing for other heuristics

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L;) per iteration; at most |L,| iterations

B Suitable as post-processing for other heuristics

Worst case?

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo O\O\

L4

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo O\O\

L4

A\ _J/

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo o\o\ 0—9Q QO O O 0 0 0 _O0
\\
T~
\\

Ly obéoo O 0 0 0 °

A\ _J/

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo o\o\ 0—Q O O O 0 0 0_0
\\\
L obéoo O 0 0 0 °
g ),
k



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 < i < j < np :=|Ly|

U; Uy

[ X

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

0 otherwise

J
{ 1 when 7'('2(?)1') < 7T2(?Jj) MO
2137;]' —

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

0 otherwise

B The number of crossings of a permutations 5

T

cross(m) =

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

0 otherwise

B The number of crossings of a permutations 5

nz—]. no

cross(mp) = S: S:

i=1 j=i+1

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

0 otherwise

B The number of crossings of a permutations 5

nz—]. no

CFOSS(T('Q) = S: Sj (Cz'j — cji)xz-j |

i=1 j=i+1

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

0 otherwise

{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

B The number of crossings of a permutations 5

nz—]. no n2—1 no

cross(my) = S: S: (cij — cji)Tij + S: S: Cji

i=1 j=i+1 i=1 j=i+1

27 -



Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

0 otherwise

B The number of crossings of a permutations 5

no—1 no no—1 np
CFOSS(T('Q) — ;J ;J (Cz‘j — Cji)ﬂiij + ;J ;J Cjq
1=1 j3=1+1 1=1 j3=1+1

NV
constant

27 -



Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%

minimize ;J ;J (Cij — cji)xij

i=1 j=i+1

27 -



27 - 10

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize ;J ;J (Cij — cji)xij
1=1 j5=141

B Transitivity constraints:

ngij—l—azjk—xikgl for1§i<j<k§n2



27 - 11

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CI}ikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1



27 - 12

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CI}ikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1



27 - 13

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.



27 - 14

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size



27 - 15

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size



27 - 16

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size

m Finds optimal solution



27 - 17

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size
m Finds optimal solution

B Solution in polynomial time is not guaranteed



lterations on Example

.......................................................... 7 e e e e e e e e e e e mm e mmm e mmmm e em e mmmm e e m e em e mmm e m e mem e mm e ———
2
--------------------------------- 1 T
2 9
--------------------------------- 14 [N f 12 [N X] 28 [ 27 [
-------------------------------------------------------------------- ] e |
4

S YO /SR S W S W, W = O VO . Y O S 7/ [
2
2

................................................................... 4........ [, T, ..2.. R VR, TR I

4
-------- Yo Y ([SSRUURNUNS 1 T, ) (SUUURSSSI [ - S————— & () ——— T [T T — S (.1 [ —

28 -



lterations on Example

13

28 -



lterations on Example




lterations on Example




lterations on Example

------------------ 13

-------- 14

---------- [ S e
A A A A

---------- [ D g
A

28 -



lterations on Example

28 -



lterations on Example

28 -



lterations on Example

28 -



lterations on Example

28 -



Julius-Maximilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs

Lecture 7:
Hierarchical Layouts:
Sugiyama Framework

Part V:
Vertex Positioning & Drawing Edges

Jonathan Klawitter




Step 4: Vertex Positioning

Input — > Cycle Breaking
3

1 6 7 6

» Leveling ——

Vertex
Minimization Positioning

. Crossing

Drawing

30 -



Step 4: Vertex Positioning

30 -2



Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

30 -



Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

m Exact: Quadratic Program (QP)

30 -



Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

m Exact: Quadratic Program (QP)

B Heuristic: |terative approach

30 -



Quadratic Program

m Consider the path p. = (v, ..

with dummy vertices: vy, ..

., V) of an edge e = vyvg
+ 5 Uk —1

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : L Uk
B z-coordinate of v; according to the line v1v; j)-
with equal spacing):
( qual spacing) oid

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : L Uk
B z-coordinate of v; according to the line v1v; j)-
with equal spacing):
( qual spacing) oid

x(v;) =

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : L Uk
B z-coordinate of v; according to the line v1v; j)-
with equal spacing):
( qual spacing) oid

x(v;) = x(v1) +

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : L Uk
B z-coordinate of v; according to the line v1v; j)-
with equal spacing):
( qual spacing) oid

i—1 VAR
VA

x(v;) = x(v1) +

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1

B z-coordinate of v; according to the line v1v;
(with equal spacing):

r — 1

kE—1

x(v;) = x(v1) +




Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1

B z-coordinate of v; according to the line v1v;
(with equal spacing):

1 — 1
w(vr) = a(or) + +— )




Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
. : (%%
B z-coordinate of v; according to the line v1v; A j)-
(with equal spacing): oid
. I\
S i—1 [
r(v;) = z(v1) + - 1( ) [

B Define the deviation from the line o1

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
B z-coordinate of v; according to the line v1v; A wff‘
(with equal spacing): od A
7o) = o(on) + - ( ) j[
B Define the deviation from the line v '(4[;}1 v

dev(pe) :=

31-



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
. . : (%%
B z-coordinate of v; according to the line v1v; A j)-
(with equal spacing): oid
_ i1 7t
z(vs) = x(vn) + — ) [

B Define the deviation from the line o1

k—1
dev(p.) = Z
i=2

31-10



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
B z-coordinate of v; according to the line v1v; A wff‘
(with equal spacing): od A
7o) = o(on) + - ( ) j[
B Define the deviation from the line v '(4[;}1 v
k—1

dev(p.) = Z (I(Uz) - 37(“@))

1=2

31-11



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
. : : (%%
B z-coordinate of v; according to the line v1v; A j)-
(with equal spacing): oid
i—1 yak
z(vs) = x(vn) + — ) [
B Define the deviation from the line v '(«[ v

k—1

dev(p.) = Z (I(Uz) - 37(“72))2

1=2

31-12



31-13

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
B z-coordinate of v; according to the line v1v; A
(with equal spacing):
I\
—— 1 — 1
o(vr) = a(or) + — )
v v

B Define the deviation from the line

k—1

dev(p.) = Z (ZC(Uz) - 37(“72))2

1=2




Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: . . (%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. . I\
- Z -
x(v;) = x(v
() = o(v) + — )
B Define the deviation from the line v ” v

k—1

dev(p.) = Z (ZE(%) - Qf(vi))z

1=2

31-14



31-15

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : : Uk
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:



31-16

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : : Uk
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:  min ) _.dev(p.)



31-17

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
v
B z-coordinate of v; according to the line v1v; A :
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:  min ) _.dev(p.)

B Constraints for all vertices v,w in the same layer with w right of v:



31-18

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
v
B z-coordinate of v; according to the line v1v; A :
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:  min ) _.dev(p.)

B Constraints for all vertices v,w in the same layer with w right of v:
z(w) —a(v) = p(w,v)



31-19

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
v
B z-coordinate of v; according to the line v1v; A :
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:  min ) _.dev(p.)

B Constraints for all vertices v,w in the same layer with w right of v:

r(w) — x(v) > p(w,v)
min. horizontal distance



Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
. . : (%%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
q - A
- Z -
r(v;) =
(0) = w(en) + — ( )
B Define the deviation from the line v ” v
k—1 5
d e) - — ( i) — i )
ev(p ) Z; x(v ) x(v ) B QP is time-expensive

B Objective function:  min ) _.dev(p.)

B Constraints for all vertices v,w in the same layer with w right of v:

r(w) — x(v) > p(w,v)
min. horizontal distance

31-20



31-21

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : . (%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
x(v;) = x(v
B Define the deviation from the line v ” v
k—1 5
dev(pe) i= 3 (o(0) — 7(00)
ev(pe) 2; x(vz) x(vz) B QP is time-expensive
1=
B Objective function:  min ) _.dev(p.) B width can be exponential

B Constraints for all vertices v,w in the same layer with w right of v:

r(w) — x(v) > p(w,v)
min. horizontal distance



Iterative Heuristic

B Compute an initial layout

32 -



Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

32 -



Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

1. Vertex positioning,

32 -



Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

1. Vertex positioning,
2. edge straightening,

32 -



Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

1. Vertex positioning,
2. edge straightening,
3. Compactitying the layout width.

32 -



33 -

Example




33

Example




Step 5: Drawing Edges

Input — > Cycle Breaking
3

{6 —>{7 i]—>{61—>{7]

» Leveling ——

Vertex
Minimization Positioning

5. Crossing 3

Drawing

34 -



Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves

34 -



35 -

Example










Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

Vertex

5. Crossing ertex
minimization positioning drawing

36 -



Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

Vertex

5. Crossing ertex »  Edge
minimization positioning drawing

36 -



Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

m Flexible framework to draw directed graphs

B Sequential optimization of various criteria

5 Crossing V.erte>.< » Edge
minimization positioning drawing

36 -



Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

m Flexible framework to draw directed graphs

| ® Sequential optimization of various criteria

B Modelling gives NP-hard problems, which can still
can be solved quite well

5 Crossing V.erte>.< » Edge
minimization positioning drawing

36 -



37

| iterature

Detailed explanations of steps and proofs in
m [GD Ch. 11] and [DG Ch. 5]

based on

B [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system
structures

and refined with results from
m [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem

Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
‘Garey, Johnson '83] Crossing number is NP-complete

Eades, Whiteside '94] Drawing graphs in two layers

Eades, Wormland '94] Edge crossings in drawings of bipartite graphs

Jiinger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact
and Heuristic Algorithms



	The Framework
	Motivation
	Definition
	Applications
	Sugiyama Framework

	Step 1: Cycle Breaking
	Heuristic 1
	Heuristic 2

	Step 2: Leveling
	Min Number of Layers
	Example
	Total edge length - ILP
	Width
	Narrower Layer Assignment
	Approximating PCMPS
	Analysis for W = 2

	Step 3: Crossing Minimization
	Iterative Crossing Reduction
	Algorithm
	One-Sided Crossing Minimization
	Barycenter Heuristic
	Median Heuristic
	Greedy-Switch Heuristic
	Integer Linear Program
	Iterations on Example

	Step 4: Vertex Positioning
	Quadratic Program
	Iterative Heuristic
	Example

	Step 5: Drawing Edges
	Example

	Conclusion
	Literature

