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Hierarchical Drawing

� Input:

� vertices occur on (few) horizontal lines

� edges directed upwards

� edge crossings minimized

� edges as short as possible

� vertices evenly spaced

Desirable Properties.

Criteria can be contradictory!

Problem Statement.

digraph G = (V,E)

drawing of G that “closely”
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� Output:
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Hierarchical Drawing – Applications
yEd Gallery: Java profiler JProfiler using yFiles

Source: ”Design Considerations for Optimizing
Storyline Visualizations”Tanahashi et al.
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Hierarchical Drawing – Applications
yEd Gallery: Java profiler JProfiler using yFiles

Source: ”Design Considerations for Optimizing
Storyline Visualizations”Tanahashi et al.

Hierarchical Drawing – Applications

Source: Visualization that won
the Graph Drawing Contest 2016. Klawitter & Mchedlidze
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Part II:
Cycle Breaking
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Step 1: Cycle breaking

Approach.

3

2 54

1 6 7

3

2 54

1 6 7



7 - 3

Step 1: Cycle breaking

Approach.

� Find minimum set E? of edges which are not upwards.

� Remove E? and insert reversed edges.
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Step 1: Cycle breaking

Approach.

� Find minimum set E? of edges which are not upwards.

� Remove E? and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS).

� Input:

� Output:

directed graph G = (V,E)

min. set E? ⊆ E, so that G− E? acyclic

. . . NP-hard
G− E? + E?

r

3

2 54

1 6 7

3

2 54

1 6 7



8 - 1

Heuristic 1
[Berger, Shor ’90]

v



8 - 2

Heuristic 1

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 3

Heuristic 1

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 4

Heuristic 1

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 5

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 6

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 7

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 8

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 9

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 10

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 11

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 12

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 13

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

[Berger, Shor ’90]
v



8 - 14

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]
v



8 - 15

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]
v



8 - 16

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]
v



8 - 17

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]
v



8 - 18

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 19

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 20

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 21

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 22

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 23

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 24

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 25

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 26

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

v



8 - 27

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(n+m)

v



8 - 28

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(n+m)

v



8 - 29

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(n+m)

� Quality guarantee: |E′| ≥ |E|/2

v



8 - 30

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(n+m)

� Quality guarantee: |E′| ≥ |E|/2

v



9 - 1

Heuristic 2
[Eades, Lin, Smyth ’93]



9 - 2

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 3

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 4

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 5

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 6

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 7

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 8

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 9

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 10

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 11

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 12

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 13

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 14

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 15

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 16

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 17

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 18

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 19

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 20

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 21

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 22

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 23

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 24

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 25

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 26

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 27

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 28

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 29

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 30

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 31

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 32

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 33

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 34

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 35

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 36

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]



9 - 37

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]

� Time: O(n+m)



9 - 38

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]

� Time: O(n+m)

� Quality guarantee:
|E′| ≥ |E|/2 + |V |/6



10

Visualization of Graphs

Part III:
Leveling

Jonathan Klawitter

Lecture 7:
Hierarchical Layouts:
Sugiyama Framework

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7



11 - 1

Step 2: Leveling

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing



11 - 2

Step 2: Leveling

Problem.

3

2 54

1 6 7

3 2

54

1

6

7



11 - 3

Step 2: Leveling

Problem.
� Input:

� Output:

acyclic digraph G = (V,E)

3

2 54

1 6 7

3 2

54

1

6

7



11 - 4

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

3

2 54

1 6 7

3 2

54

1

6

7



11 - 5

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

3

2 54

1 6 7

3 2

54

1

6

7



11 - 6

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 7

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 8

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 9

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 10

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 11

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 12

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



11 - 13

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . n},
so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e. |y(V )|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7

3 2

54

1

6

7



12 - 1

Min Number of Layers

3

2 54

1 6 7

3 2

54

1

6

7

Algorithm.



12 - 2

Min Number of Layers

� for each source q
set y(q) := 1

3

2 54

1 6 7

3 2

54

1

6

7

Algorithm.



12 - 3

Min Number of Layers

� for each source q
set y(q) := 1

3 2

54

1

6

7

Algorithm.

3

2 54

1 6 7



12 - 4

Min Number of Layers

� for each source q
set y(q) := 1

Algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



12 - 5

Min Number of Layers

� for each source q
set y(q) := 1

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

Algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



12 - 6

Min Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

Algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



12 - 7

Min Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

Algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



12 - 8

Min Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

. . . which is optimal!

Algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



12 - 9

Min Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

. . . which is optimal!

Algorithm.

� Can be implemented in linear time with recursive algorithm.

3

2 54

1 6 7

3 2

54

1

6

7



13 - 1

Example



13 - 2

Example



14 - 1

Total Edge Length – ILP

Can be formulated as an integer linear program:



14 - 2

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V



14 - 3

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V



14 - 4

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V



14 - 5

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V



14 - 6

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V



14 - 7

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular

� ⇒ Solution of the relaxed linear program is integer

� The total edge length can be minimized in polynomial time



14 - 8

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular

� ⇒ Solution of the relaxed linear program is integer

� The total edge length can be minimized in polynomial time



14 - 9

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular

� ⇒ Solution of the relaxed linear program is integer

� The total edge length can be minimized in polynomial time



14 - 10

Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular

� ⇒ Solution of the relaxed linear program is integer

� The total edge length can be minimized in polynomial time



15

Width

Drawings can be very wide.



16 - 1

Narrower Layer Assignment

Problem: Leveling With a Given Width.



16 - 2

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0



16 - 3

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.



16 - 4

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling



16 - 5

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.



16 - 6

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

Schedule respecting < and having minimum
processing time.



16 - 7

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

Schedule respecting < and having minimum
processing time.

� NP-hard, (2− 1
W )-Approx., no ( 4

3 − ε)-Approx. (W ≥ 3).



16 - 8

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

Schedule respecting < and having minimum
processing time.

� NP-hard, (2− 1
W )-Approx., no ( 4

3 − ε)-Approx. (W ≥ 3).



16 - 9

Narrower Layer Assignment

Problem: Leveling With a Given Width.

� Input:

� Output:

acyclic, digraph G = (V,E), width W > 0

Partition the vertex set into a minimum number of layers such
that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

Schedule respecting < and having minimum
processing time.

� NP-hard, (2− 1
W )-Approx., no ( 4

3 − ε)-Approx. (W ≥ 3).



17 - 1

Approximating PCMPS

� jobs stored in a list L
(in any order, e.g., topologically sorted)

� for each time t = 1, 2, . . . schedule ≤W available jobs

� a job in L is available when all its predecessors have been scheduled

� as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine



17 - 2

Approximating PCMPS

� jobs stored in a list L
(in any order, e.g., topologically sorted)

� for each time t = 1, 2, . . . schedule ≤W available jobs

� a job in L is available when all its predecessors have been scheduled

� as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine



17 - 3

Approximating PCMPS

� jobs stored in a list L
(in any order, e.g., topologically sorted)

� for each time t = 1, 2, . . . schedule ≤W available jobs

� a job in L is available when all its predecessors have been scheduled

� as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine



17 - 4

Approximating PCMPS

� jobs stored in a list L
(in any order, e.g., topologically sorted)

� for each time t = 1, 2, . . . schedule ≤W available jobs

� a job in L is available when all its predecessors have been scheduled

� as long as there are free machines and available jobs, take the first avail-
able job and assign it to a free machine



17 - 5

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E



17 - 6

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.



17 - 7

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule



17 - 8

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t 1 2 3 4 5 6 7 8 9 10



17 - 9

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1 2 3 4 5 6 7 8 9 10



17 - 10

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2 3 4 5 6 7 8 9 10



17 - 11

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3 4 5 6 7 8 9 10



17 - 12

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4 5 6 7 8 9 10



17 - 13

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5 6 7 8 9 10



17 - 14

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6 7 8 9 10



17 - 15

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7 8 9 10



17 - 16

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8 9 10



17 - 17

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9 10



17 - 18

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10



17 - 19

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of Machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

Question: Good approximation factor?



18 - 1

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“



18 - 2

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥



18 - 3

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e



18 - 4

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥



18 - 5

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<



18 - 6

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds



18 - 7

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤



18 - 8

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤



18 - 9

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤

insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<



18 - 10

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<



18 - 11

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<

≈



18 - 12

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2



18 - 13

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2 ≤



18 - 14

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2 ≤ 3/2 · OPT



18 - 15

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses ( ) in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2 ≤ 3/2 · OPT

≤ (2− 1/W ) · OPT in general case



19

Visualization of Graphs

Part IV:
Crossing Minimisation

Jonathan Klawitter

Lecture 7:
Hierarchical Layouts:
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Iterative Crossing Reduction – Idea
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Observation.

The number of crossings only depends on permutations of adjacent layers.
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Iterative Crossing Reduction – Algorithm

(1) choose a random permutation of L1

(2) iteratively consider adjacent layers Li and Li+1

(3) minimize crossings by permuting Li+1 and keeping Li fixed

(4) repeat steps (2)–(3) in the reverse order (starting from Lh)

(5) repeat steps (2)–(4) until no further improvement is achieved

(6) repeat steps (1)–(5) with different starting permutations
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One-Sided Crossing Minimization

Problem.

� Input:

� Output:

bipartite graph G = (L1 ∪ L2, E),
permutation π1 on L1
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� Intuition: few intersections occur when vertices are close to their neighbors
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Median Heuristic
[Eades & Wormald ’94]

� {v1, . . . , vk} := N(u) with π1(v1) < π1(v2) < · · · < π1(vk)

�

x2(u) := med(u) :=

{
0 when N(u) = ∅
π1(vdk/2e) otherwise

� Move vertices u und v by small δ, when x2(u) = x2(v)

�
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[Jünger & Mutzel, ’97]

� Constant cij := # crossings between edges incident
to vi or vj when π2(vi) < π2(vj)

vi vj



27 - 2

Integer Linear Program
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Part V:
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Step 4: Vertex Positioning

Goal.
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Classical Approach – Sugiyama Framework
[Sugiyama, Tagawa, Toda ’81]
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