Business Cycles

- Exercise 5 -

Josefine Quast
University of Würzburg

13.06.2022

The Neoclassical Model

Question:

This exercise will ask you to work through the derivation of the IS curve under various different scenarios.
a) Graphically derive the IS curve for a generic specification of the consumption function and the investment demand function.

1. IS curve

Demand side:

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)
\end{aligned}
$$

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)
\end{aligned}
$$

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_{t}}_{-})
\end{aligned}
$$

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_{t}}_{-})
\end{aligned}
$$

Aggregated desired expenditures:

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_{t}}_{-})
\end{aligned}
$$

Aggregated desired expenditures:

$$
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)+G_{t}
$$

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+} \underbrace{K_{t}}_{-})
\end{aligned}
$$

Aggregated desired expenditures:

$$
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)+G_{t}
$$

Autonomous expenditures:

Demand side:

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}(\underbrace{Y_{t}-G_{t}}_{+}, \underbrace{Y_{t+1}-G_{t+1}}_{+}, \underbrace{r_{t}}_{-}) \\
I_{t} & =I^{d}(\underbrace{r_{t}}_{-}, \underbrace{A_{t+1}}_{+} \underbrace{K_{t}}_{-})
\end{aligned}
$$

Aggregated desired expenditures:

$$
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)+G_{t}
$$

Autonomous expenditures:

$$
E_{0}=C^{d}\left(-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)+G_{t}
$$

1. IS curve

2. IS curve

3. IS curve

4. IS curve

5. IS curve

6. IS curve

Question:

This exercise will ask you to work through the derivation of the IS curve under various different scenarios.
b) Suppose that investment demand is relatively more sensitive to the real interest rate than in (a). Relative to a), how will this impact the shape of the IS curve?
c) Suppose that the MPC is larger than in a) but still smaller than one. How will this affect the shape of the IS curve?
b:

Investment demand becomes more sensitive to changes in the real interest rate

- For every value of r_{t}, desire for investment I^{d} decreases \Rightarrow autonomous expenditures E_{0} decreases \Rightarrow desired expenditure line Y_{t}^{d} shifts down
b:

Investment demand becomes more sensitive to changes in the real interest rate

- For every value of r_{t}, desire for investment I^{d} decreases \Rightarrow autonomous expenditures E_{0} decreases \Rightarrow desired expenditure line Y_{t}^{d} shifts down
- The higher r_{t}, the stronger is the effect on I^{d}
b:

Investment demand becomes more sensitive to changes in the real interest rate

- For every value of r_{t}, desire for investment I^{d} decreases \Rightarrow autonomous expenditures E_{0} decreases \Rightarrow desired expenditure line Y_{t}^{d} shifts down
- The higher r_{t}, the stronger is the effect on I^{d}
- IS curve becomes flatter than in a) \Rightarrow changes in r_{t} lead to more pronounced changes in Y

1. IS curve
c:

MPC increases

- Less consumption smoothing
c:

MPC increases

- Less consumption smoothing
- Slope of desired expenditure line Y_{t}^{d} becomes steeper
c:

MPC increases

- Less consumption smoothing
- Slope of desired expenditure line Y_{t}^{d} becomes steeper
- And autonomous expenditures E_{0} decreases slightly
c:

MPC increases

- Less consumption smoothing
- Slope of desired expenditure line Y_{t}^{d} becomes steeper
- And autonomous expenditures E_{0} decreases slightly
- IS curve is flatter than in a)

1. IS curve

Question:

In this question, you are asked to derive the Y^{s} curve again.
a) Graphically derive the Y^{s} curve for a generic specification of the aggregated production function, the labor supply curve, and the labor demand curve.
2. Y^{s} curve

Supply side:

Supply side:

$$
\begin{aligned}
N_{t} & =N^{s}\left(w_{t}, \theta_{t}\right) \\
N_{t} & =N^{d}\left(w_{t}, A_{t}, K_{t}\right) \\
Y_{t} & =A_{t} F\left(K_{t}, N_{t}\right)
\end{aligned}
$$

Supply side:

$$
\begin{aligned}
N_{t} & =N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-}) \\
N_{t} & =N^{d}\left(w_{t}, A_{t}, K_{t}\right) \\
Y_{t} & =A_{t} F\left(K_{t}, N_{t}\right)
\end{aligned}
$$

Supply side:

$$
\begin{aligned}
& N_{t}=N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-}) \\
& N_{t}=N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+}) \\
& Y_{t}=A_{t} F\left(K_{t}, N_{t}\right)
\end{aligned}
$$

2. Y^{s} curve

Supply side:

$$
\begin{aligned}
& N_{t}=N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-}) \\
& N_{t}=N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+}) \\
& Y_{t}=\underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})
\end{aligned}
$$

Supply side:

$$
\begin{aligned}
& N_{t}=N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-}) \\
& N_{t}=N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+}) \\
& Y_{t}=\underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})
\end{aligned}
$$

- Both labor supply and demand function determine N_{t} together

Supply side:

$$
\begin{aligned}
& N_{t}=N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-}) \\
& N_{t}=N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+}) \\
& Y_{t}=\underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})
\end{aligned}
$$

- Both labor supply and demand function determine N_{t} together
- Given N_{t}, the production function determines Y_{t}

Question:

In this question, you are asked to derive the Y^{s} curve again.
b) Show graphically and explain how an increase in the current productivity A_{t} affects the Y^{s} curve.
c) Show graphically and explain how an increase in the money supply M_{t}^{s} affects the Y^{s} curve.

Increase in A_{t} : supply side shock

Increase in A_{t} : supply side shock

- Labor demand increases $\Rightarrow N^{d}$ curve shifts to the right

Increase in A_{t} : supply side shock

- Labor demand increases $\Rightarrow N^{d}$ curve shifts to the right
- N_{t} and w_{t} increase

Increase in A_{t} : supply side shock

- Labor demand increases $\Rightarrow N^{d}$ curve shifts to the right
- N_{t} and w_{t} increase
- Production function shifts up (for given K_{t} and N_{t}, Y_{t} increases)

Increase in A_{t} : supply side shock

- Labor demand increases $\Rightarrow N^{d}$ curve shifts to the right
- N_{t} and w_{t} increase
- Production function shifts up (for given K_{t} and N_{t}, Y_{t} increases)
- Y^{s} curve goes to the right

Increase in A_{t} : supply side shock

- Labor demand increases $\Rightarrow N^{d}$ curve shifts to the right
- N_{t} and w_{t} increase
- Production function shifts up (for given K_{t} and N_{t}, Y_{t} increases)
- Y^{s} curve goes to the right

Increase in M_{t} :

Increase in M_{t} :

- No affect at all on Y^{5} or on any other real variable

Increase in M_{t} :

- No affect at all on Y^{5} or on any other real variable
- Y_{t} and r_{t} are determined solely by the "real block"

Increase in M_{t} :

- No affect at all on Y^{5} or on any other real variable
- Y_{t} and r_{t} are determined solely by the "real block"
- Money neutrality in the mid- to long-run

Increase in M_{t} :

- No affect at all on Y^{5} or on any other real variable
- Y_{t} and r_{t} are determined solely by the "real block"
- Money neutrality in the mid- to long-run

3. Equilibrium

Question:

The neoclassical model is characterized by eight equations all simultaneously holding. In class you derived a graphical apparatus to characterize the equilibrium. Re-derive the equilibrium determined by the "real block" and by the " nominal block" graphically and explain the decision rules of each actor!
3. Equilibrium

Real block

3. Equilibrium

Real block

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, K_{t}\right)
\end{aligned}
$$

- IS curve: summary of $\left(r_{t}, Y_{t}\right)$ for which the aggregate resource constraint holds where the households and firms choose C_{t} and I_{t} optimally.

3. Equilibrium

Real block

$$
\begin{aligned}
Y_{t} & =C_{t}+I_{t}+G_{t} \\
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, K_{t}\right) \\
N_{t} & =N^{s}\left(w_{t}, \theta_{t}\right) \\
N_{t} & =N^{d}\left(w_{t}, A_{t}, K_{t}\right) \\
Y_{t} & =A_{t} F\left(K_{t}, N_{t}\right)
\end{aligned}
$$

- IS curve: summary of $\left(r_{t}, Y_{t}\right)$ for which the aggregate resource constraint holds where the households and firms choose C_{t} and I_{t} optimally.
- Y^{s} curve: summary of $\left(r_{t}, Y_{t}\right)$ for where labor demand and supply are optimally determined, consistent with the production technology

3. Equilibrium

Government

- The government consumes some private output $\left(G_{t}, G_{t+1}\right)$ and finances its spending with a mix of taxes (T_{t}, T_{t+1}) and by issuing debt (all exogenous to the model)

3. Equilibrium

Government

- The government consumes some private output $\left(G_{t}, G_{t+1}\right)$ and finances its spending with a mix of taxes $\left(T_{t}, T_{t+1}\right)$ and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_{t} and G_{t+1}; the timings and amounts of T_{t} and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)

3. Equilibrium

Government

- The government consumes some private output $\left(G_{t}, G_{t+1}\right)$ and finances its spending with a mix of taxes $\left(T_{t}, T_{t+1}\right)$ and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_{t} and G_{t+1}; the timings and amounts of T_{t} and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)
- Given that households care only about the present value of its net income, and given that the government budget constraint has to be fulfilled, we can act as though the government balances its budget each period ($G_{t}=T_{t}$ and $G_{t+1}=T_{t+1}$)

3. Equilibrium

Government

- The government consumes some private output $\left(G_{t}, G_{t+1}\right)$ and finances its spending with a mix of taxes $\left(T_{t}, T_{t+1}\right)$ and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_{t} and G_{t+1}; the timings and amounts of T_{t} and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)
- Given that households care only about the present value of its net income, and given that the government budget constraint has to be fulfilled, we can act as though the government balances its budget each period ($G_{t}=T_{t}$ and $G_{t+1}=T_{t+1}$)

3. Equilibrium

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)
- Money demand function:

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)
- Money demand function:

$$
M_{t}=P_{t} M^{d}\left(i_{t}, Y_{t}\right)
$$

- Proportional to P_{t} : money is used to purchase goods

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)
- Money demand function:

$$
M_{t}=P_{t} M^{d}\left(i_{t}, Y_{t}\right)
$$

- Proportional to P_{t} : money is used to purchase goods
- $\frac{\partial M^{d}}{\partial Y_{t}}>0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)
- Money demand function:

$$
M_{t}=P_{t} M^{d}\left(i_{t}, Y_{t}\right)
$$

- Proportional to P_{t} : money is used to purchase goods
- $\frac{\partial M^{d}}{\partial Y_{t}}>0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases
- $\frac{\partial M^{d}}{\partial i_{t}}<0$: holding money implies opportunity costs in terms of nominal interest from holding bonds

3. Equilibrium

Nominal block

- Money supply M_{t} decided by the central bank (exogenous)
- Money demand function:

$$
M_{t}=P_{t} M^{d}\left(i_{t}, Y_{t}\right)
$$

- Proportional to P_{t} : money is used to purchase goods
- $\frac{\partial M^{d}}{\partial Y_{t}}>0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases
- $\frac{\partial M^{d}}{\partial i_{t}}<0$: holding money implies opportunity costs in terms of nominal interest from holding bonds
- Using the Fisher equation $r_{t}=i_{t}-\pi_{t+1}^{e}$ we get

$$
M_{t}=P_{t} M^{d}\left(r_{t}+\pi_{t+1}^{e}, Y_{t}\right)
$$

3. Equilibrium

4. Equilibrium

5. Equilibrium

4. Example

Question:

Suppose that we assume specific functional forms for the consumption function and the investment demand function. These are:

$$
\begin{aligned}
C_{t} & =c_{1}\left(Y_{t}-G_{t}\right)+c_{2}\left(Y_{t+1}-G_{t+1}\right)-c_{3} r_{t} \\
I_{t} & =-d_{1} r_{t}+d_{2} A_{t+1}+d_{3} K_{t}
\end{aligned}
$$

Here, c_{1} through c_{4} and d_{1} through d_{3} are fixed parameters governing the sensitivity of consumption and investment to different factors relevant for those decisions.
a) We must have $Y_{t}=C_{t}+I_{t}+G_{t}$. Use the given functional forms for the consumption and investment with the resource constraint to derive an algebraic expression for the IS curve.
b) Use this to derive an expression for the slope of the IS curve (i.e. $\frac{\partial Y_{t}}{\partial r_{t}}$).

4. Example

IS curve

4. Example

IS curve

$$
\begin{aligned}
& Y_{t}=C_{t}+I_{t}+G_{t} \\
& =c_{1}\left(Y_{t}-G_{t}\right)+c_{2}\left(Y_{t+1}-G_{t+1}\right)-c_{3} r_{t} \ldots \\
& -d_{1} r_{t}+d_{2} A_{t+1}+d_{3} K_{t}+G_{t} \\
& Y_{t}\left(1-c_{1}\right)=\left(1-c_{1}\right) G_{t}+c_{2}\left(Y_{t+1}-G_{t+1}\right) \ldots \\
& +d_{2} A_{t+1}+d_{3} K_{t}-\left(c_{3}+d_{1}\right) r_{t} \\
& Y_{t}=\frac{1}{1-c_{1}}\left(\left(1-c_{1}\right) G_{t}+c_{2}\left(Y_{t+1}-G_{t+1}\right) \ldots\right. \\
& \left.+d_{2} A_{t+1}+d_{3} K_{t}-\left(c_{3}+d_{1}\right) r_{t}\right)
\end{aligned}
$$

IS curve

$$
\begin{gathered}
Y_{t}=C_{t}+I_{t}+G_{t} \\
=c_{1}\left(Y_{t}-G_{t}\right)+c_{2}\left(Y_{t+1}-G_{t+1}\right)-c_{3} r_{t} \ldots \\
\\
\quad-d_{1} r_{t}+d_{2} A_{t+1}+d_{3} K_{t}+G_{t} \\
Y_{t}\left(1-c_{1}\right)= \\
\left(1-c_{1}\right) G_{t}+c_{2}\left(Y_{t+1}-G_{t+1}\right) \ldots \\
\\
\quad+d_{2} A_{t+1}+d_{3} K_{t}-\left(c_{3}+d_{1}\right) r_{t} \\
Y_{t}=\frac{1}{1-c_{1}}\left(\left(1-c_{1}\right)\right.
\end{gathered} \quad \begin{array}{r}
G_{t}+c_{2}\left(Y_{t+1}-G_{t+1}\right) \ldots \\
\\
\left.\quad+d_{2} A_{t+1}+d_{3} K_{t}-\left(c_{3}+d_{1}\right) r_{t}\right)
\end{array}
$$

Slope of the IS curve

$$
\frac{\partial Y_{t}}{\partial r_{t}}=-\frac{c_{3}+d_{1}}{1-c_{1}}
$$

