Business Cycles

- Exercise 5 -

Josefine Quast

University of Würzburg

13.06.2022

The Neoclassical Model

Question:

This exercise will ask you to work through the derivation of the IS curve under various different scenarios.

a) Graphically derive the IS curve for a generic specification of the consumption function and the investment demand function.

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, K_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$C_{t} = C^{d}(\underbrace{Y_{t} - G_{t}}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_{t}}_{-})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, K_{t})$$

$$Y_t = C_t + I_t + G_t$$

$$C_t = C^d(\underbrace{Y_t - G_t}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_t}_{-})$$

$$I_t = I^d(\underbrace{r_t}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_t}_{-})$$

Demand side:

$$Y_t = C_t + I_t + G_t$$

$$C_t = C^d(\underbrace{Y_t - G_t}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_t}_{-})$$

$$I_t = I^d(\underbrace{r_t}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_t}_{-})$$

Aggregated desired expenditures:

Demand side:

$$Y_t = C_t + I_t + G_t$$

$$C_t = C^d(\underbrace{Y_t - G_t}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_t}_{-})$$

$$I_t = I^d(\underbrace{r_t}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_t}_{-})$$

Aggregated desired expenditures:

$$Y_t^d = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t) + I^d(r_t, A_{t+1}, K_t) + G_t$$

Demand side:

$$Y_t = C_t + I_t + G_t$$

$$C_t = C^d(\underbrace{Y_t - G_t}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_t}_{-})$$

$$I_t = I^d(\underbrace{r_t}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_t}_{-})$$

Aggregated desired expenditures:

$$Y_t^d = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t) + I^d(r_t, A_{t+1}, K_t) + G_t$$

Autonomous expenditures:

Demand side:

$$Y_t = C_t + I_t + G_t$$

$$C_t = C^d(\underbrace{Y_t - G_t}_{+}, \underbrace{Y_{t+1} - G_{t+1}}_{+}, \underbrace{r_t}_{-})$$

$$I_t = I^d(\underbrace{r_t}_{-}, \underbrace{A_{t+1}}_{+}, \underbrace{K_t}_{-})$$

Aggregated desired expenditures:

$$Y_t^d = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t) + I^d(r_t, A_{t+1}, K_t) + G_t$$

Autonomous expenditures:

$$E_0 = C^d(-G_t, Y_{t+1} - G_{t+1}, r_t) + I^d(r_t, A_{t+1}, K_t) + G_t$$

Question:

This exercise will ask you to work through the derivation of the IS curve under various different scenarios.

- b) Suppose that investment demand is relatively more sensitive to the real interest rate than in (a). Relative to a), how will this impact the shape of the IS curve?
- c) Suppose that the MPC is larger than in a) but still smaller than one. How will this affect the shape of the IS curve?

b:

Investment demand becomes more sensitive to changes in the real interest rate

• For every value of r_t , desire for investment I^d decreases \Rightarrow autonomous expenditures E_0 decreases \Rightarrow desired expenditure line Y_t^d shifts down

b:

Investment demand becomes more sensitive to changes in the real interest rate

- For every value of r_t , desire for investment I^d decreases \Rightarrow autonomous expenditures E_0 decreases \Rightarrow desired expenditure line Y_t^d shifts down
- The higher r_t , the stronger is the effect on I^d

b:

Investment demand becomes more sensitive to changes in the real interest rate

- For every value of r_t , desire for investment I^d decreases \Rightarrow autonomous expenditures E_0 decreases \Rightarrow desired expenditure line Y_t^d shifts down
- The higher r_t , the stronger is the effect on I^d
- \bullet IS curve becomes flatter than in a) \Rightarrow changes in r_t lead to more pronounced changes in Y

c:

MPC increases

• Less consumption smoothing

c:

MPC increases

- Less consumption smoothing
- $\bullet\,$ Slope of desired expenditure line Y^d_t becomes steeper

c:

MPC increases

- Less consumption smoothing
- ullet Slope of desired expenditure line Y_t^d becomes steeper
- ullet And autonomous expenditures E_0 decreases slightly

c:

MPC increases

- Less consumption smoothing
- ullet Slope of desired expenditure line Y_t^d becomes steeper
- ullet And autonomous expenditures E_0 decreases slightly
- IS curve is flatter than in a)

Question:

In this question, you are asked to derive the Y^s curve again.

a) Graphically derive the Y^s curve for a generic specification of the aggregated production function, the labor supply curve, and the labor demand curve.

2. Y^s curve

$$N_t = N^s(w_t, \theta_t)$$

$$N_t = N^d(w_t, A_t, K_t)$$

$$Y_t = A_t F(K_t, N_t)$$

$$N_t = N^s(\underbrace{w_t}_+, \underbrace{\theta_t}_-)$$

$$N_t = N^d(w_t, A_t, K_t)$$

$$Y_t = A_t F(K_t, N_t)$$

$$N_{t} = N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})$$

$$N_{t} = N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$N_{t} = N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})$$

$$N_{t} = N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+})$$

$$Y_{t} = \underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})$$

Supply side:

$$N_{t} = N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})$$

$$N_{t} = N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+})$$

$$Y_{t} = \underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})$$

ullet Both labor supply and demand function determine N_t together

Supply side:

$$N_{t} = N^{s}(\underbrace{w_{t}}_{+}, \underbrace{\theta_{t}}_{-})$$

$$N_{t} = N^{d}(\underbrace{w_{t}}_{-}, \underbrace{A_{t}}_{+}, \underbrace{K_{t}}_{+})$$

$$Y_{t} = \underbrace{A_{t}}_{+} F(\underbrace{K_{t}}_{+}, \underbrace{N_{t}}_{+})$$

- ullet Both labor supply and demand function determine N_t together
- ullet Given N_t , the production function determines Y_t

Question:

In this question, you are asked to derive the Y^s curve again.

- b) Show graphically and explain how an increase in the current productivity A_t affects the Y^s curve.
- c) Show graphically and explain how an increase in the money supply ${\cal M}_t^s$ affects the Ys curve.

Increase in A_t : supply side shock

ullet Labor demand increases $\Rightarrow N^d$ curve shifts to the right

- ullet Labor demand increases $\Rightarrow N^d$ curve shifts to the right
- N_t and w_t increase

- ullet Labor demand increases $\Rightarrow N^d$ curve shifts to the right
- N_t and w_t increase
- ullet Production function shifts up (for given K_t and N_t , Y_t increases)

- ullet Labor demand increases $\Rightarrow N^d$ curve shifts to the right
- N_t and w_t increase
- Production function shifts up (for given K_t and N_t , Y_t increases)
- Y^s curve goes to the right

- ullet Labor demand increases $\Rightarrow N^d$ curve shifts to the right
- N_t and w_t increase
- Production function shifts up (for given K_t and N_t , Y_t increases)
- Y^s curve goes to the right

Increase in M_t :

• No affect at all on Ys or on any other real variable

- No affect at all on Ys or on any other real variable
- Y_t and r_t are determined solely by the "real block"

- No affect at all on Ys or on any other real variable
- Y_t and r_t are determined solely by the "real block"
- Money neutrality in the mid- to long-run

- No affect at all on Ys or on any other real variable
- Y_t and r_t are determined solely by the "real block"
- Money neutrality in the mid- to long-run

Question:

The neoclassical model is characterized by eight equations all simultaneously holding. In class you derived a graphical apparatus to characterize the equilibrium. Re-derive the equilibrium determined by the "real block" and by the "nominal block" graphically and explain the decision rules of each actor!

Real block

Real block

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, K_{t})$$

• IS curve: summary of (r_t, Y_t) for which the aggregate resource constraint holds where the households and firms choose C_t and I_t optimally.

Real block

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, K_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

- IS curve: summary of (r_t, Y_t) for which the aggregate resource constraint holds where the households and firms choose C_t and I_t optimally.
- Ys curve: summary of (r_t, Y_t) for where labor demand and supply are optimally determined, consistent with the production technology

Government

• The government consumes some private output (G_t, G_{t+1}) and finances its spending with a mix of taxes (T_t, T_{t+1}) and by issuing debt (all exogenous to the model)

Government

- The government consumes some private output (G_t, G_{t+1}) and finances its spending with a mix of taxes (T_t, T_{t+1}) and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_t and G_{t+1} ; the timings and amounts of T_t and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)

Government

- The government consumes some private output (G_t, G_{t+1}) and finances its spending with a mix of taxes (T_t, T_{t+1}) and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_t and G_{t+1} ; the timings and amounts of T_t and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)
- Given that households care only about the present value of its *net income*, and given that the government budget constraint has to be fulfilled, we can act as though the government balances its budget each period $(G_t = T_t \text{ and } G_{t+1} = T_{t+1})$

Government

- The government consumes some private output (G_t, G_{t+1}) and finances its spending with a mix of taxes (T_t, T_{t+1}) and by issuing debt (all exogenous to the model)
- Ricardian Equivalence holds in our model \Rightarrow all that matters for the equilibrium behavior are G_t and G_{t+1} ; the timings and amounts of T_t and T_{t+1} are irrelevant for decision making of agents (as is the level of debt issued by the government)
- Given that households care only about the present value of its *net income*, and given that the government budget constraint has to be fulfilled, we can act as though the government balances its budget each period $(G_t = T_t \text{ and } G_{t+1} = T_{t+1})$

Nominal block

ullet Money supply M_t decided by the central bank (exogenous)

- ullet Money supply M_t decided by the central bank (exogenous)
- Money demand function:

Nominal block

- ullet Money supply M_t decided by the central bank (exogenous)
- Money demand function:

$$M_t = P_t M^d(i_t, Y_t)$$

ullet Proportional to P_t : money is used to purchase goods

- ullet Money supply M_t decided by the central bank (exogenous)
- Money demand function:

$$M_t = P_t M^d(i_t, Y_t)$$

- ullet Proportional to P_t : money is used to purchase goods
- $\frac{\partial M^d}{\partial Y_t} > 0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases

- Money supply M_t decided by the central bank (exogenous)
- Money demand function:

$$M_t = P_t M^d(i_t, Y_t)$$

- ullet Proportional to P_t : money is used to purchase goods
- $\frac{\partial M^d}{\partial Y_t} > 0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases
- \bullet $\frac{\partial M^d}{\partial i_t}<0$: holding money implies opportunity costs in terms of nominal interest from holding bonds

- ullet Money supply M_t decided by the central bank (exogenous)
- Money demand function:

$$M_t = P_t M^d(i_t, Y_t)$$

- ullet Proportional to P_t : money is used to purchase goods
- $\frac{\partial M^d}{\partial Y_t} > 0$: more income implies higher demand for consumption \Rightarrow demand for holding money increases
- $\frac{\partial M^d}{\partial i_t} < 0$: holding money implies opportunity costs in terms of nominal interest from holding bonds
- Using the Fisher equation $r_t = i_t \pi^e_{t+1}$ we get

$$M_t = P_t M^d(r_t + \pi_{t+1}^e, Y_t)$$

4. Example

Question:

Suppose that we assume specific functional forms for the consumption function and the investment demand function. These are:

$$C_t = c_1(Y_t - G_t) + c_2(Y_{t+1} - G_{t+1}) - c_3 r_t$$

$$I_t = -d_1 r_t + d_2 A_{t+1} + d_3 K_t$$

Here, c_1 through c_4 and d_1 through d_3 are fixed parameters governing the sensitivity of consumption and investment to different factors relevant for those decisions.

- a) We must have $Y_t = C_t + I_t + G_t$. Use the given functional forms for the consumption and investment with the resource constraint to derive an algebraic expression for the IS curve.
- b) Use this to derive an expression for the slope of the IS curve (i.e. $\frac{\partial Y_t}{\partial r_t}$).

4. Example

IS curve

4. Example

IS curve

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$= c_{1}(Y_{t} - G_{t}) + c_{2}(Y_{t+1} - G_{t+1}) - c_{3}r_{t} \dots$$

$$- d_{1}r_{t} + d_{2}A_{t+1} + d_{3}K_{t} + G_{t}$$

$$Y_{t}(1 - c_{1}) = (1 - c_{1})G_{t} + c_{2}(Y_{t+1} - G_{t+1}) \dots$$

$$+ d_{2}A_{t+1} + d_{3}K_{t} - (c_{3} + d_{1})r_{t}$$

$$Y_{t} = \frac{1}{1 - c_{1}} \left((1 - c_{1})G_{t} + c_{2}(Y_{t+1} - G_{t+1}) \dots$$

$$+ d_{2}A_{t+1} + d_{3}K_{t} - (c_{3} + d_{1})r_{t} \right)$$

IS curve

$$Y_t = C_t + I_t + G_t$$

$$= c_1(Y_t - G_t) + c_2(Y_{t+1} - G_{t+1}) - c_3 r_t \dots$$

$$- d_1 r_t + d_2 A_{t+1} + d_3 K_t + G_t$$

$$Y_t(1 - c_1) = (1 - c_1)G_t + c_2(Y_{t+1} - G_{t+1}) \dots$$

$$+ d_2 A_{t+1} + d_3 K_t - (c_3 + d_1) r_t$$

$$Y_t = \frac{1}{1 - c_1} \bigg((1 - c_1)G_t + c_2(Y_{t+1} - G_{t+1}) \dots$$

$$+ d_2 A_{t+1} + d_3 K_t - (c_3 + d_1) r_t \bigg)$$
 Slope of the IS curve
$$\frac{\partial Y_t}{\partial r_t} = -\frac{c_3 + d_1}{1 - c_1}$$