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Hierarchical Drawing

Problem Statement. o D
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the
hierarchical properties of &G

Desirable Properties.

B vertices occur on (few) horizontal lines

B edges directed upwards

B edge crossings minimized

B edges as short as possible

B vertices evenly spaced

Criteria can be contradictory!



Hierarchical Drawing — Applications
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Step 1: Cycle breaking
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Step 1: Cycle breaking

Approach.

B Find minimum set £~ of edges which are not upwards.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK % SET (FIS).

B Input: directed graph G = (V, F)
B QOutput: min. set £ C F, so that M* acyclic
G—-E"+ L7

... NP-hard ()
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... which is optimal!

B Can be implemented in linear time with recursive algorithm.
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Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:
B Constraint-matrix is totally unimodular
= Solution of the relaxed linear program is integer

B The total edge length can be minimized in polynomial time
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B Input: acyclic, digraph G = (V, E), width W > 0

B Output:  Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
processing time.

B NP-hard, (2 — 5)-Approx., no (5 — €)-Approx. (W > 3).

16 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs

B a job in L is available when all its predecessors have been scheduled

17 -



Approximating PCMPS

B jobs stored in a list L
(in any order, e.g., topologically sorted)

B for eachtimet =1,2,... schedule < W available jobs
B a job in L is available when all its predecessors have been scheduled

B as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine
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Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule
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Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V — {1,... n}

® Output:  (Re-)ordering of vertices in each layer
so that the number of crossings in minimized.

B NP-hard, even for 2 Iayers [Garey & Johnson '83]

B hardly any approaches optimize over multiple layers :(
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lterative Crossing Reduction — ldea

Observation.
The number of crossings only depends on permutations of adjacent layers.

[] [] []

L

B Add dummy-vertices for edges connecting “far’” layers.
m Consider adjacent layers (L1, L), (L2, L3),... bottom-to-top.

B Minimize crossings by permuting L; 1 while keeping L; fixed.
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1) choose a random permutation of L;

N

) iteratively consider adjacent layers L; and L; 4

4

(

(

(3) minimize crossings by permuting L;.1 and keeping L; fixed
(4) repeat steps (2)—(3) in the reverse order (starting from L)
(

)
5) repeat steps (2)—(4) until no further improvement is achieved



lterative Crossing Reduction — Algorithm

choose a random permutation of L4

iteratively consider adjacent layers L; and ;.

minimize crossings by permuting L;.1 and keeping L; fixed
repeat steps (2)—(3) in the reverse order (starting from Lj,)
repeat steps (2)—(4) until no further improvement is achieved

repeat steps (1)—(5) with different starting permutations
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lterative Crossing Reduction — Algorithm

(1) choose a random permutation of L one-sided crossing minimization
(2) iteratively consider adjacent layers L; and L;q

(3) minimize crossings by permuting L;.1 and keeping L; fixed

(4) repeat steps (2)—(3) in the reverse order (starting from L)

(5) repeat steps (2)—(4) until no further improvement is achieved
(6)

repeat steps (1)—(5) with different starting permutations
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One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

4 5] 3 T 5 = 14 2 12 15 0 13 1 11
\ ~ "“‘ /
21 a2 20 A 26 25 2T 20 29 17 310

11

1 i & T D 15 14 3 2 13 12 9 1
— —
NS
.
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Abb. aus [Kaufmann und Wagner: Drawing Graphs]
(c) Springer-Verlag

23 -



One-Sided Crossing Minimization

Problem.
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Barycenter Heuristic
[Sugiyama et al. '81]

B [ntuition: few intersections occur when vertices are close to their neighbors

B The barycentre of u is the mean x-coordinate of
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Barycenter Heuristic
[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

The barycentre of u is the mean z-coordinate of

the neighbours of w in layer Ly |27 = 4] Worst case?
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'UEN(’U,) g ~ J/ N~~~
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Barycenter Heuristic
[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

The barycentre of u is the mean z-coordinate of

the neighbours of w in layer Ly |27 = 4] Worst case?

1 U
ro(u) := bary(u) := r1(v) /&
deg(u) ve;(u) 000000000000

Po1 k-1

Vertices with the same barycentre are offset by a small 0.

linear runtime
relatively good results
optimal if no crossings are required <€ Exercise!
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24 - 12



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

o ra(u) ;= med(u

25 -



Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

- ra(u) == med(u) = {O when N(u) = ()

25 -



Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(’U,) p— @

m1(vrg/21) otherwise

= To(u) := med(u) := {

25 -



Median Heuristic
[Eades & Wormald '94]

B {vy,...,05} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)
. o) = med(u) = {0 when N(u) =
m1(vrg/21) otherwise

B Move vertices v und v by small §, when z3(u) = z2(v)

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N (u)

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

B Linear runtime

0

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

B Linear runtime

B Relatively good results

25 -



Median Heuristic
|[Eades & Wormald '94]

{v1,..., 0} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)

0 when N(u) = ()

m1(vrg/21) otherwise

ra(u) == med(u) = {

Move vertices u und v by small §, when x(u) = x2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

25 -



Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise

o ra(u) == med(u) = {

B Move vertices v und v by small §, when z3(u) = z2(v)

Linear runtime
Relatively good results

Optimal if no crossings are required

3-Approximation factor

25 -



25-10

Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) = ()

m1(vrg/21) otherwise
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Median Heuristic
|[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) =10

m1(vrg/21) otherwise

o ra(u) == med(u) = {

Worst case?
B Move vertices v und v by small §, when z3(u) = z2(v)

Linear runtime
Relatively good results
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3-Approximation factor

Proof in [GD Ch 11}
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Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) =10

m1(vrg/21) otherwise

o ro(u) ;= med(u) = {

Worst case?

B Move vertices v und v by small §, when z2(u) = x2(v) m

Linear runtime ~ = =~ =~

Relatively good results

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11}
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Median Heuristic
[Eades & Wormald '94]

B {vy,...,05} = N(u) with m1(v1) < m1(v2) < -+ < m1(vg)
-~ ra(u) == med(u) = {O when N(u) =
m1(vrg/21) otherwise

Worst case?

B Move vertices v und v by small §, when z2(u) = x2(v) m

Linear runtime ~— = M~ =~
k. k+1 k41 k

Relatively good results ok + 1)+ K vs. (k+1)2

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11}



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease

B Runtime O(L;) per iteration; at most |L,| iterations

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L;) per iteration; at most |L,| iterations

B Suitable as post-processing for other heuristics

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L;) per iteration; at most |L,| iterations

B Suitable as post-processing for other heuristics

Worst case?

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo O\O\

L4

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo O\O\

L4

A\ _J/

26 -



Greedy-Switch Heuristic

B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?
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B [teratively swap adjacent nodes as long as crossings decrease
B Runtime O(L) per iteration; at most |L;| iterations

B Suitable as post-processing for other heuristics

Worst case?

Lo o\o\ 0—Q O O O 0 0 0_0
\\\
L obéoo O 0 0 0 °
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Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)
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B Constant c¢;; := # crossings between edges incident
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B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
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0 otherwise

B The number of crossings of a permutations 5
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Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

0 otherwise

{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

B The number of crossings of a permutations 5

nz—]. no n2—1 no

cross(my) = S: S: (cij — cji)Tij + S: S: Cji

i=1 j=i+1 i=1 j=i+1
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Integer Linear Program
[Jinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident
to v; or v; when ma(v;) < m2(v;)

B Variable x;; for each 1 <i < j < np = |Ly] V; V;

J
{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij —

0 otherwise

B The number of crossings of a permutations 5

no—1 no no—1 np
CFOSS(T('Q) — ;J ;J (Cz‘j — Cji)ﬂiij + ;J ;J Cjq
1=1 j3=1+1 1=1 j3=1+1

NV
constant
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Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%

minimize ;J ;J (Cij — cji)xij

i=1 j=i+1

27 -



27 - 10

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize ;J ;J (Cij — cji)xij
1=1 j5=141

B Transitivity constraints:

ngij—l—azjk—xikgl for1§i<j<k§n2



27 - 11

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CI}ikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1



27 - 12

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CI}ikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1



27 - 13

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.



27 - 14

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size



27 - 15

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size



27 - 16

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size

m Finds optimal solution



27 - 17

Integer Linear Program

B Minimize the number of crossings:

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B Transitivity constraints:
OSZEij—l—CE‘jk—CIZikél for1§i<j<k§n2

e, if ¢;; =1 and z;; = 1, then z;, =1

Properties.
B Branch-and-cut technique for DAGs of limited size

B Useful for graphs of small to medium size
m Finds optimal solution

B Solution in polynomial time is not guaranteed
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3 Visualization of Graphs

Lecture 7:
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Sugiyama Framework

Part V:
Vertex Positioning & Drawing Edges
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Step 4: Vertex Positioning

Input — > Cycle Breaking
3

1 6 7 6

» Leveling ——

Vertex
Minimization Positioning

. Crossing

Drawing
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Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

m Exact: Quadratic Program (QP)

B Heuristic: |terative approach
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Quadratic Program

m Consider the path p. = (v, ..

with dummy vertices: vy, ..

., V) of an edge e = vyvg
+ 5 Uk —1
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with dummy vertices: vy, ..., Vr_1
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B z-coordinate of v; according to the line v1v; A j)-
(with equal spacing): oid
_ i1 7t
z(vs) = x(vn) + — ) [

B Define the deviation from the line o1

k—1
dev(p.) = Z
i=2

31-10



Quadratic Program
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m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
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B z-coordinate of v; according to the line v1v; A j)-
(with equal spacing): oid
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k—1
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Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: . . (%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. . I\
- Z -
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B Define the deviation from the line v ” v

k—1

dev(p.) = Z (ZE(%) - Qf(vi))z

1=2

31-14



31-15

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : : Uk
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(p.) = Z (x(vz) — x(vz))
i=2

B Objective function:
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Quadratic Program
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Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
. . : (%%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
q - A
- Z -
r(v;) =
(0) = w(en) + — ( )
B Define the deviation from the line v ” v
k—1 5
d e) - — ( i) — i )
ev(p ) Z; x(v ) x(v ) B QP is time-expensive

B Objective function:  min ) _.dev(p.)

B Constraints for all vertices v,w in the same layer with w right of v:

r(w) — x(v) > p(w,v)
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Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : . (%
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
x(v;) = x(v
B Define the deviation from the line v ” v
k—1 5
dev(pe) i= 3 (o(0) — 7(00)
ev(pe) 2; x(vz) x(vz) B QP is time-expensive
1=
B Objective function:  min ) _.dev(p.) B width can be exponential

B Constraints for all vertices v,w in the same layer with w right of v:

r(w) — x(v) > p(w,v)
min. horizontal distance
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B Compute an initial layout
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1. Vertex positioning,
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Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

1. Vertex positioning,
2. edge straightening,
3. Compactitying the layout width.
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Step 5: Drawing Edges

Input — > Cycle Breaking
3

{6 —>{7 i]—>{61—>{7]

» Leveling ——

Vertex
Minimization Positioning

5. Crossing 3

Drawing
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Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves
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Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

Vertex

5. Crossing ertex
minimization positioning drawing
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minimization positioning drawing
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Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input ——» Cycle breaking » Leveling ——

m Flexible framework to draw directed graphs

| ® Sequential optimization of various criteria

B Modelling gives NP-hard problems, which can still
can be solved quite well

5 Crossing V.erte>.< » Edge
minimization positioning drawing
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| iterature

Detailed explanations of steps and proofs in
m [GD Ch. 11] and [DG Ch. 5]

based on

B [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system
structures

and refined with results from
m [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem

Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
‘Garey, Johnson '83] Crossing number is NP-complete

Eades, Whiteside '94] Drawing graphs in two layers

Eades, Wormland '94] Edge crossings in drawings of bipartite graphs

Jiinger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact
and Heuristic Algorithms
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