

Exercise sheet 9

Visualization of Graphs

Exercise 1 – Visibility Representations

Let $R = [0, x] \times [0, y] \subset \mathbb{R}^2$ be an axis-parallel rectangle in the plane that contains a set S of pairwise disjoint horizontal line segments. Let the line segments $[0, x] \times \{0\}$ and $[0, x] \times \{y\}$ be contained in S .

We consider the ε -bar visibility graph $G = (S, E)$ with the set of directed edges

$$E = \{(u, v) \mid v \text{ is vertically upwards visible from } u\}.$$

- a) Show that G is an *st*-graph. 2 Points
- b) Describe how we could derive an upward planar drawing of G from the given visibility representation. 5 Points

Hint: A first step could be to transform the line segments into axis-parallel rectangles with small height.

Exercise 2 – Computing Coordinates for a Visibility Representation

We want to compute an ε -bar visibility representation ψ of an st -graph $G = (V, E)$. In addition to G , we are also given minimal (vertical) distances between pairs of bars corresponding to two adjacent vertices and a minimal width for every bar. More precisely, for a given edge-weight function $h: E \rightarrow \mathbb{R}_{\geq 0}$ and edge $(u, v) \in E$, the vertical distance of the bars $\psi(u)$ and $\psi(v)$ has to be at least $h((u, v))$. The function $w: V \rightarrow \mathbb{R}_{\geq 0}$ gives the minimal width for each bar $\psi(v)$ for $v \in V$.

- a) Describe a linear-time algorithm that calculates the y-coordinates for the bars in the visibility representation with a minimum maximal height. Argue why your algorithm achieves this asymptotic runtime. **7 Points**
- b) Show how we can use the algorithm for y-coordinates to compute the x-coordinates of each bar in the visibility representation with respect to w and such that we achieve a minimum maximal width for the whole representation. **6 Points**

Hint: Consider the st-dual of G .

This assignment is due on July 14th at 10 am. Please submit your solutions via WueCampus. The exercises will be discussed in the tutorial session on July 18th at 16:15.