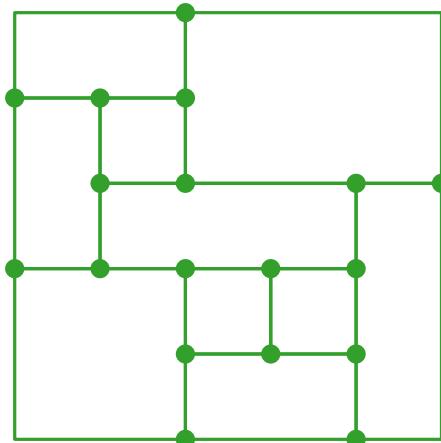
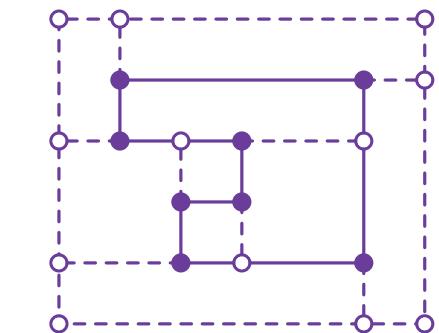
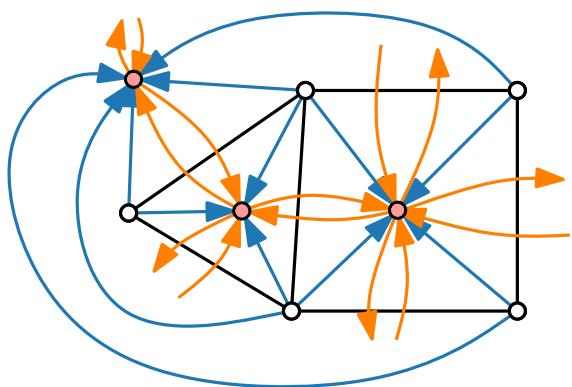


Visualization of Graphs



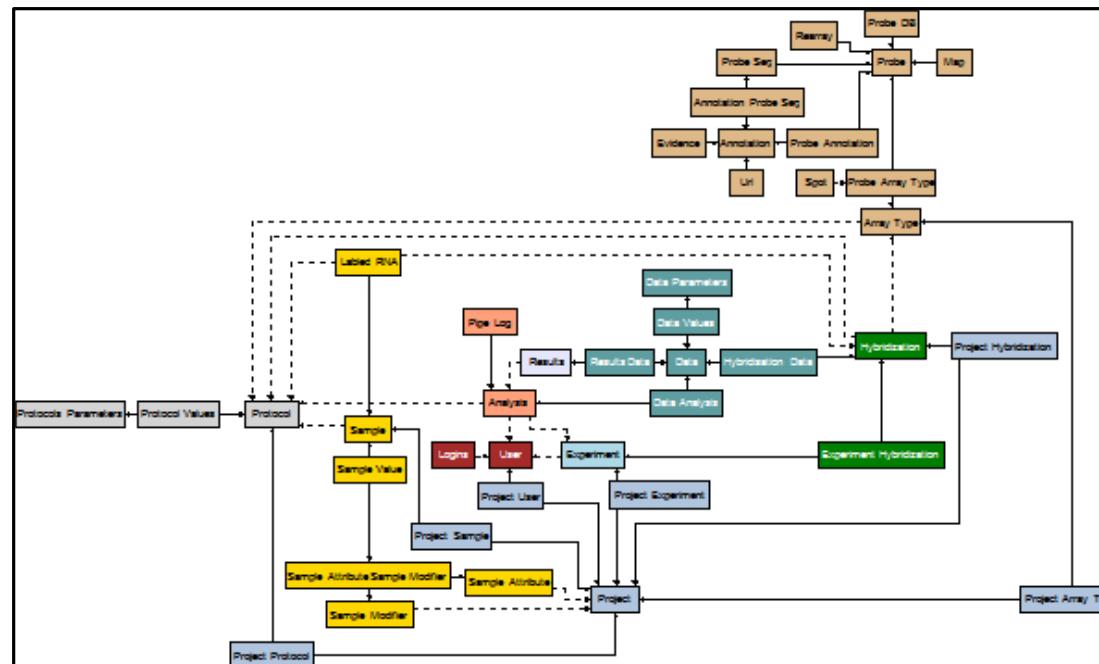
Lecture 5: Orthogonal Layouts

Part I:
Topology – Shape – Metric



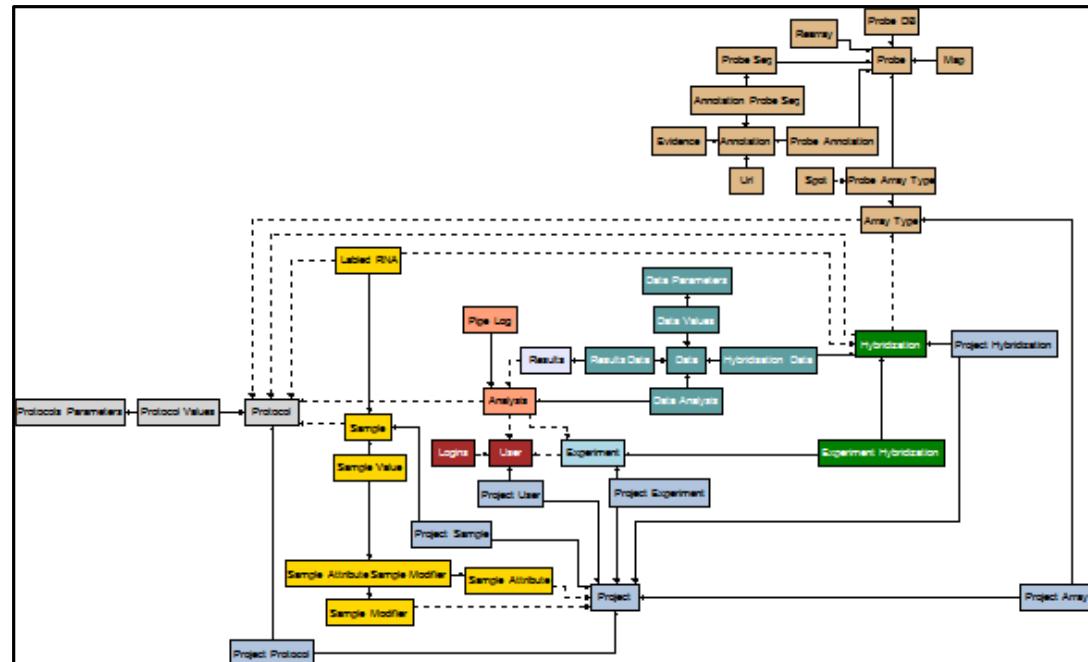
Alexander Wolff

Orthogonal Layout – Applications

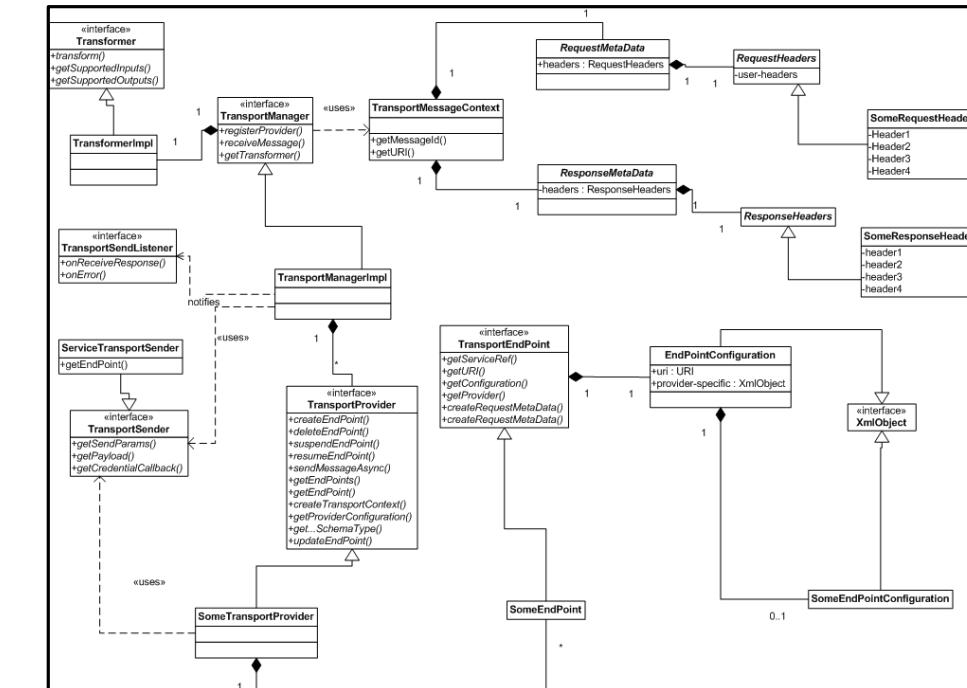


ER diagram in OGDF

Orthogonal Layout – Applications

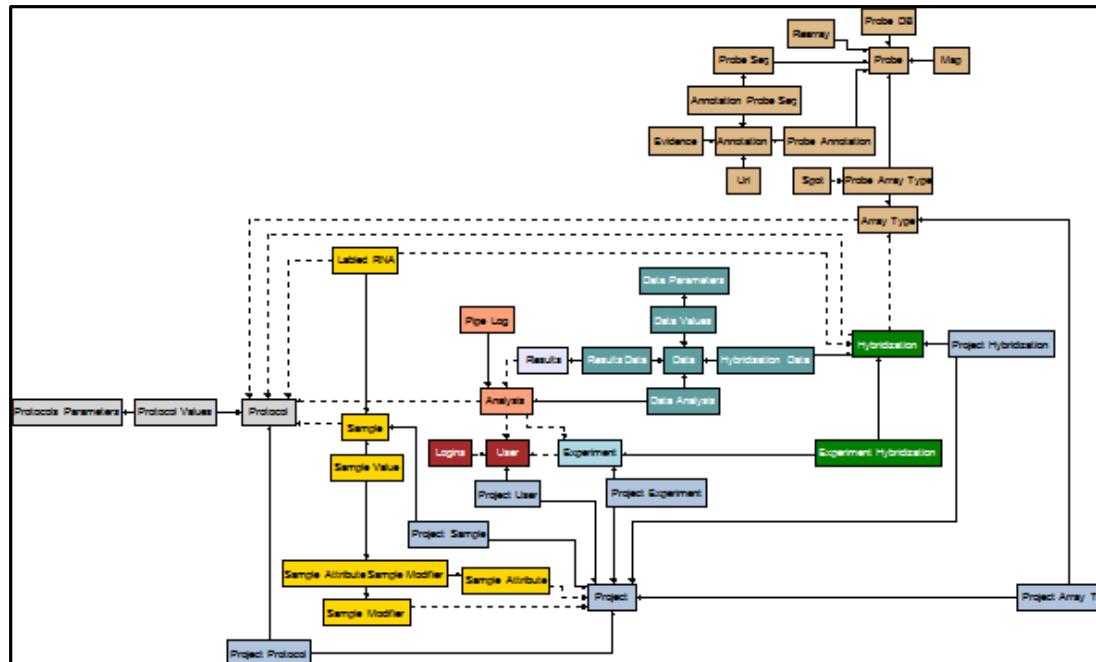


ER diagram in OGDF

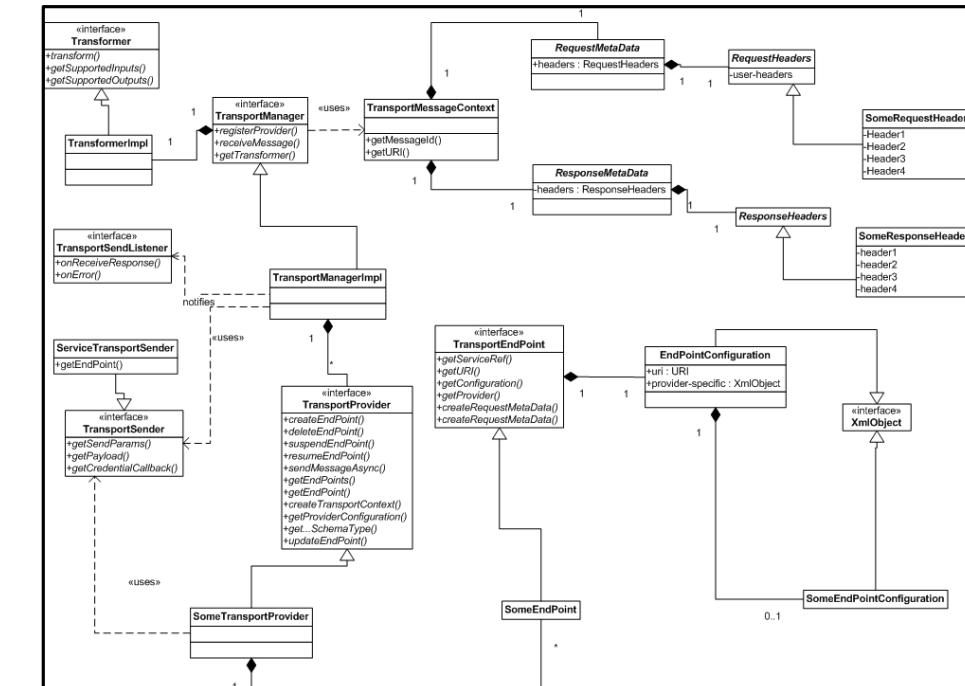


UML diagram by Oracle

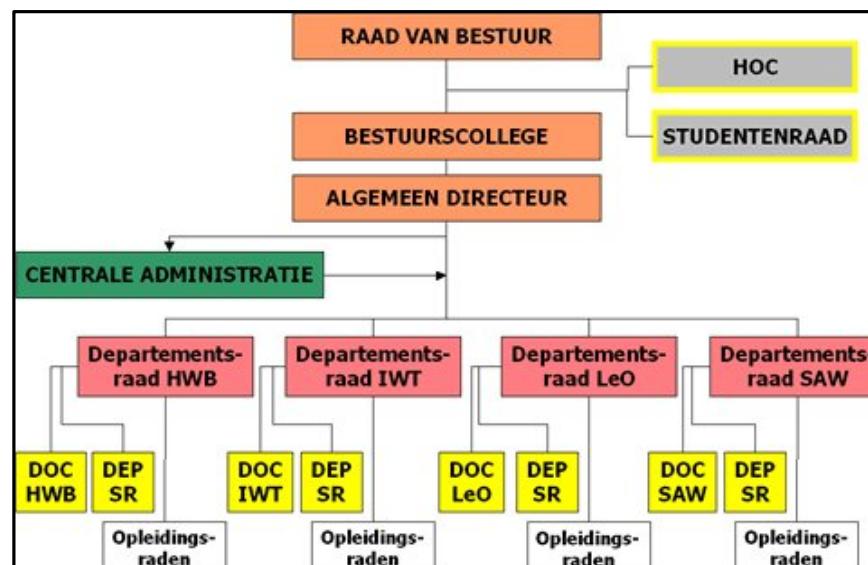
Orthogonal Layout – Applications



ER diagram in OGDF

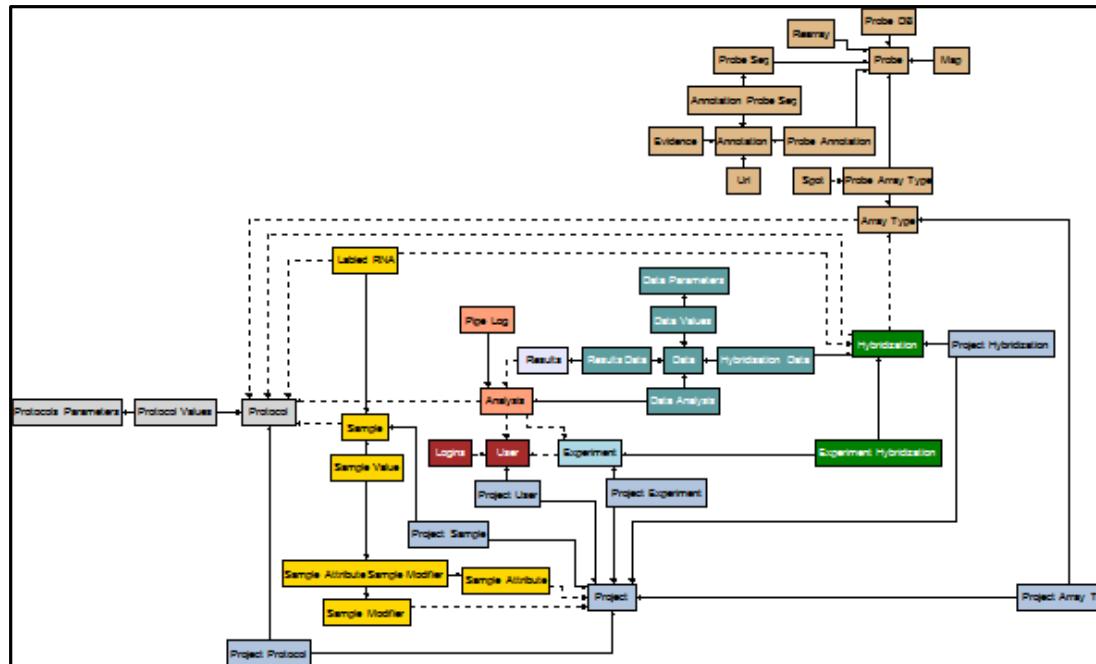


UML diagram by Oracle

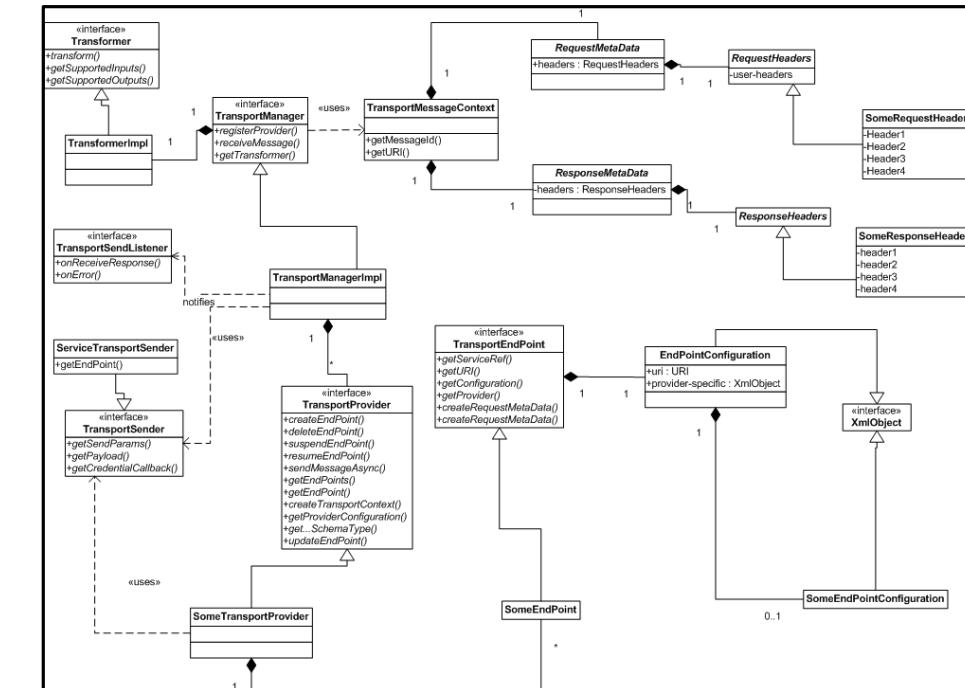


Organigram of HS Limburg

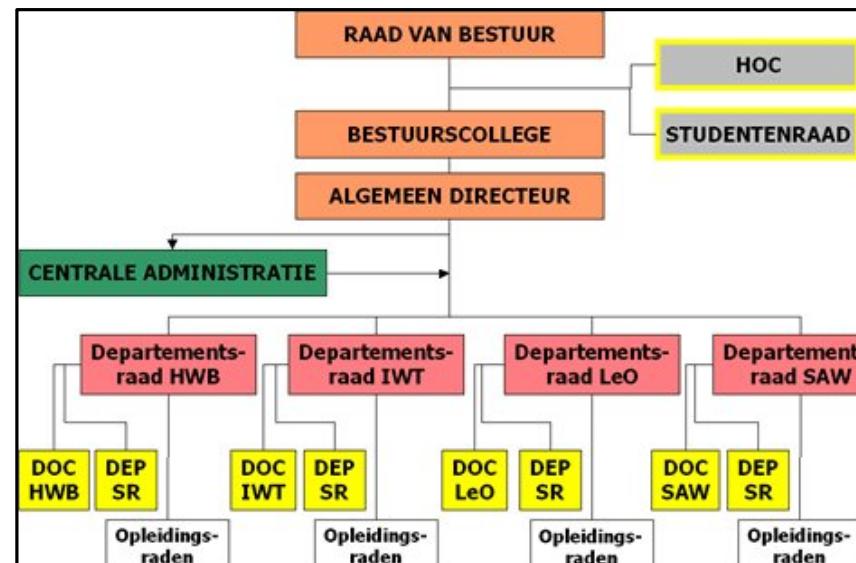
Orthogonal Layout – Applications



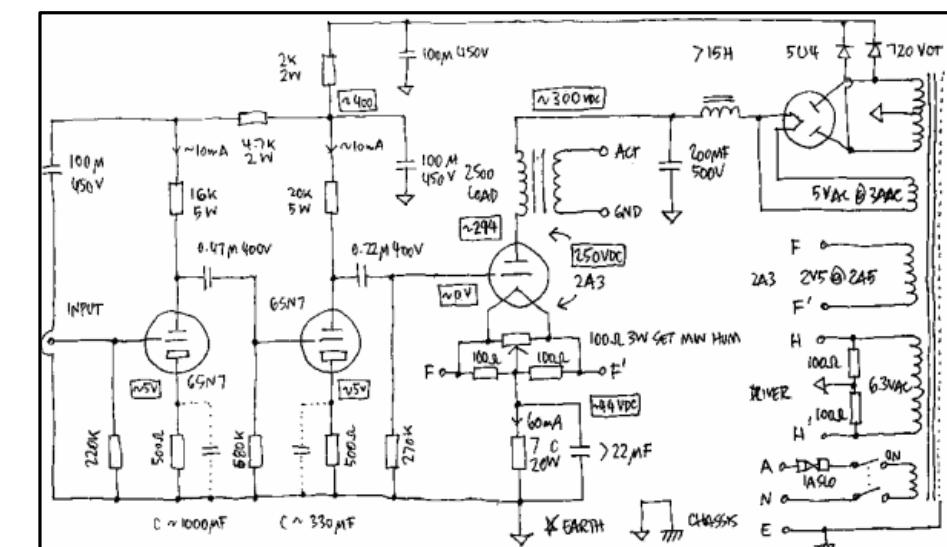
ER diagram in OGDF



UML diagram by Oracle



Organigram of HS Limburg



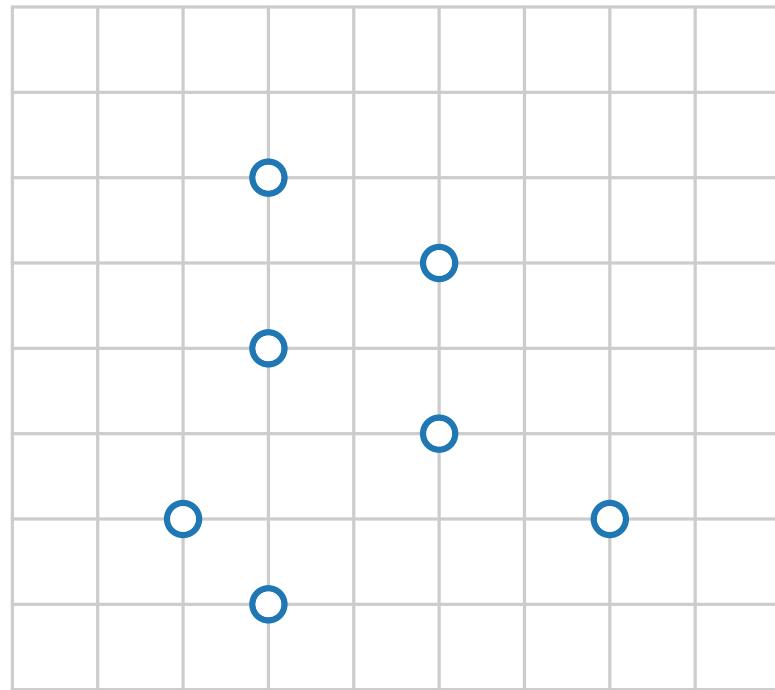
Circuit diagram by Jeff Atwood

Orthogonal Layout – Definition

Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

Orthogonal Layout – Definition

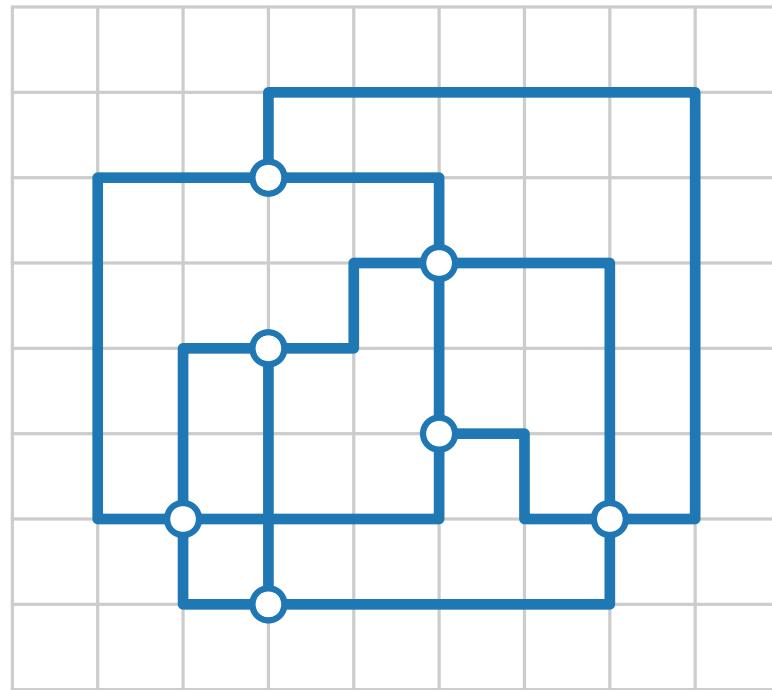


Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,

Orthogonal Layout – Definition

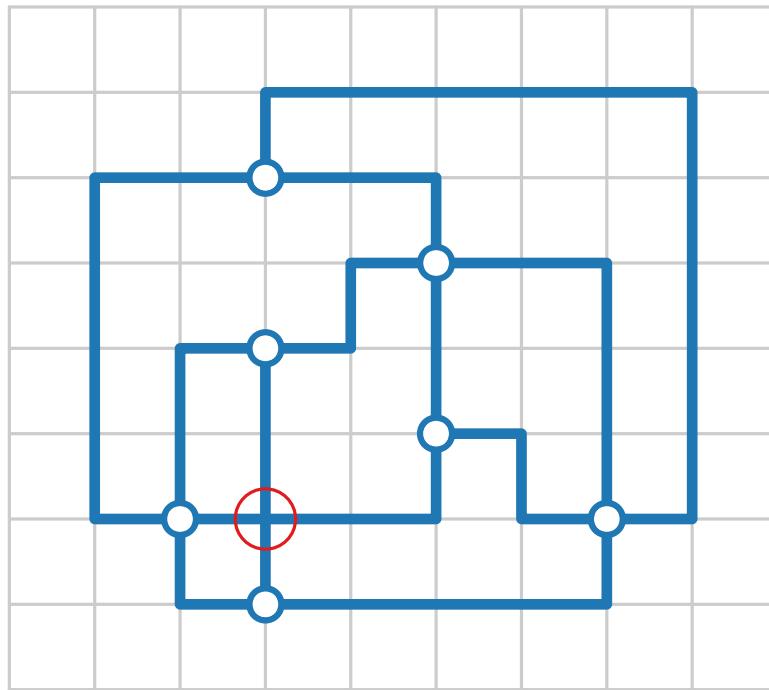


Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and

Orthogonal Layout – Definition

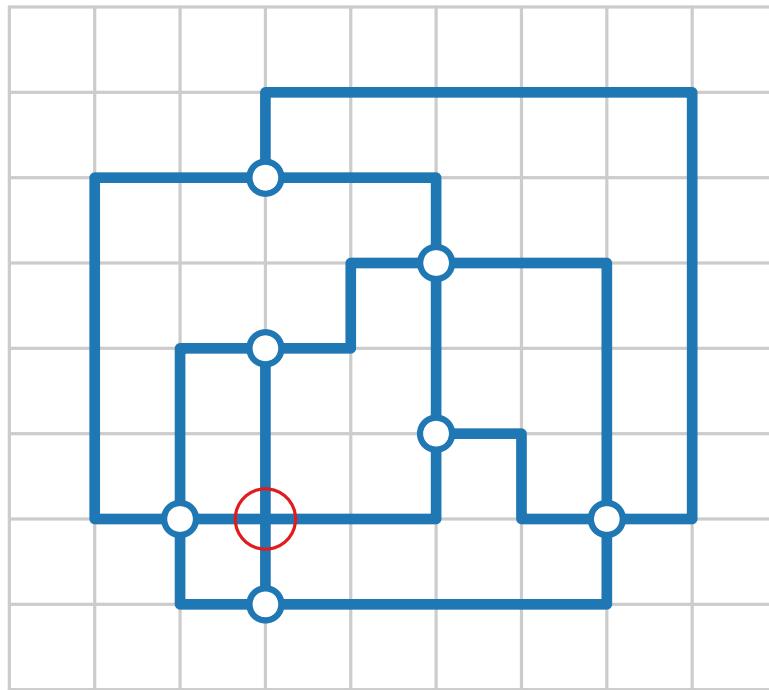


Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Orthogonal Layout – Definition



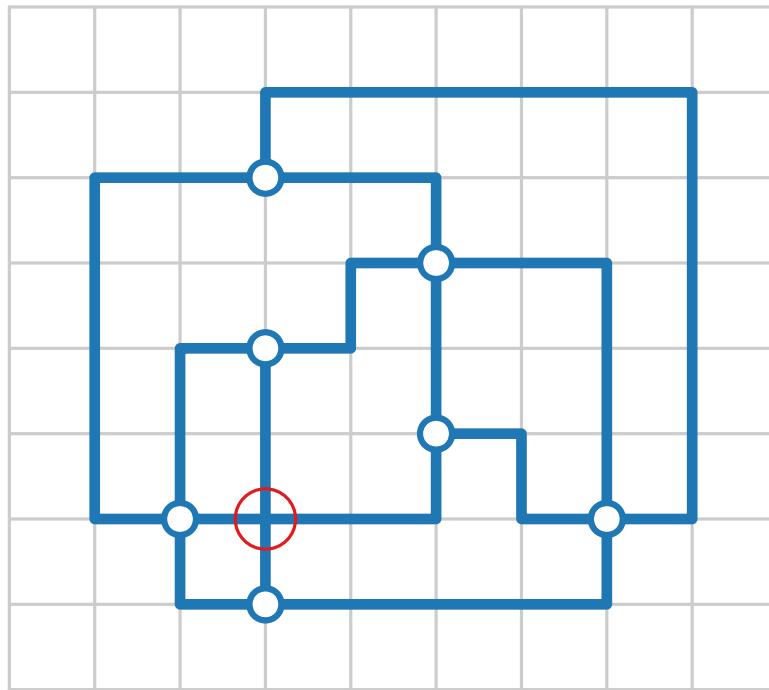
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

Orthogonal Layout – Definition



Definition.

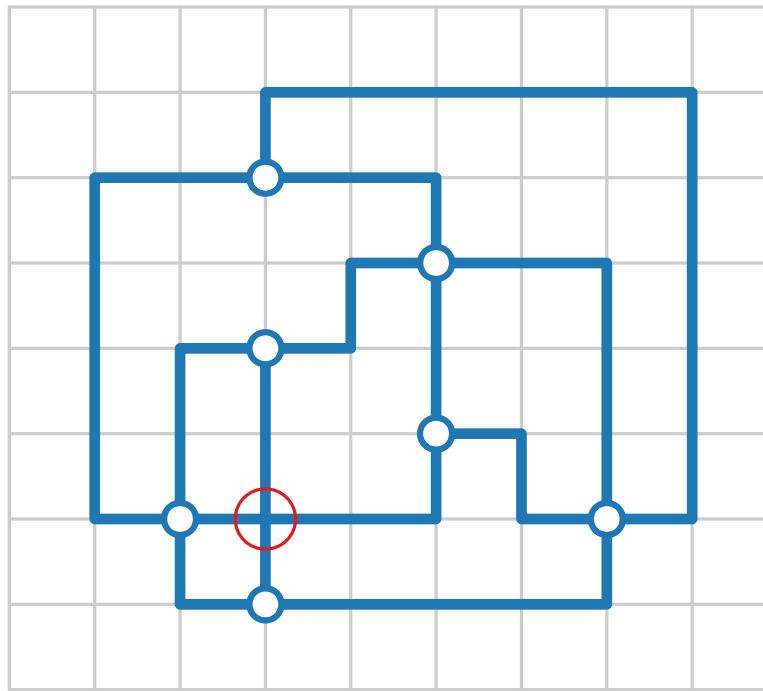
A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid \Rightarrow
bends lie on grid points

Orthogonal Layout – Definition



Definition.

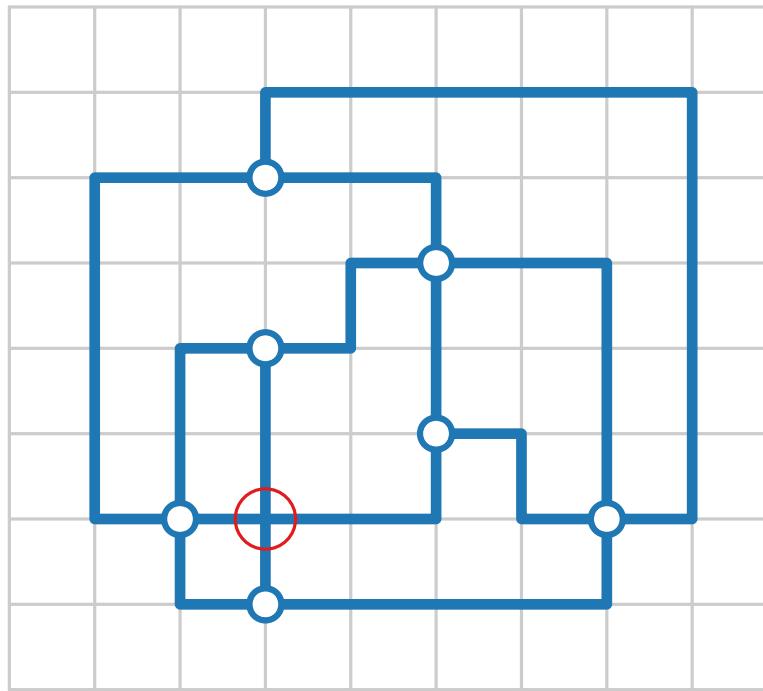
A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4

Orthogonal Layout – Definition



Definition.

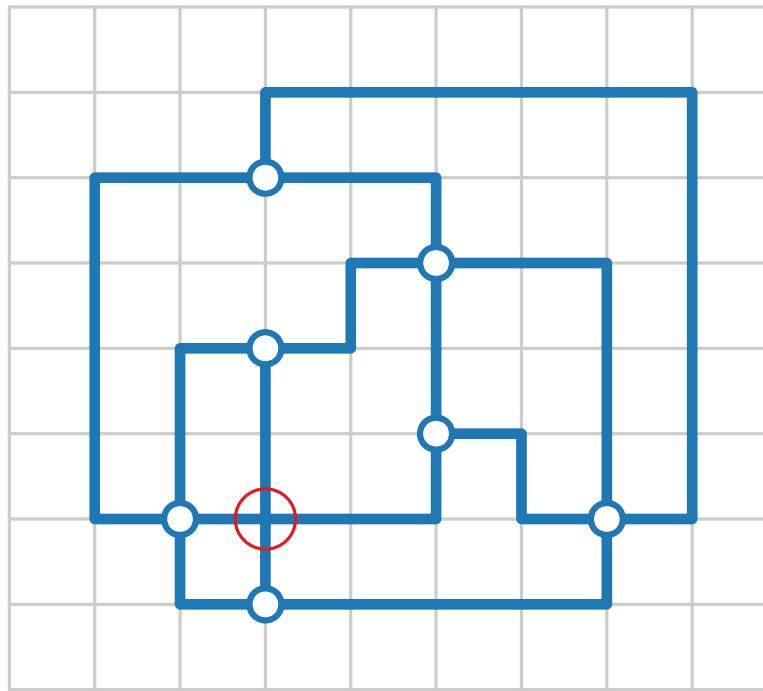
A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Orthogonal Layout – Definition



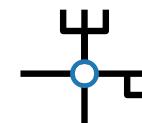
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

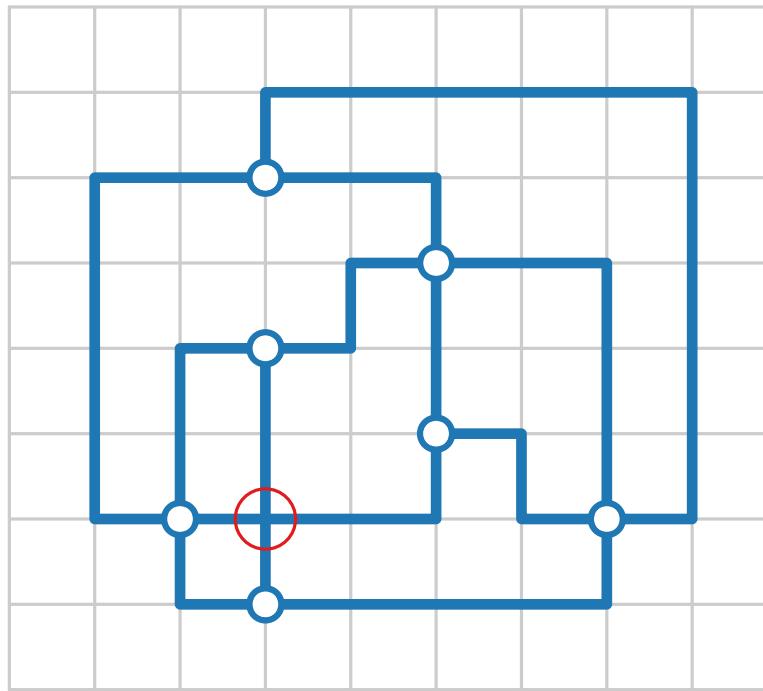
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Orthogonal Layout – Definition



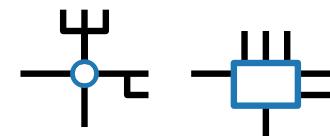
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

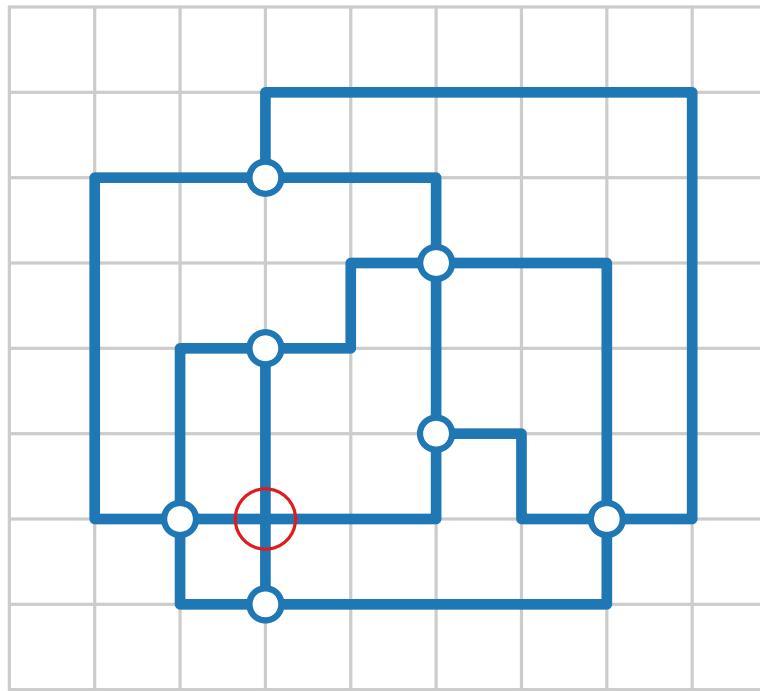
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Orthogonal Layout – Definition



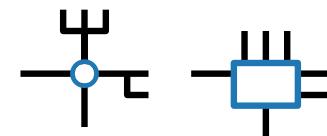
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

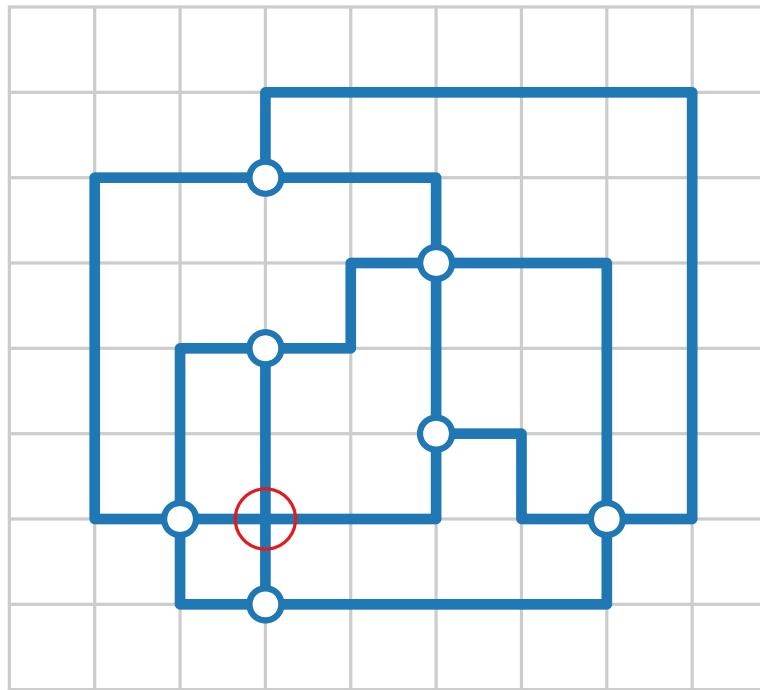
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

Orthogonal Layout – Definition



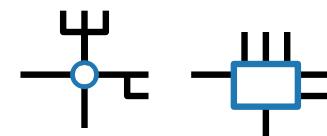
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

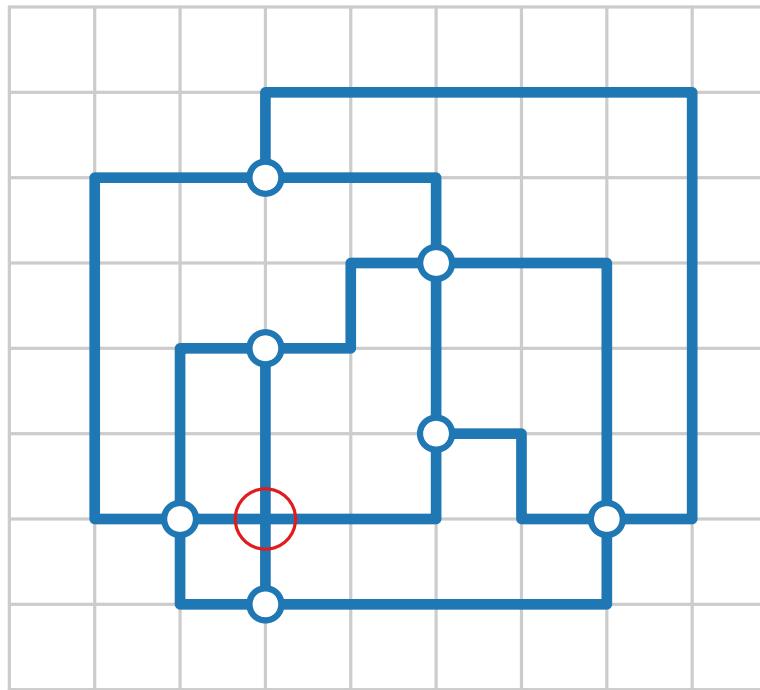
- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

- Fix embedding

Orthogonal Layout – Definition



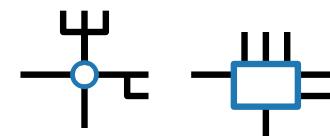
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

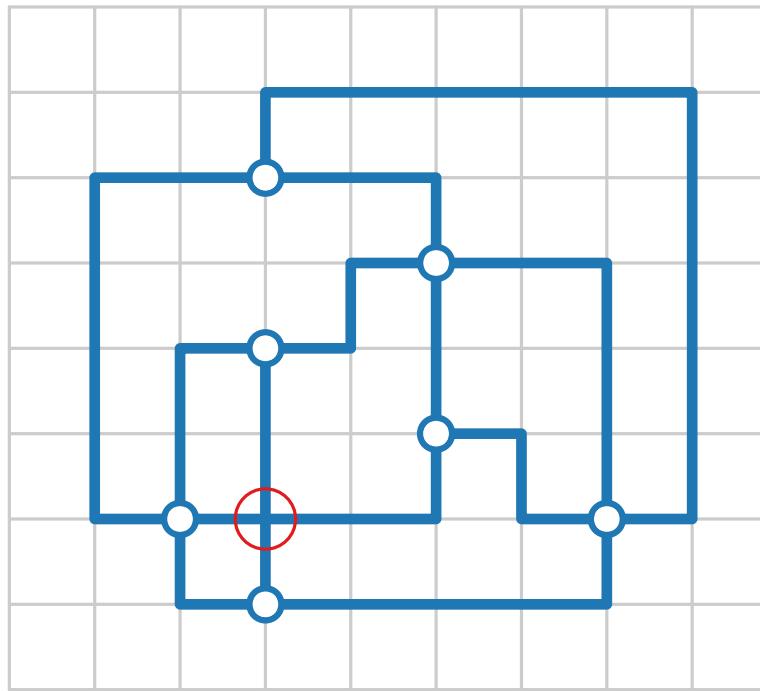
- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

- Fix embedding
- Crossings become vertices

Orthogonal Layout – Definition



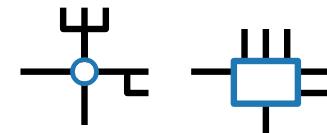
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

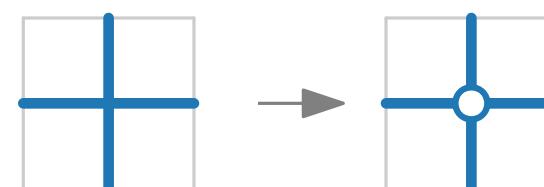
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

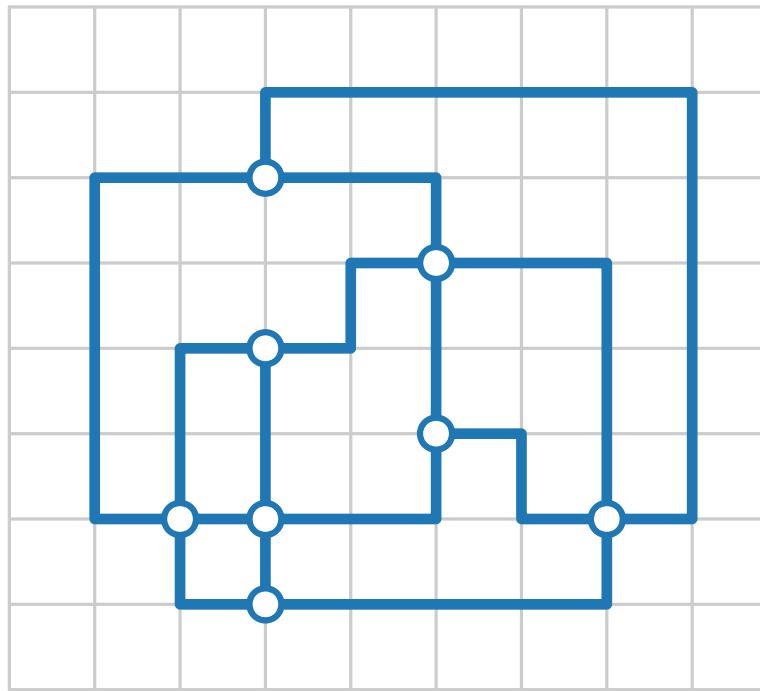


Planarization.

- Fix embedding
- Crossings become vertices



Orthogonal Layout – Definition



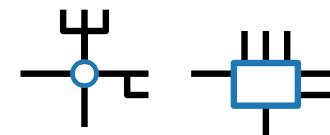
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

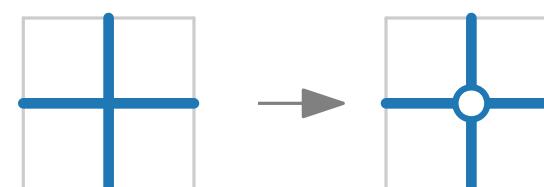
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

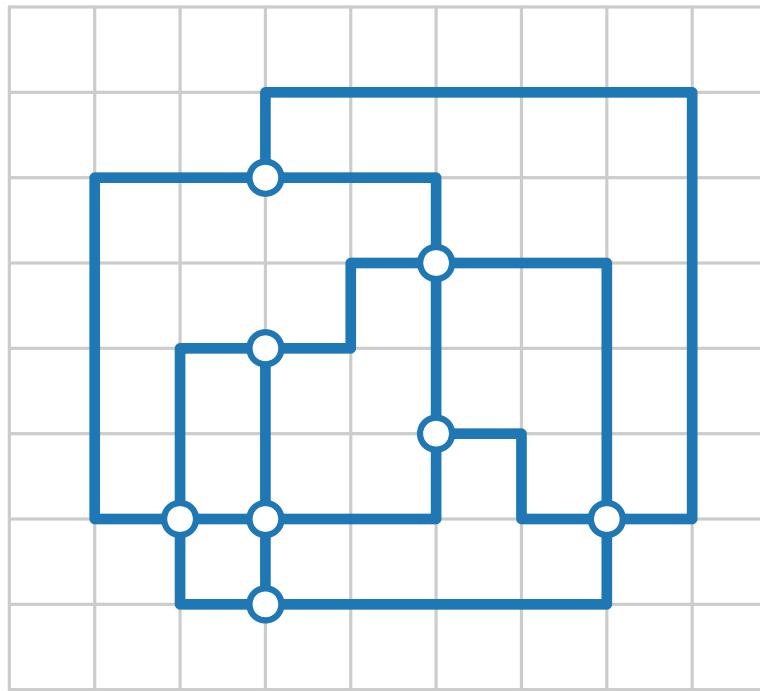


Planarization.

- Fix embedding
- Crossings become vertices



Orthogonal Layout – Definition



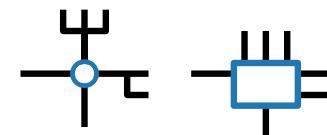
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

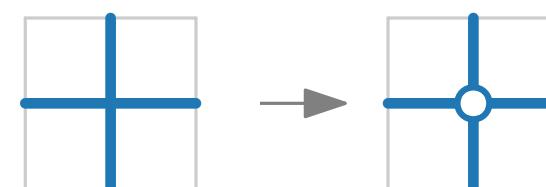
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



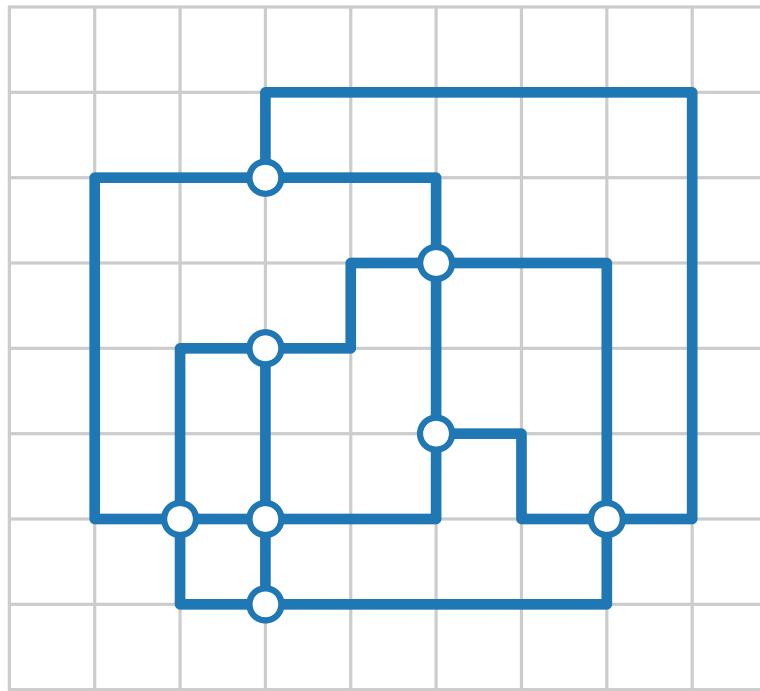
Planarization.

- Fix embedding
- Crossings become vertices



Aesthetic criteria.

Orthogonal Layout – Definition



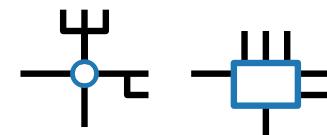
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

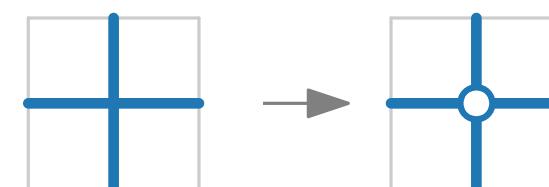
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

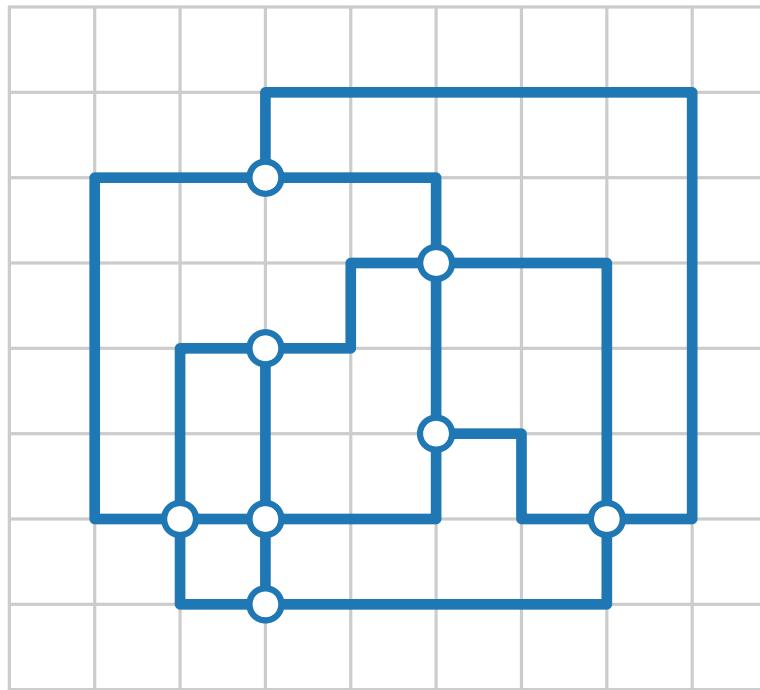
- Fix embedding
- Crossings become vertices



Aesthetic criteria.

- Number of bends

Orthogonal Layout – Definition



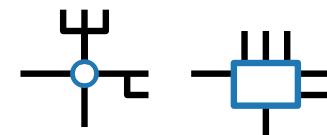
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

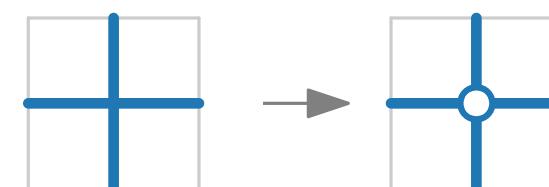
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

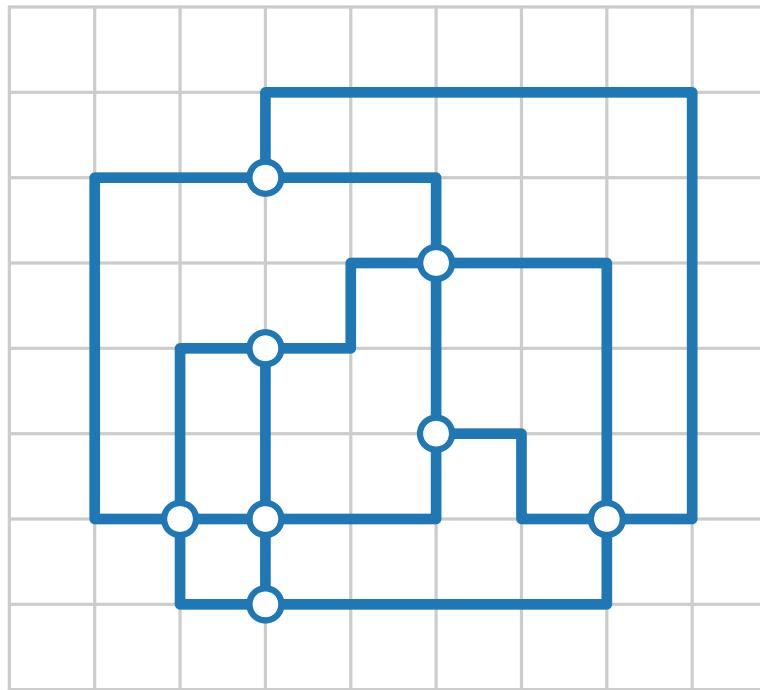
- Fix embedding
- Crossings become vertices



Aesthetic criteria.

- Number of bends
- Length of edges

Orthogonal Layout – Definition



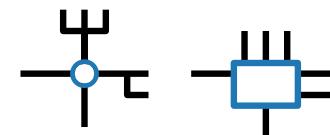
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

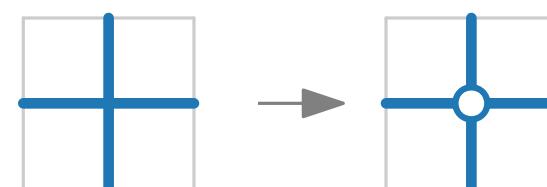
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

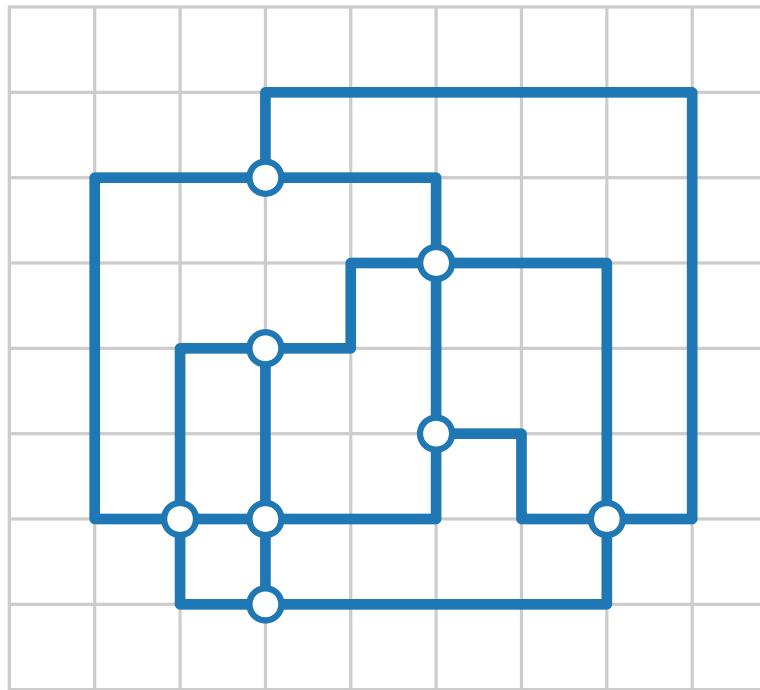
- Fix embedding
- Crossings become vertices



Aesthetic criteria.

- Number of bends
- Length of edges
- Width, height, area

Orthogonal Layout – Definition



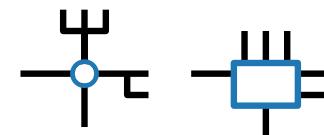
Definition.

A drawing Γ of a graph $G = (V, E)$ is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

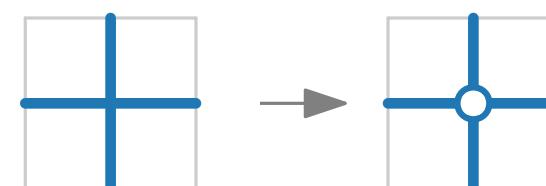
Observations.

- Edges lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

- Fix embedding
- Crossings become vertices



Aesthetic criteria.

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ...

Topology – Shape – Metrics

Three-step approach:

[Tamassia 1987]

TOPOLOGY

—

SHAPE

—

METRICS

Topology – Shape – Metrics

Three-step approach:

[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

TOPOLOGY

—

SHAPE

—

METRICS

Topology – Shape – Metrics

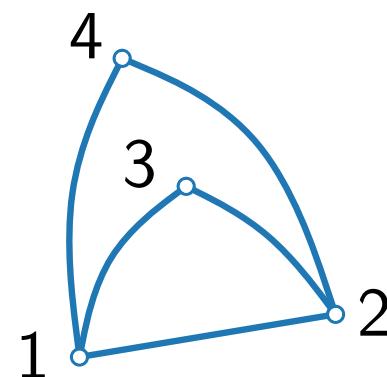
Three-step approach:

[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

combinatorial
embedding/
planarization



TOPOLOGY

—

SHAPE

—

METRICS

Topology – Shape – Metrics

Three-step approach:

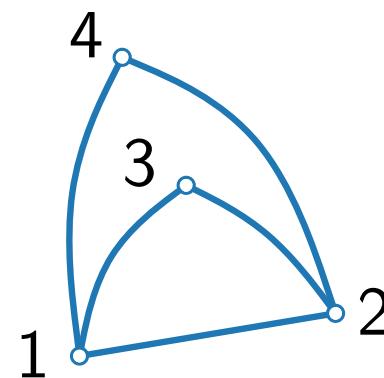
[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



TOPOLOGY

—

SHAPE

—

METRICS

Topology – Shape – Metrics

Three-step approach:

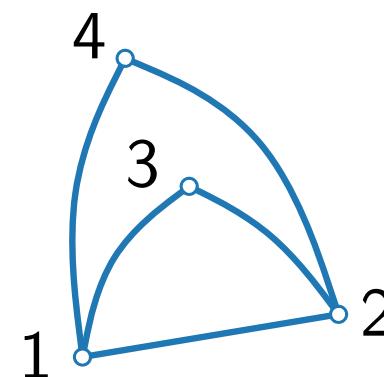
[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization

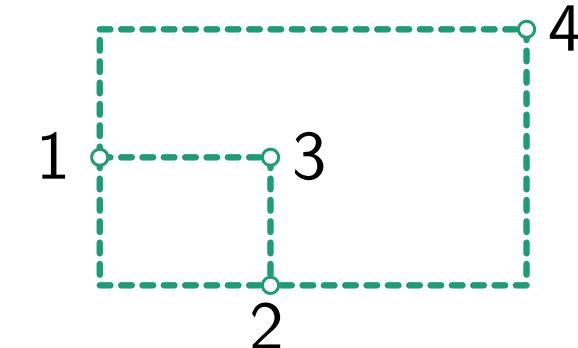


TOPOLOGY

SHAPE

METRICS

orthogonal
representation



Topology – Shape – Metrics

Three-step approach:

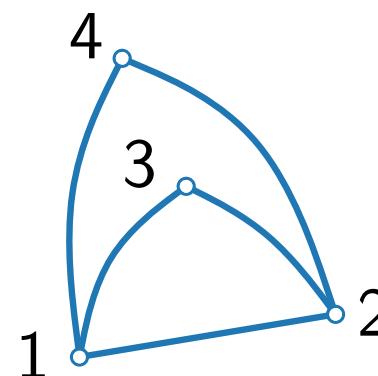
[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



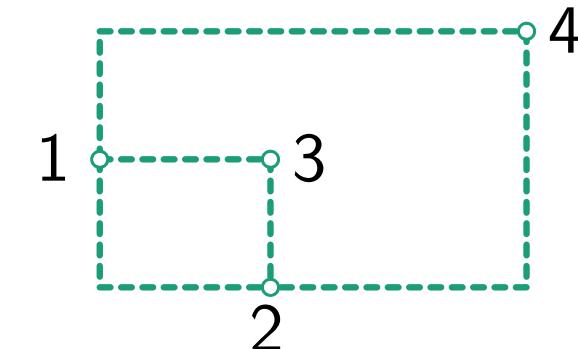
TOPOLOGY

SHAPE

METRICS

bend minimization

orthogonal
representation



Topology – Shape – Metrics

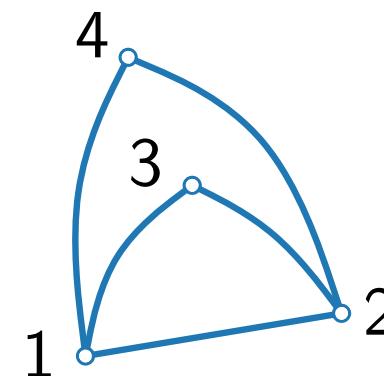
Three-step approach:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



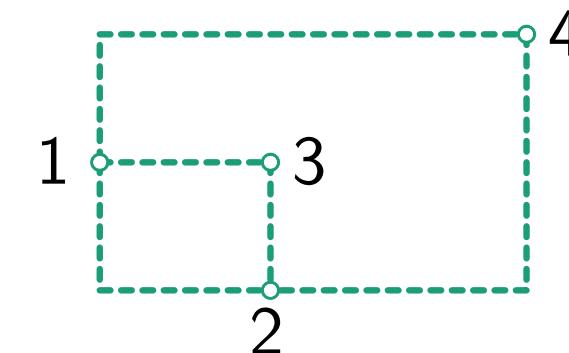
TOPOLOGY

SHAPE

METRICS

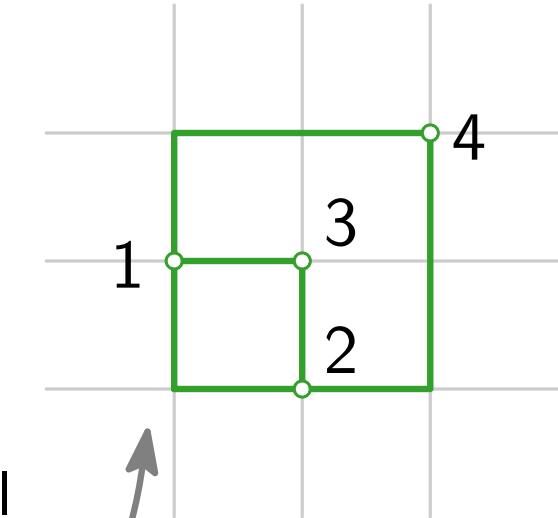
[Tamassia 1987]

planar
orthogonal
drawing



bend minimization

orthogonal
representation



Topology – Shape – Metrics

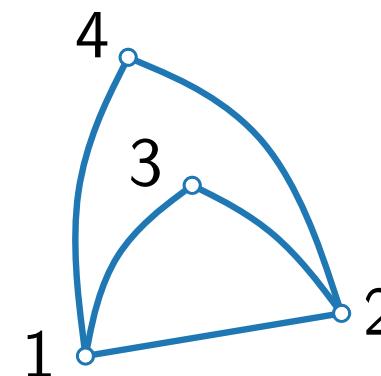
Three-step approach:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



TOPOLOGY

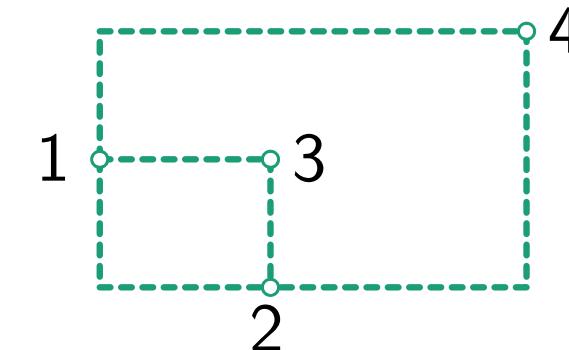
SHAPE

METRICS

[Tamassia 1987]

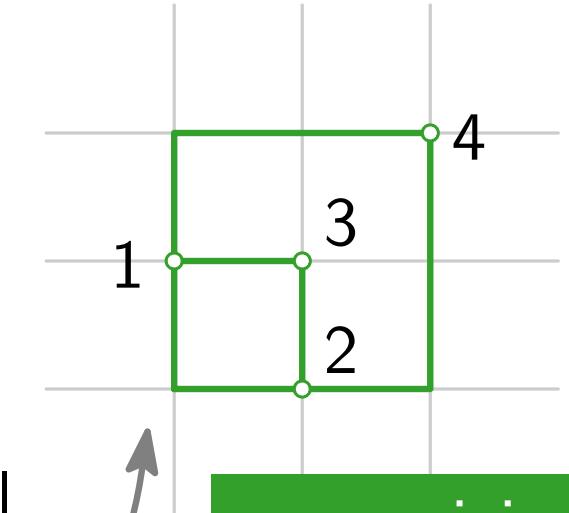
planar
orthogonal
drawing

area mini-
mization



bend minimization

orthogonal
representation



Topology – Shape – Metrics

Three-step approach:

[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



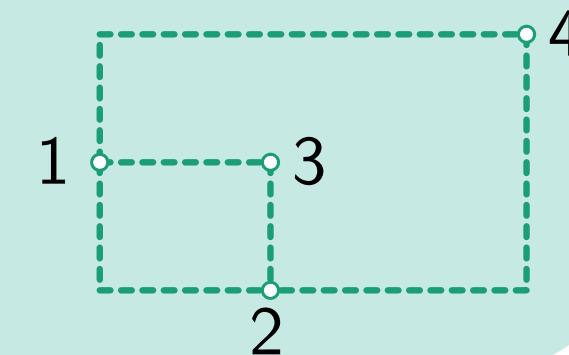
TOPOLOGY

bend minimization

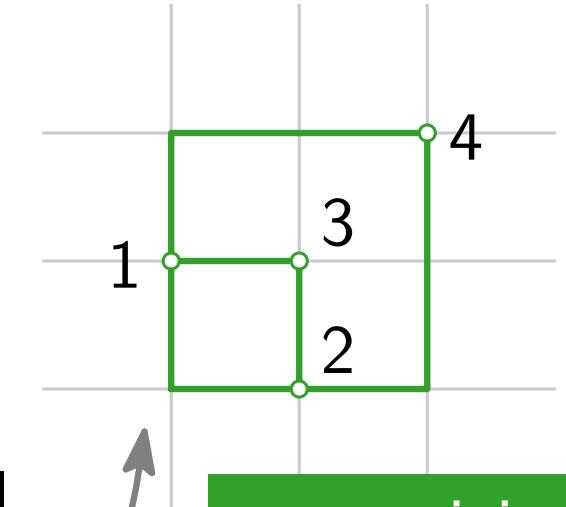
orthogonal
representation

SHAPE

planar
orthogonal
drawing

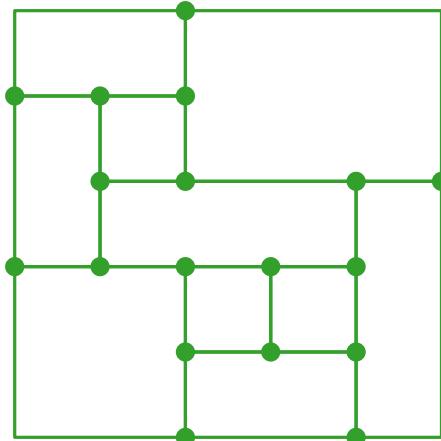


METRICS



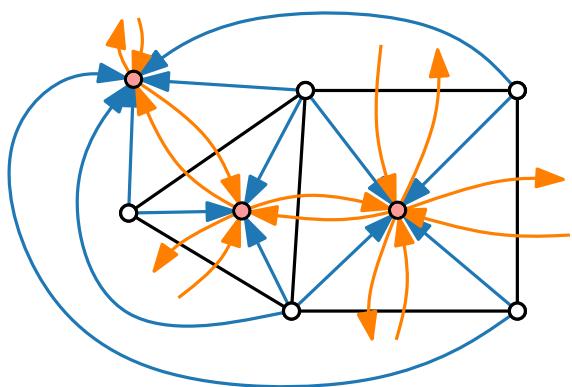
area mini-
mization

Visualization of Graphs

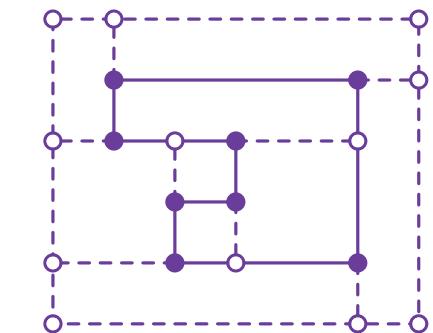


Lecture 5: Orthogonal Layouts

Part II: Orthogonal Representation



Alexander Wolff



Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge

Orthogonal Representation

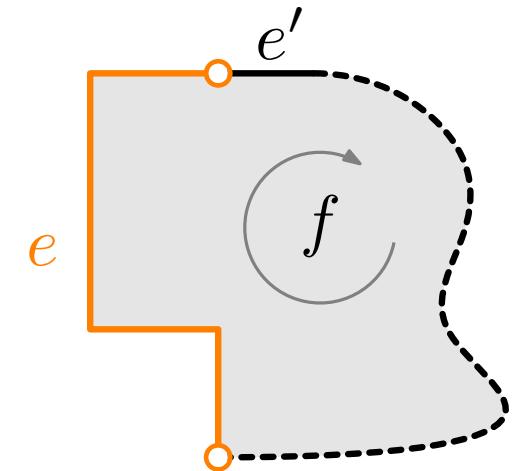
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.



Orthogonal Representation

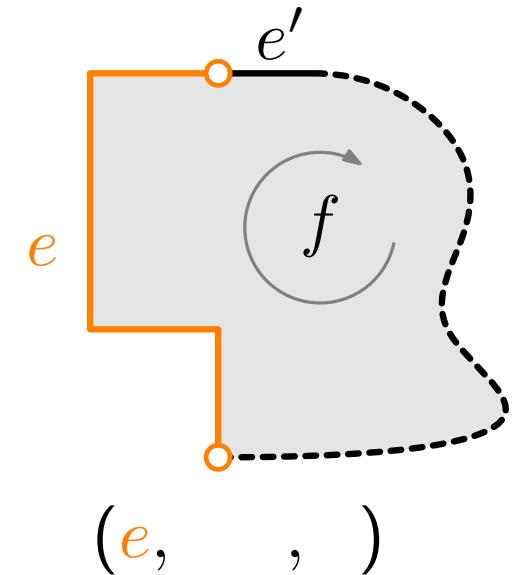
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where



Orthogonal Representation

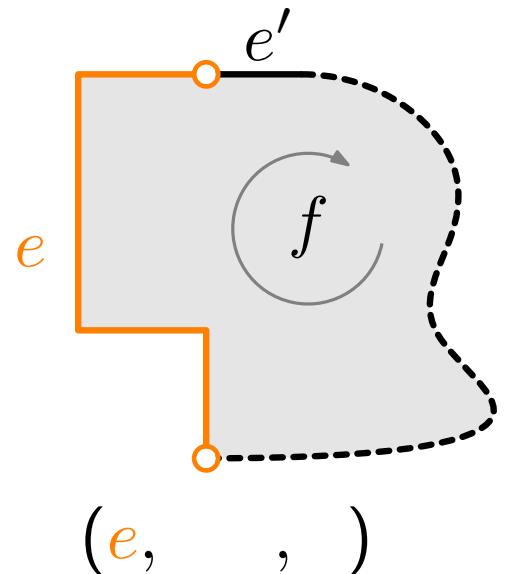
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
 An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)



Orthogonal Representation

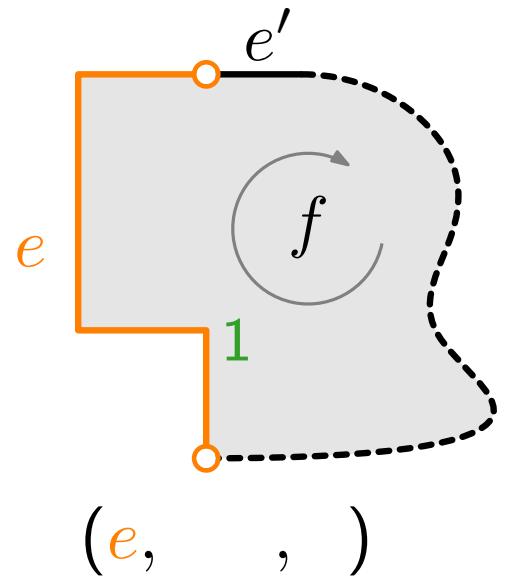
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
 An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)



Orthogonal Representation

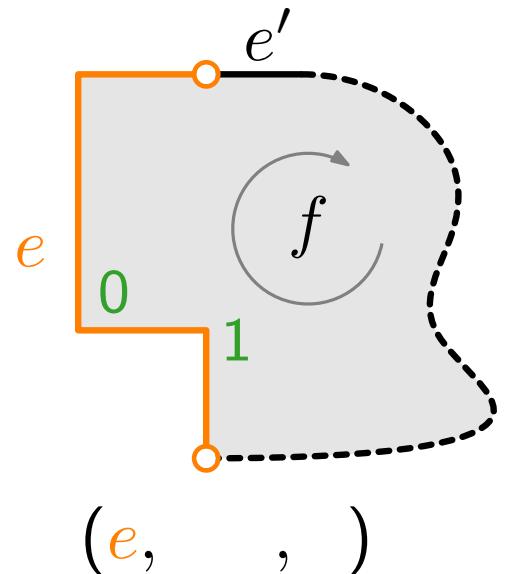
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)



Orthogonal Representation

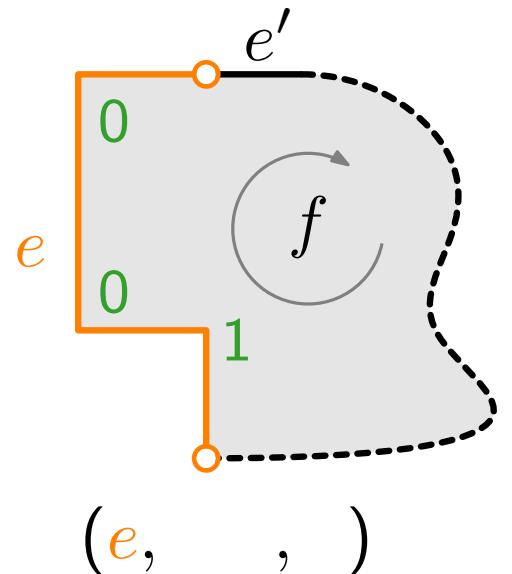
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
 An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)



Orthogonal Representation

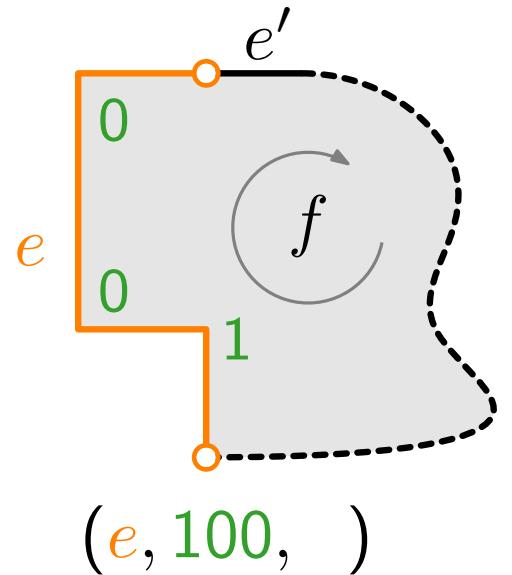
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)



Orthogonal Representation

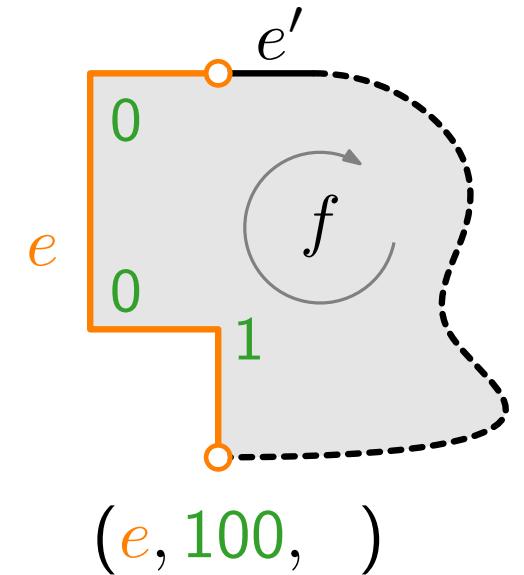
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)
 - α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'



Orthogonal Representation

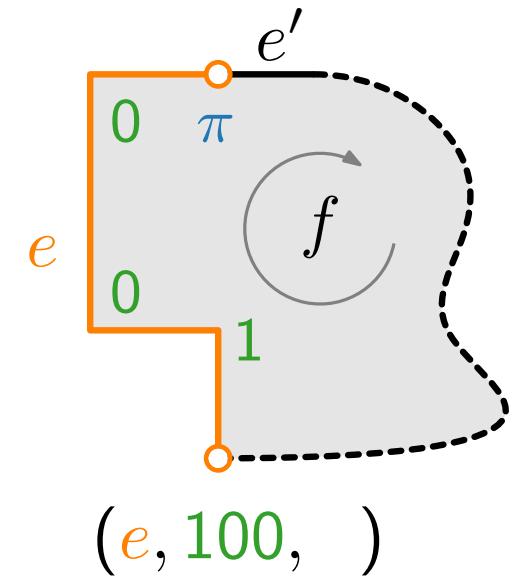
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)
 - α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'



Orthogonal Representation

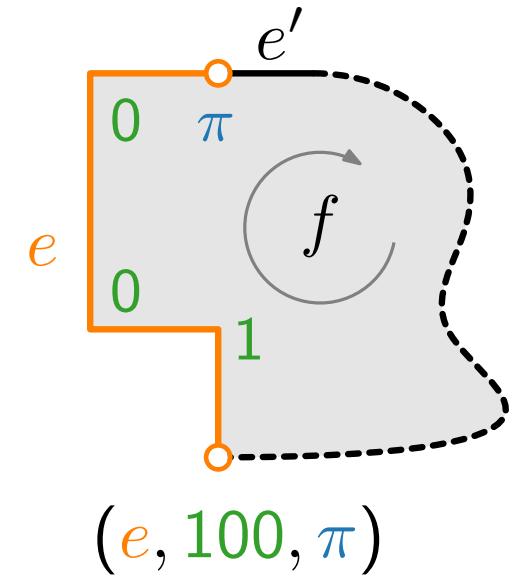
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where 0 = right bend, 1 = left bend)
 - α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'



Orthogonal Representation

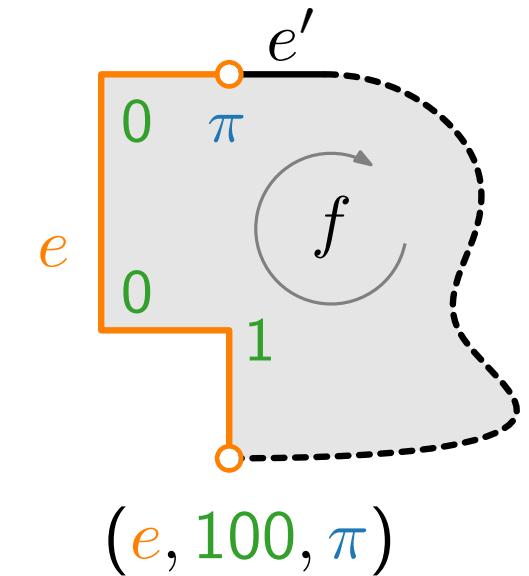
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where $0 =$ right bend, $1 =$ left bend)
 - α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A **face representation** $H(f)$ of f is a clockwise ordered sequence of edge descriptions $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \dots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$.



Orthogonal Representation

Idea.

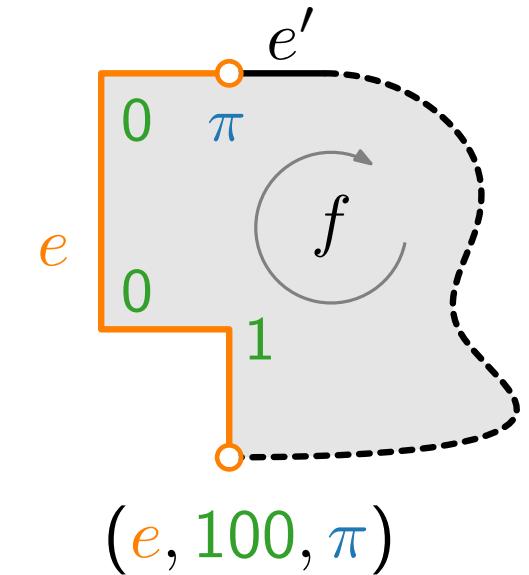
Describe orthogonal drawing combinatorially.

Definitions.

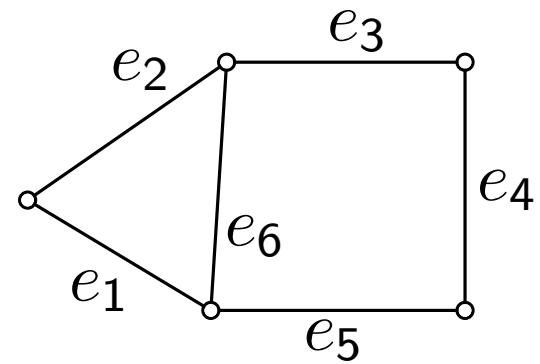
Let $G = (V, E)$ be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right.
An **edge description** of e wrt f is a triple (e, δ, α) where
 - $\delta \in \{0, 1\}^*$ (where $0 =$ right bend, $1 =$ left bend)
 - α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A **face representation** $H(f)$ of f is a clockwise ordered sequence of edge descriptions $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \dots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$.
- An **orthogonal representation** $H(G)$ of G is defined as

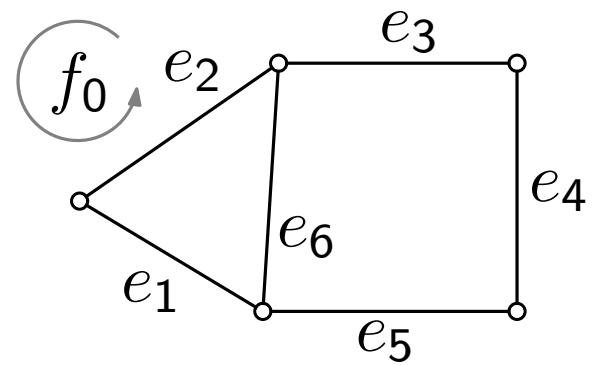
$$H(G) = \{H(f) \mid f \in F\}.$$



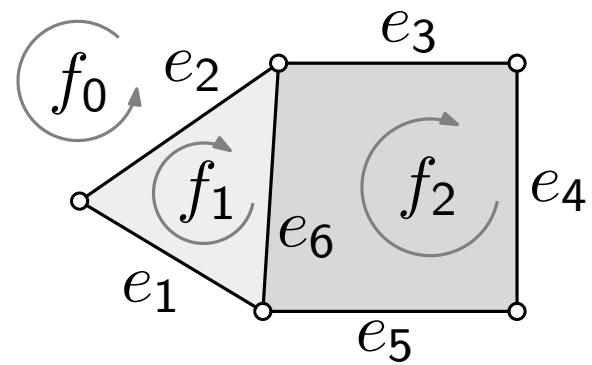
Orthogonal Representation – Example



Orthogonal Representation – Example



Orthogonal Representation – Example

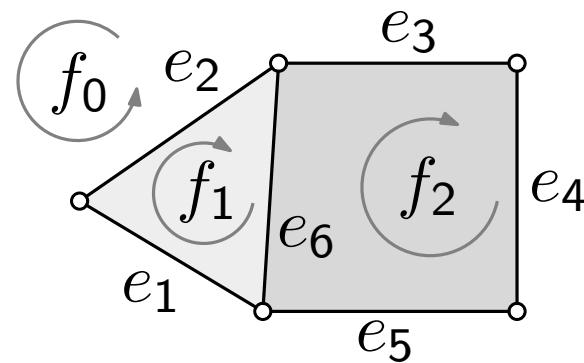


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

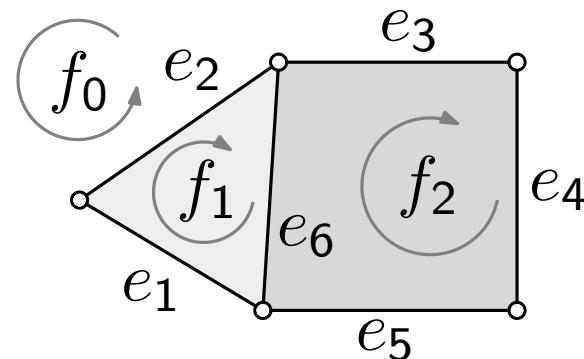


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



Combinatorial “drawing” of $H(G)$?

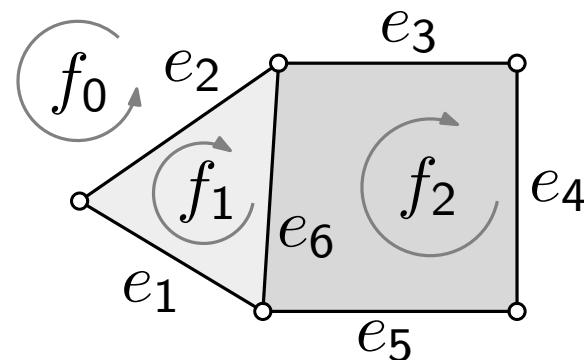
Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

f_0

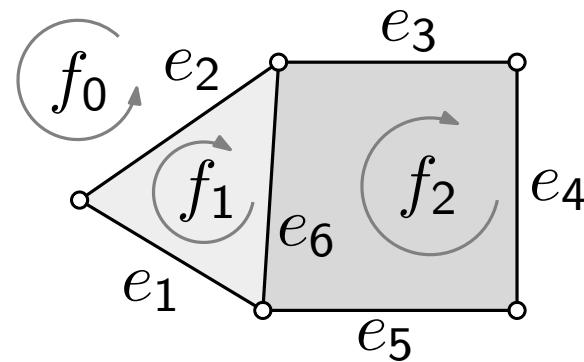
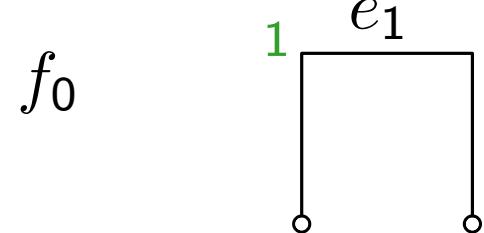


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

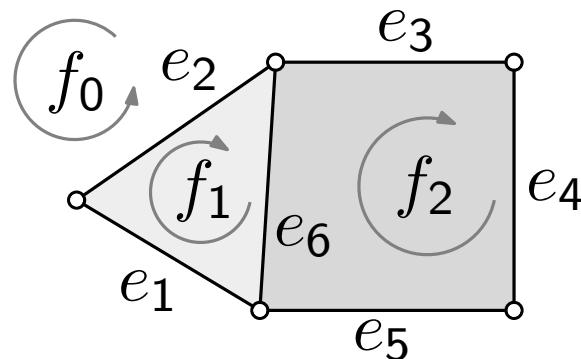
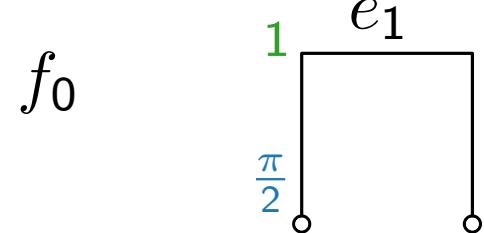


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

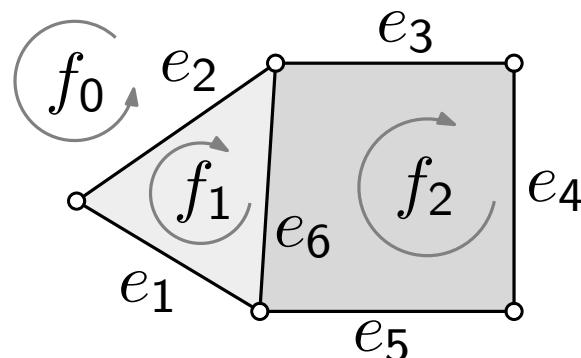


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

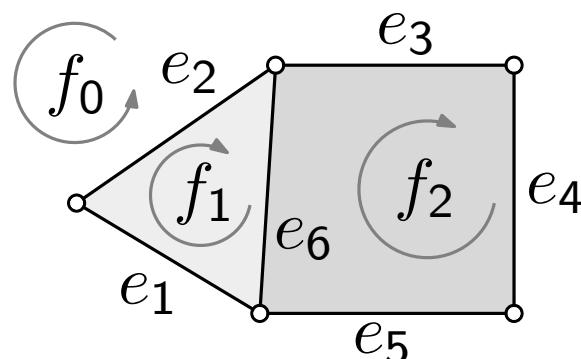
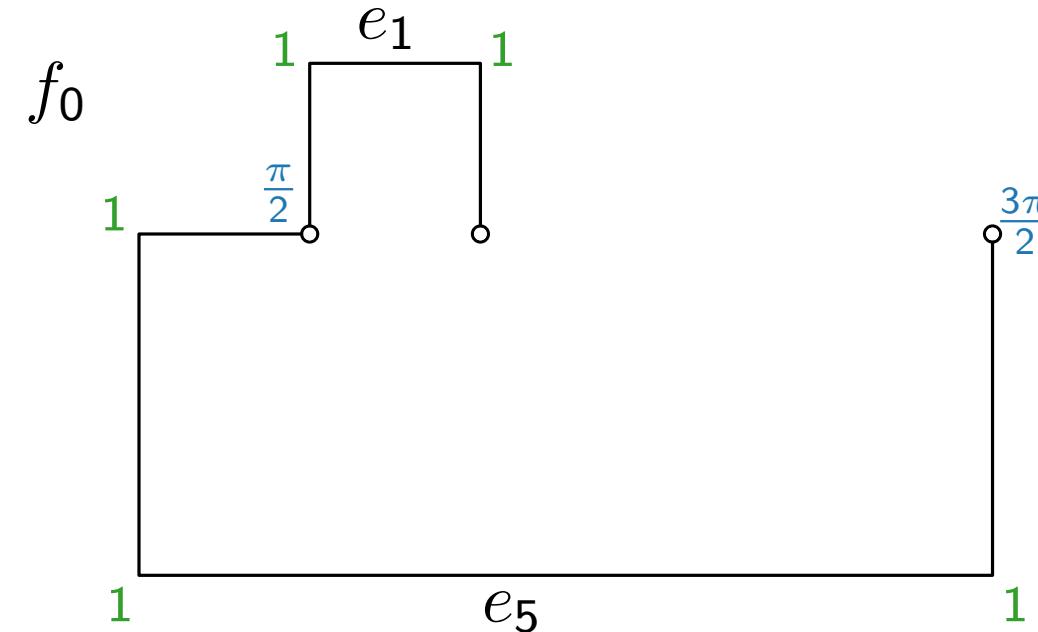


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

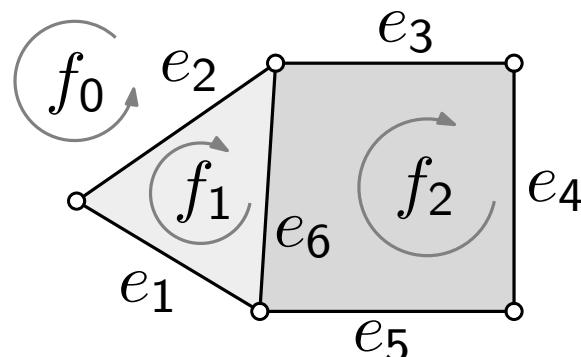
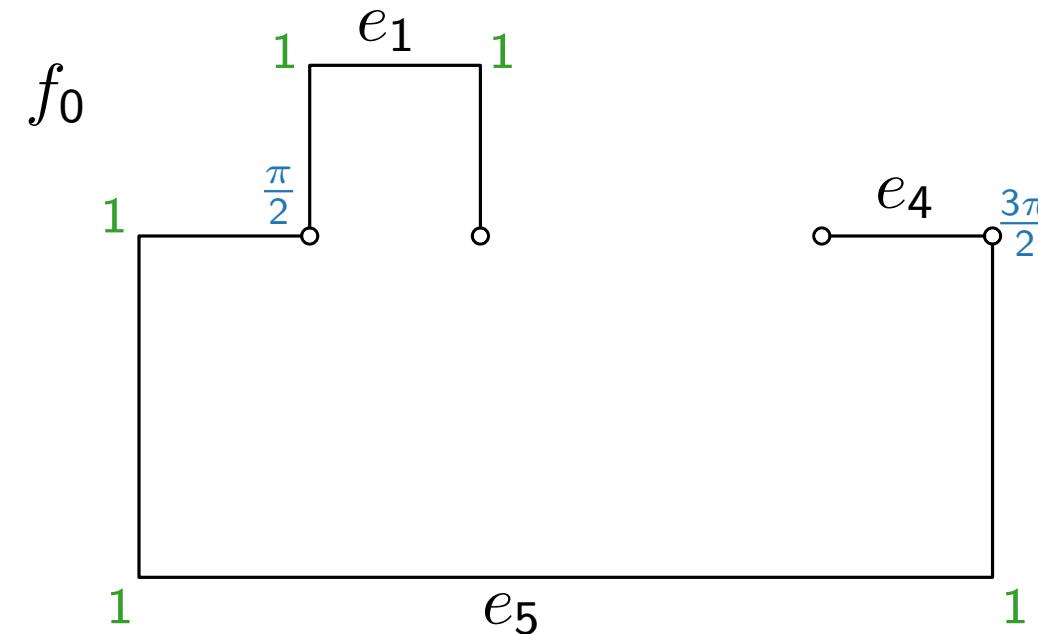


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

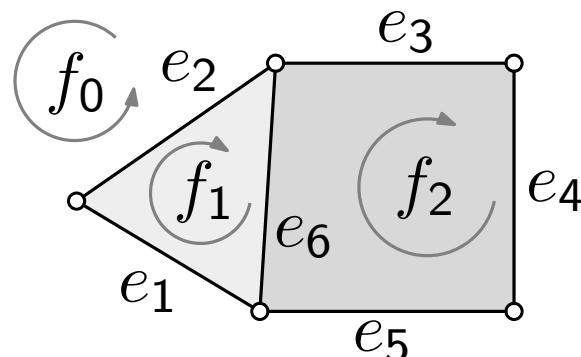
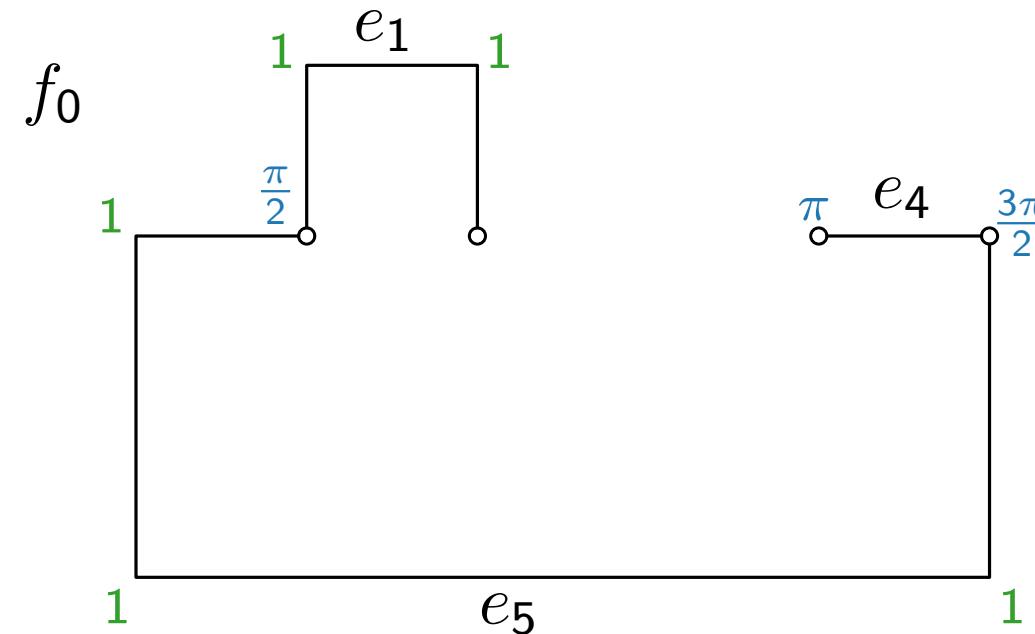


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

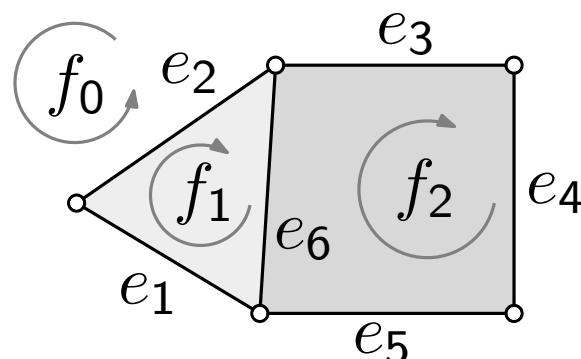
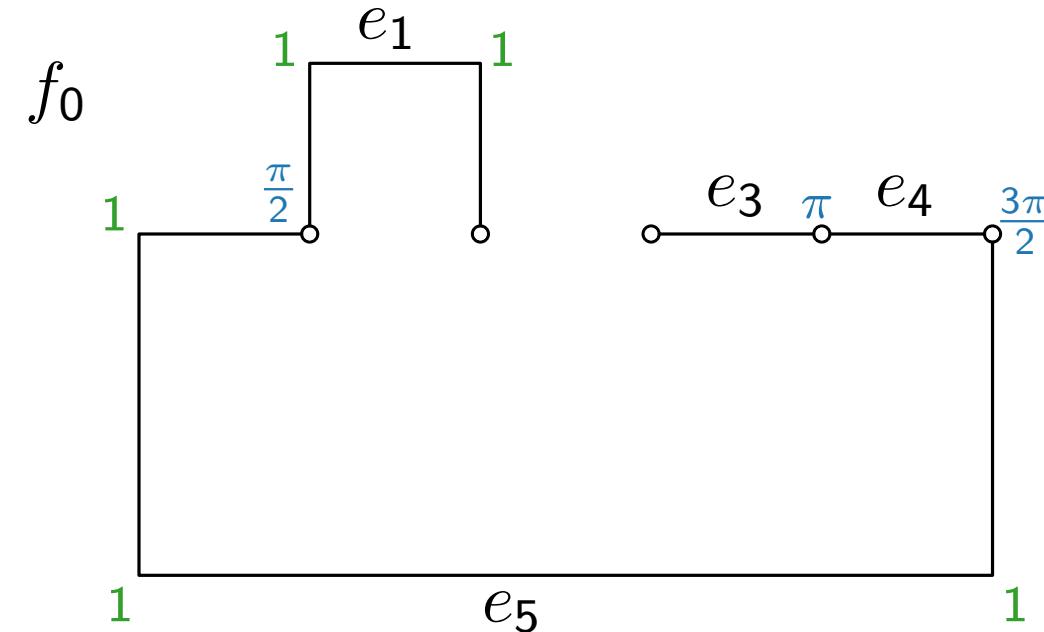


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

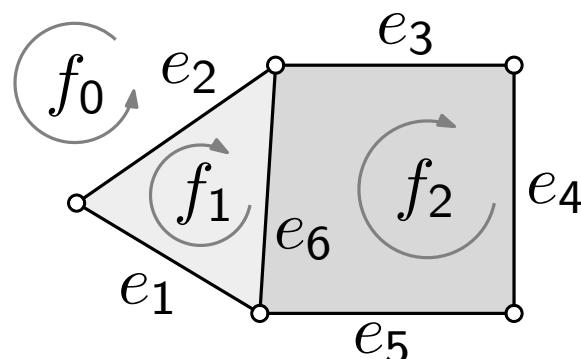
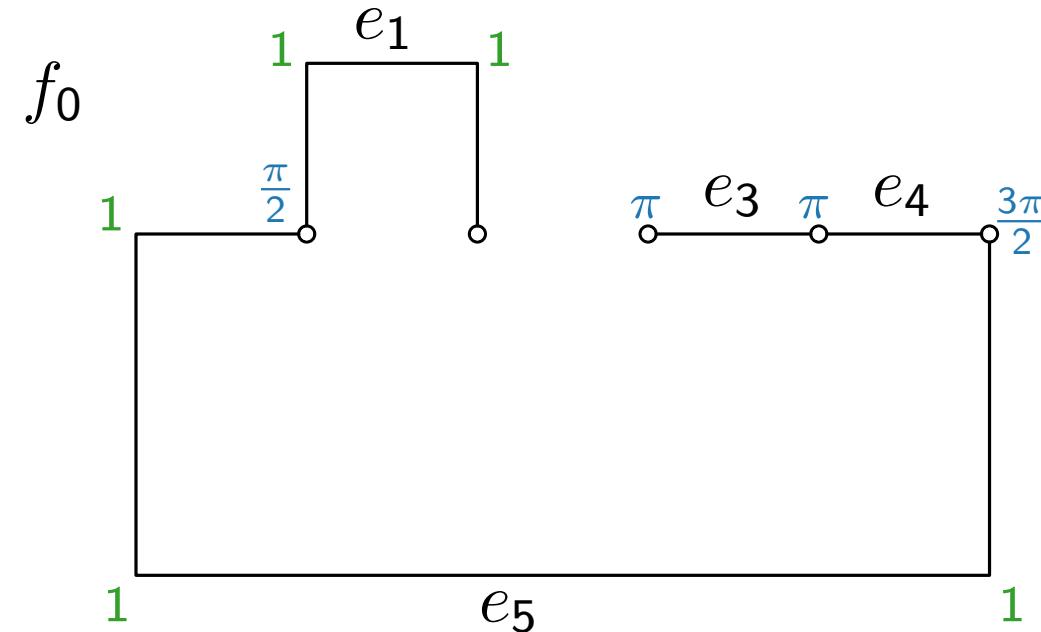


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

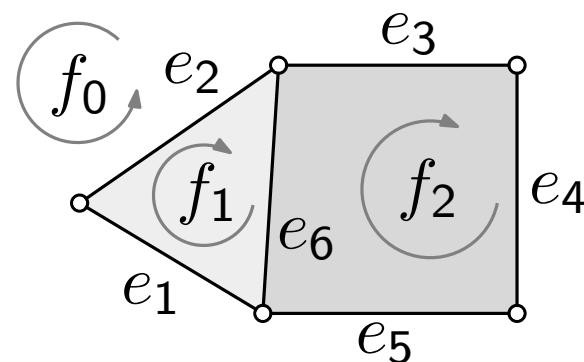
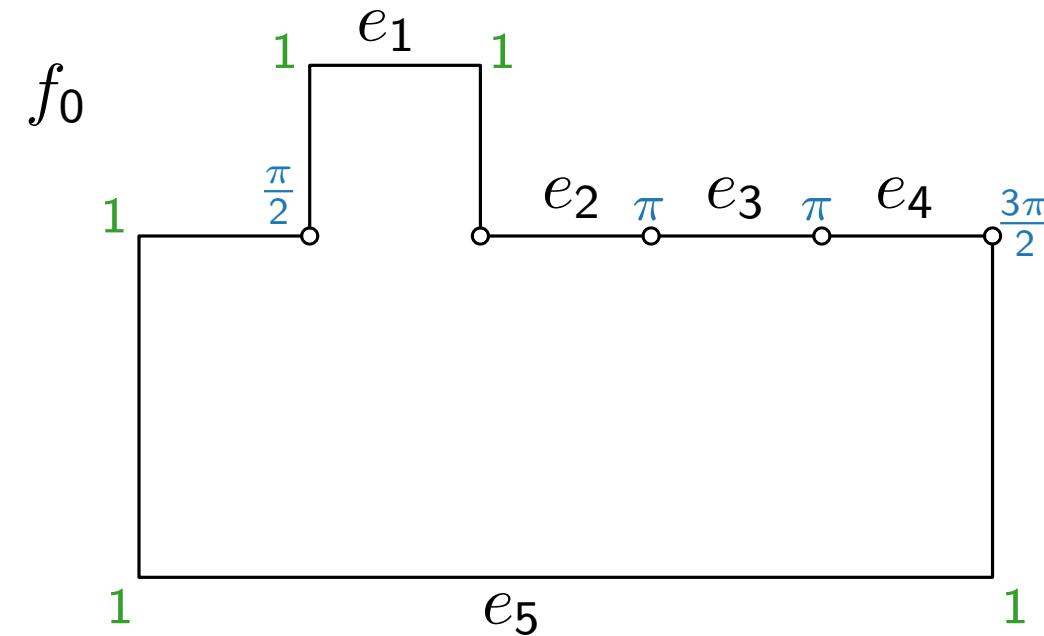


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

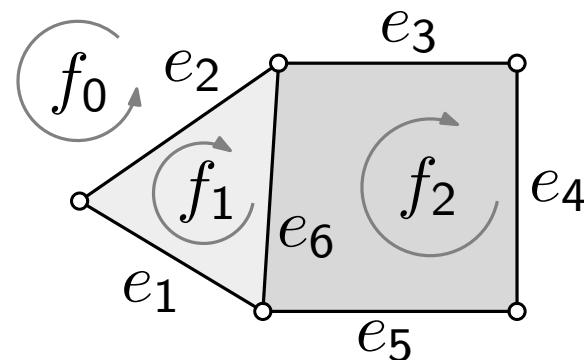
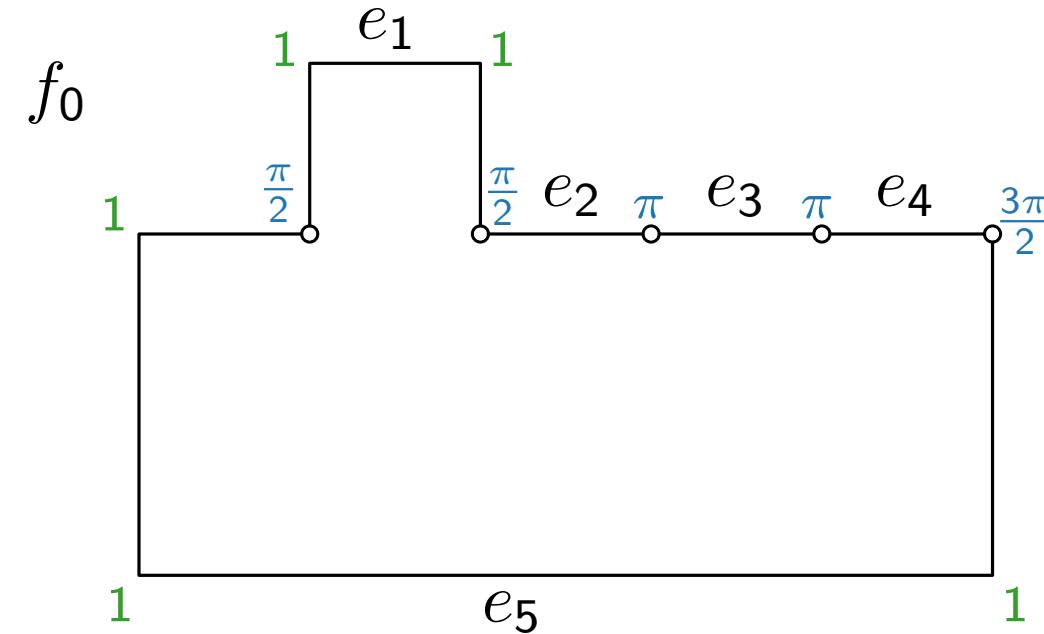


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

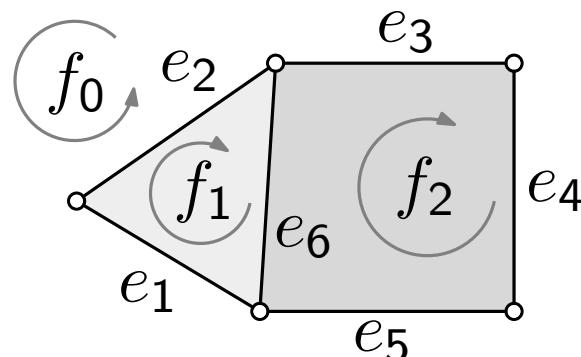
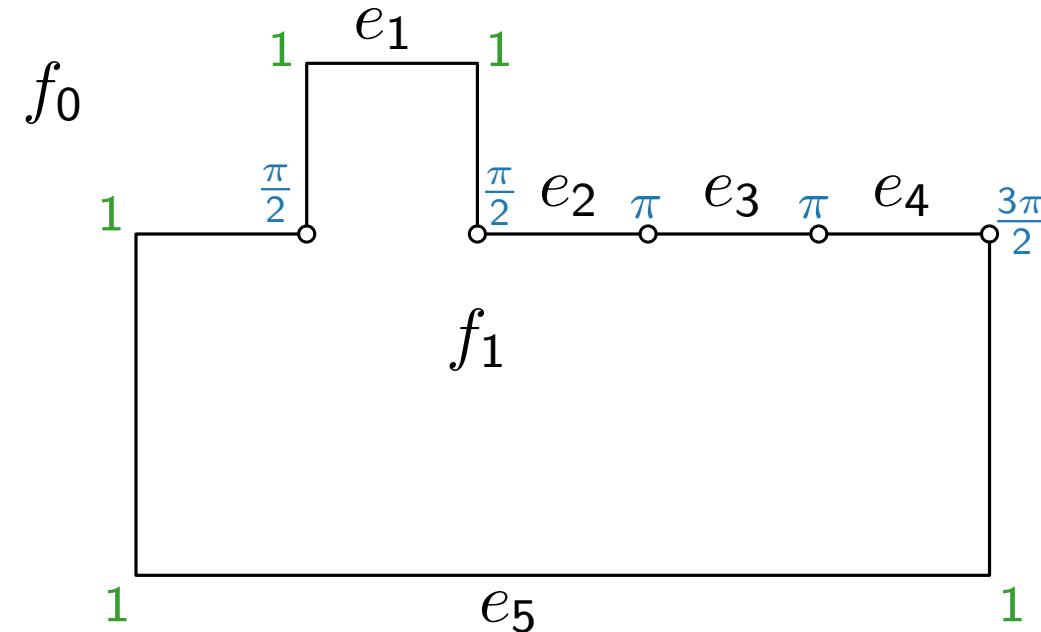


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

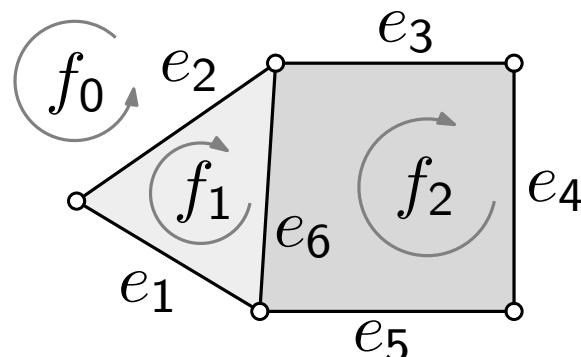
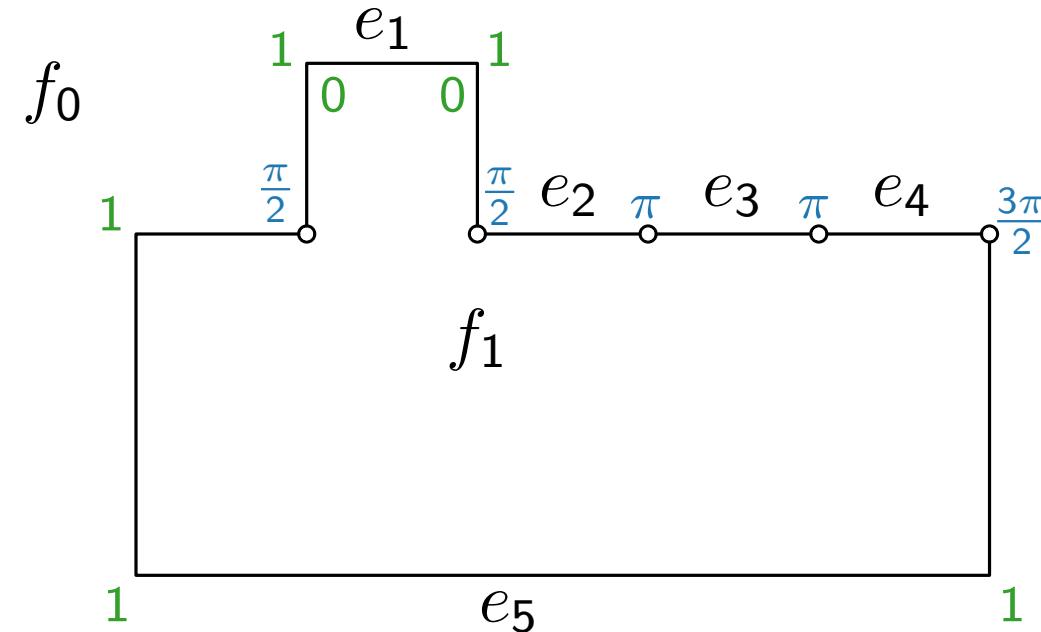


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

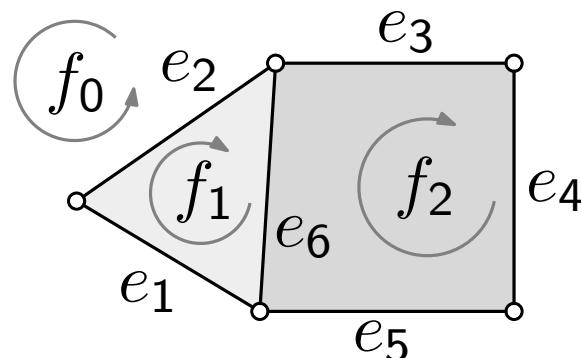
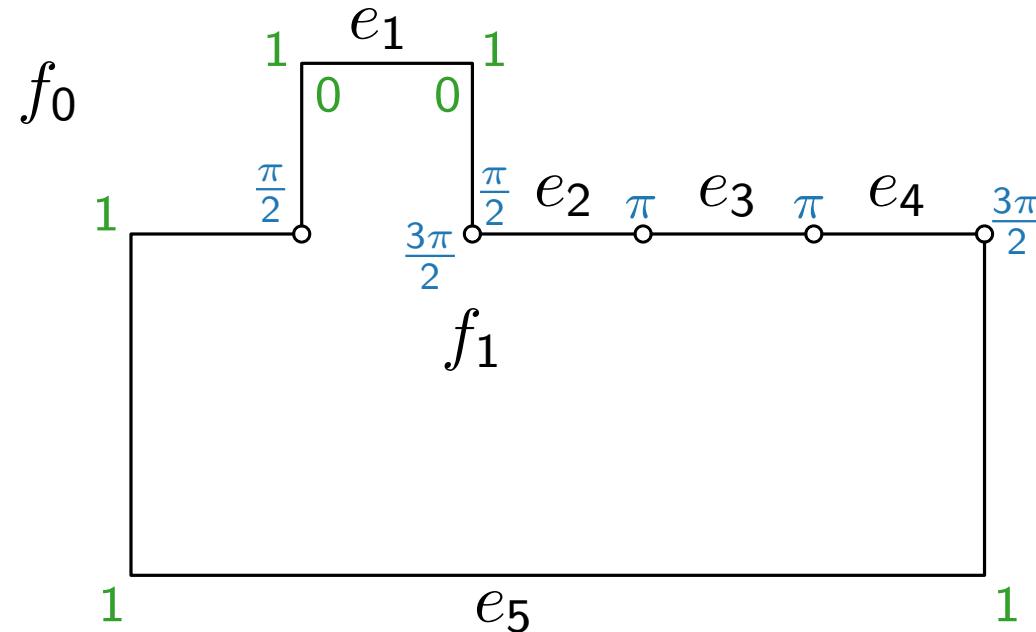


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

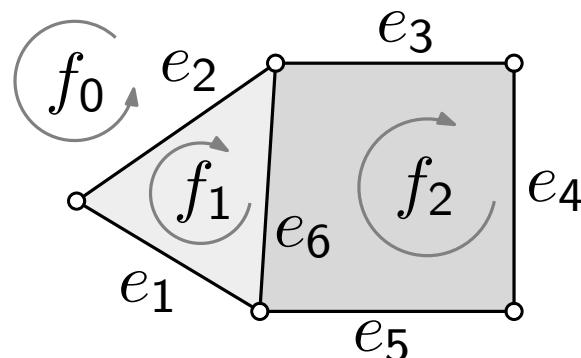
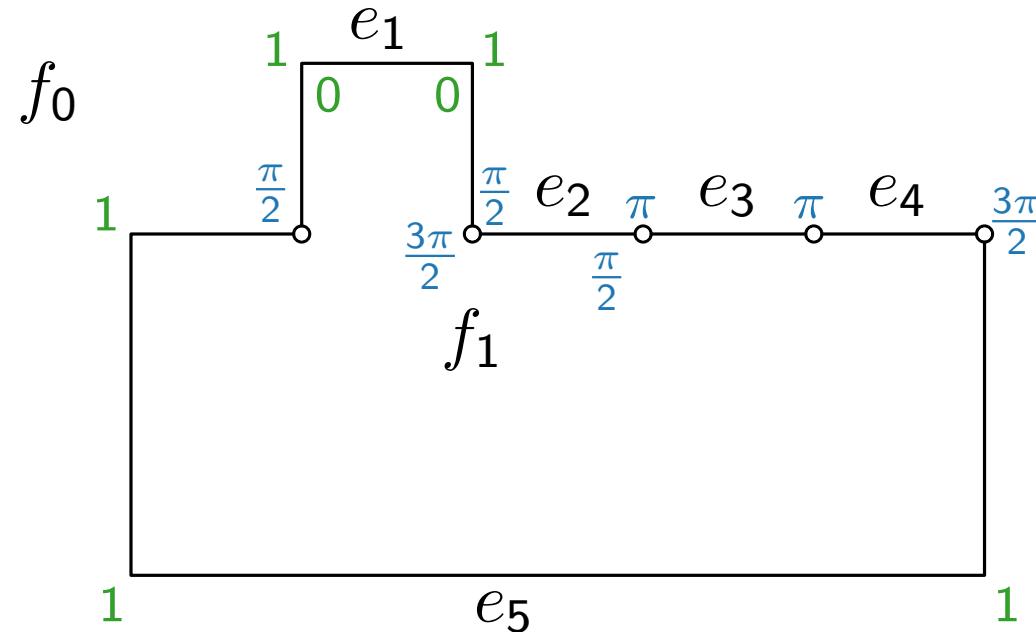


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

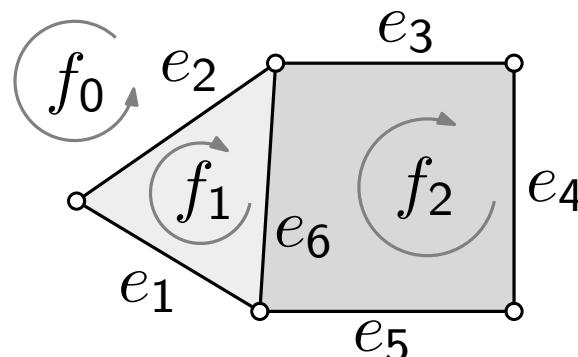
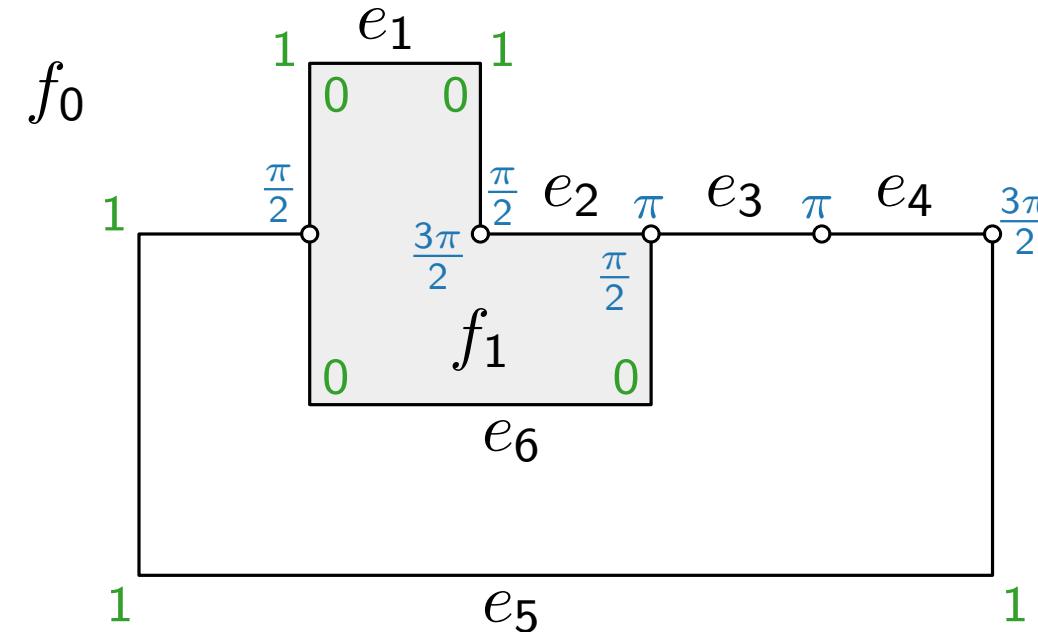


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

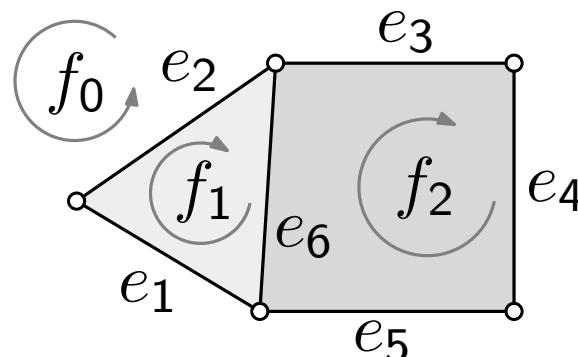
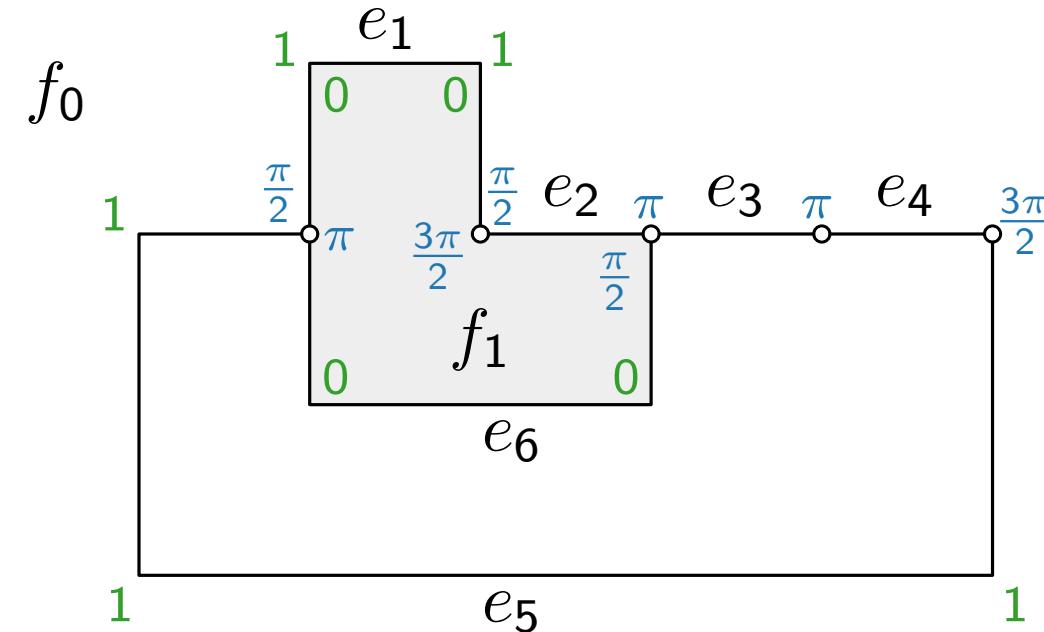


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

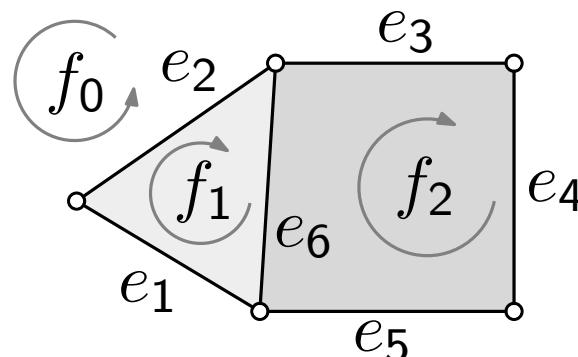
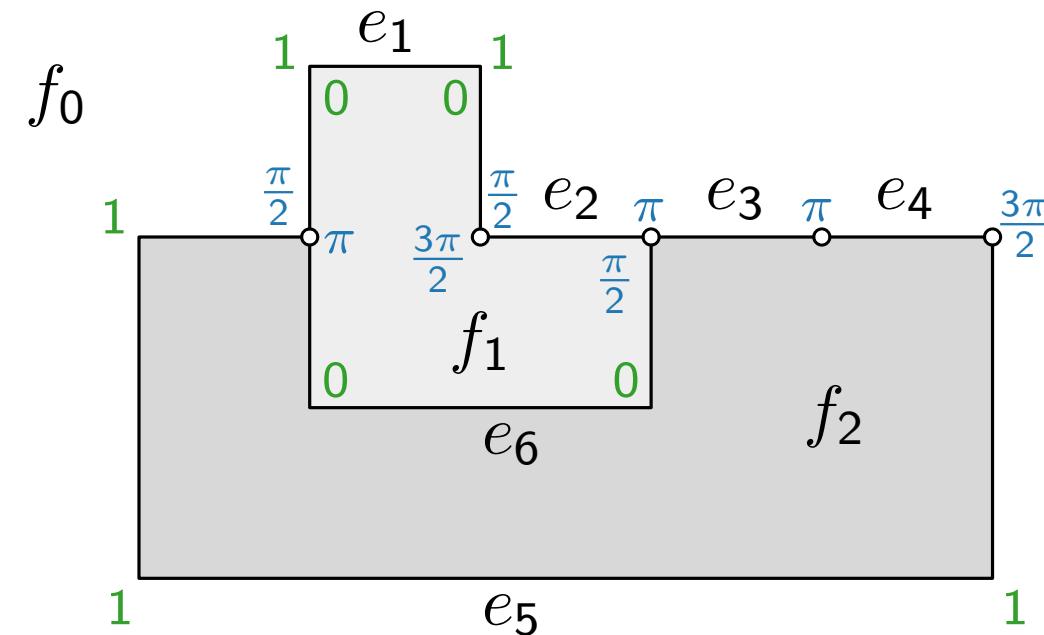


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

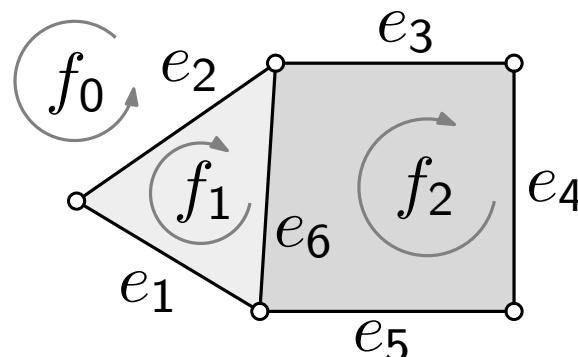
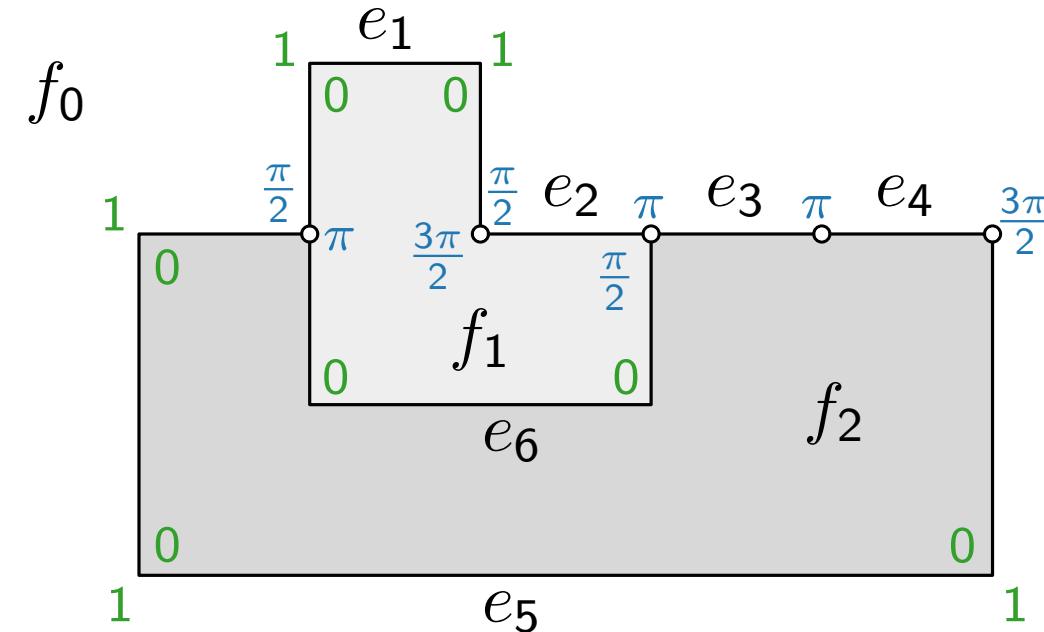


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

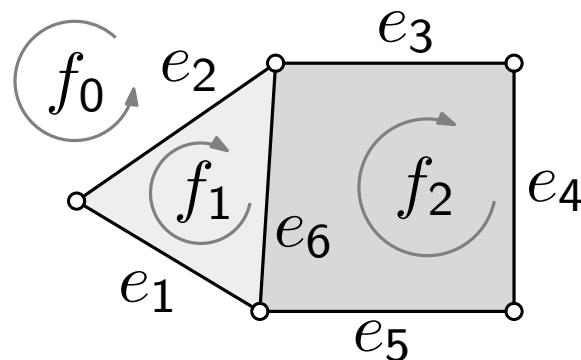
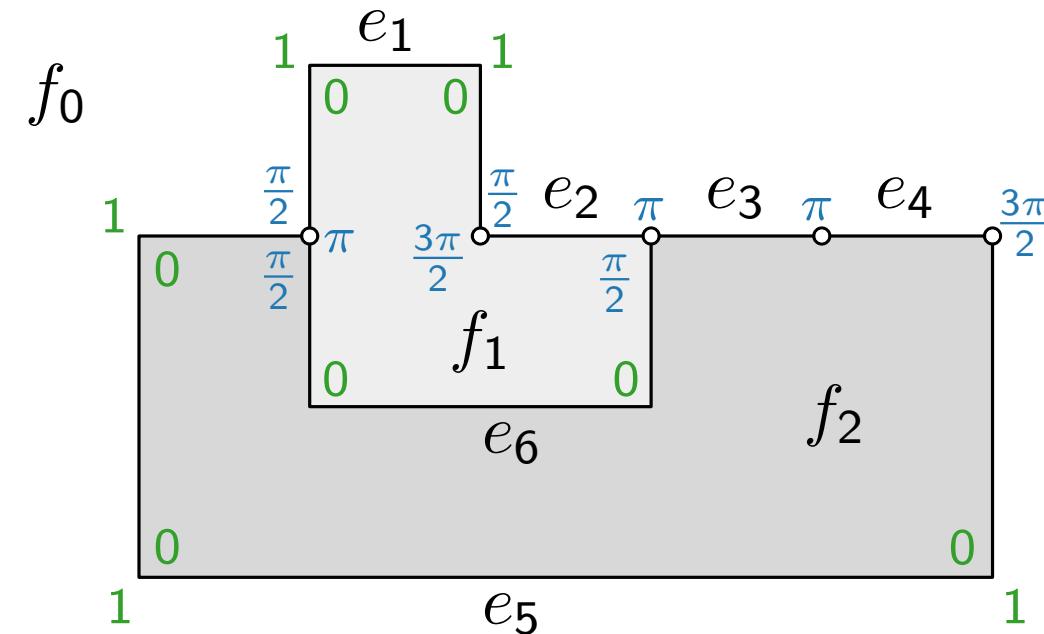


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

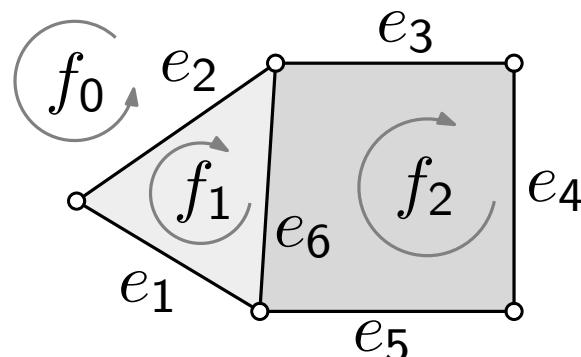
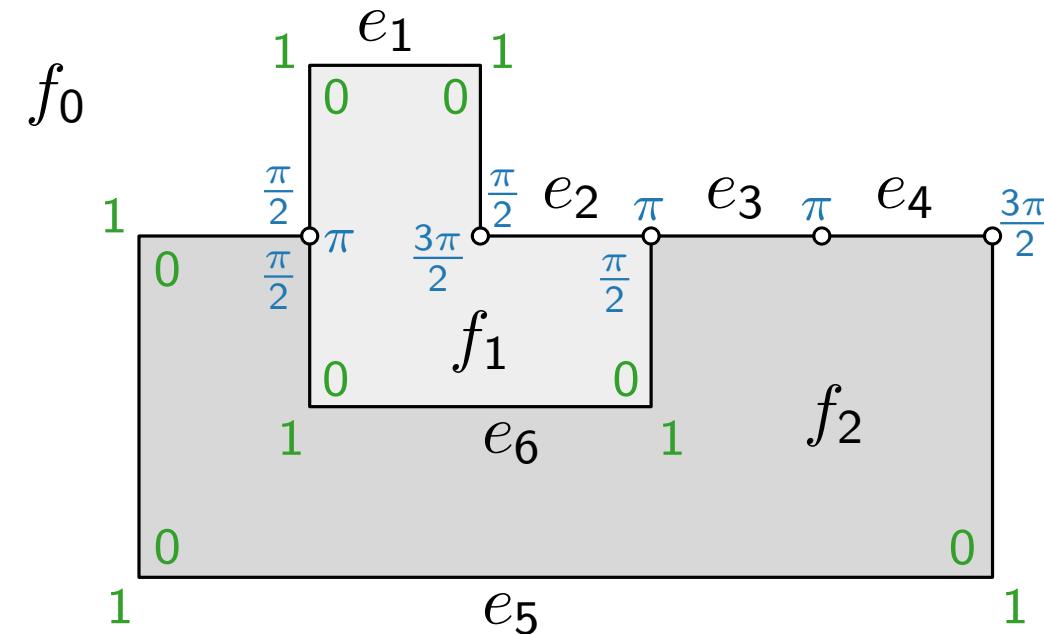


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

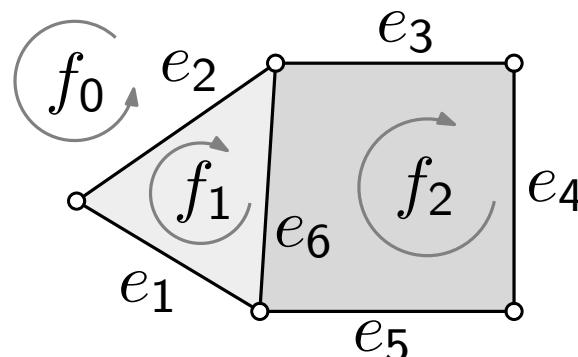
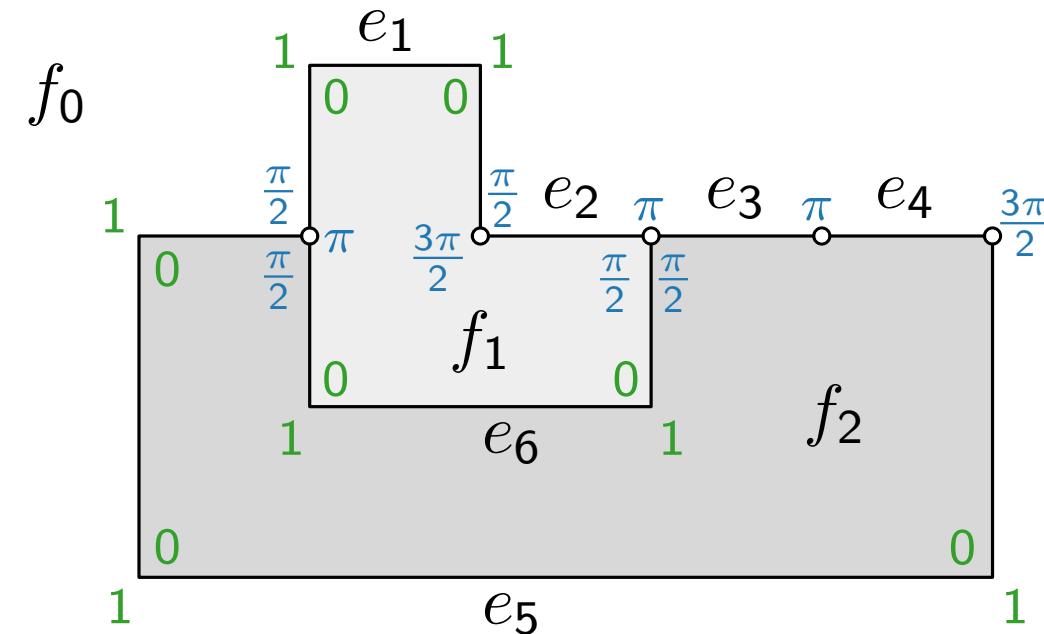


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

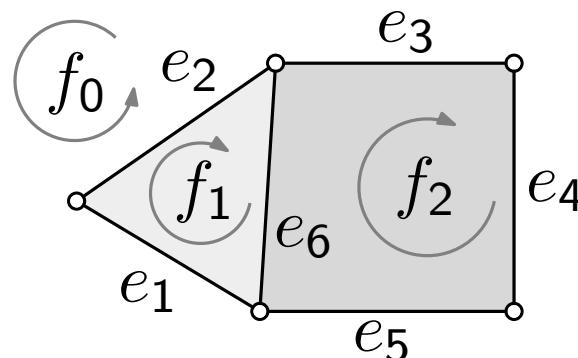
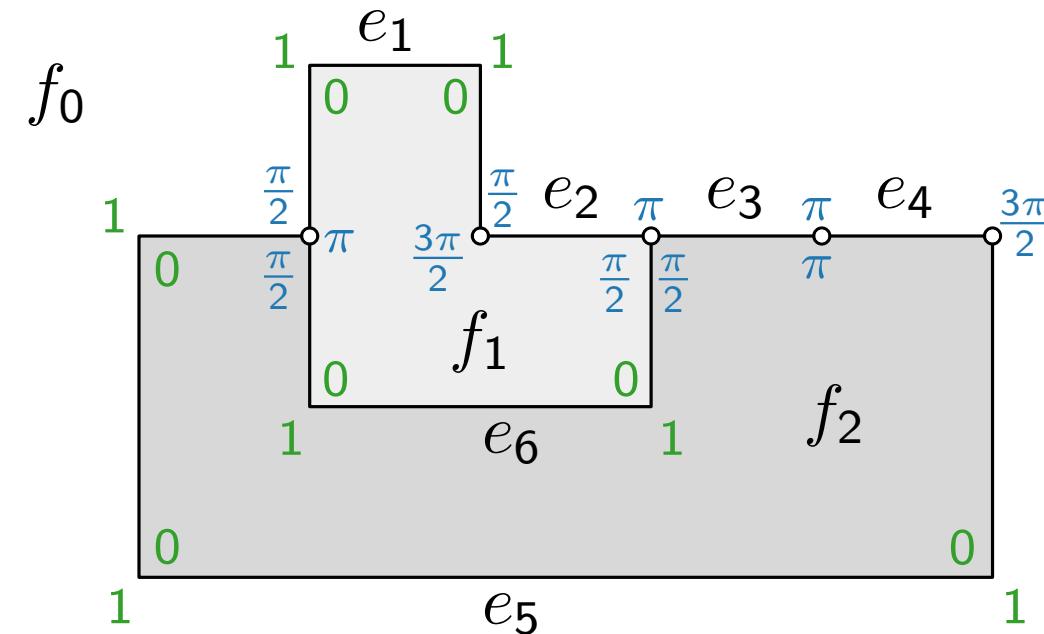


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

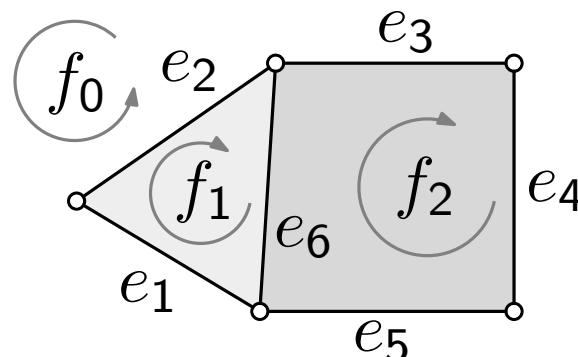
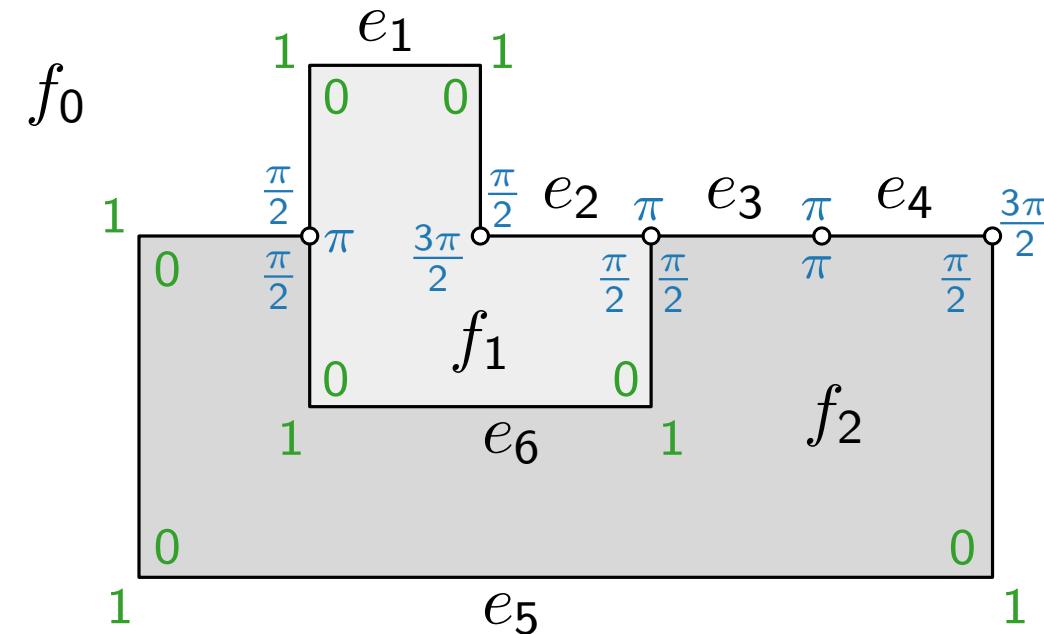


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

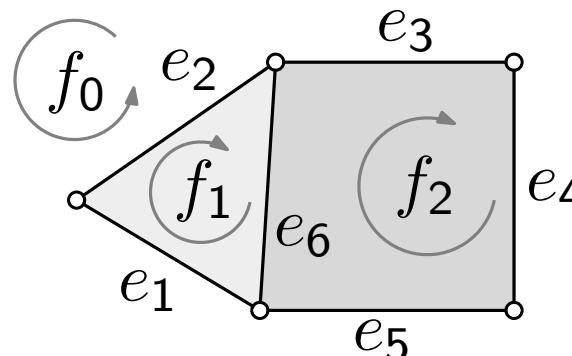
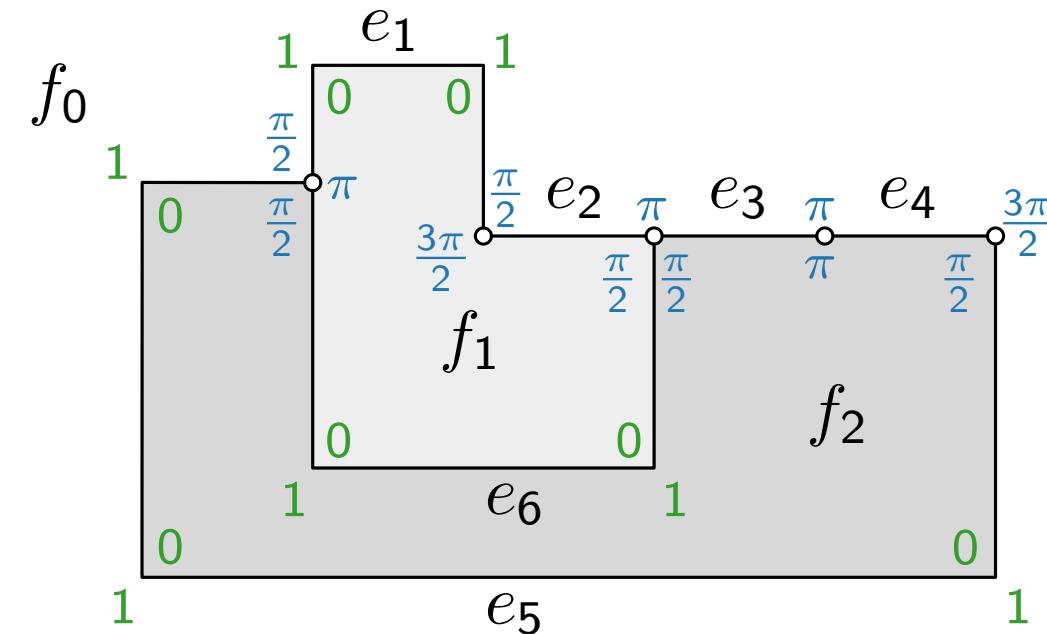


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

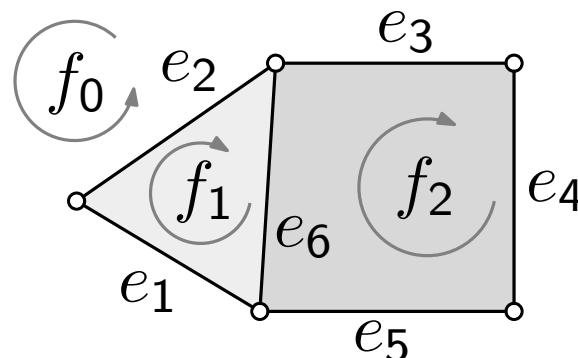
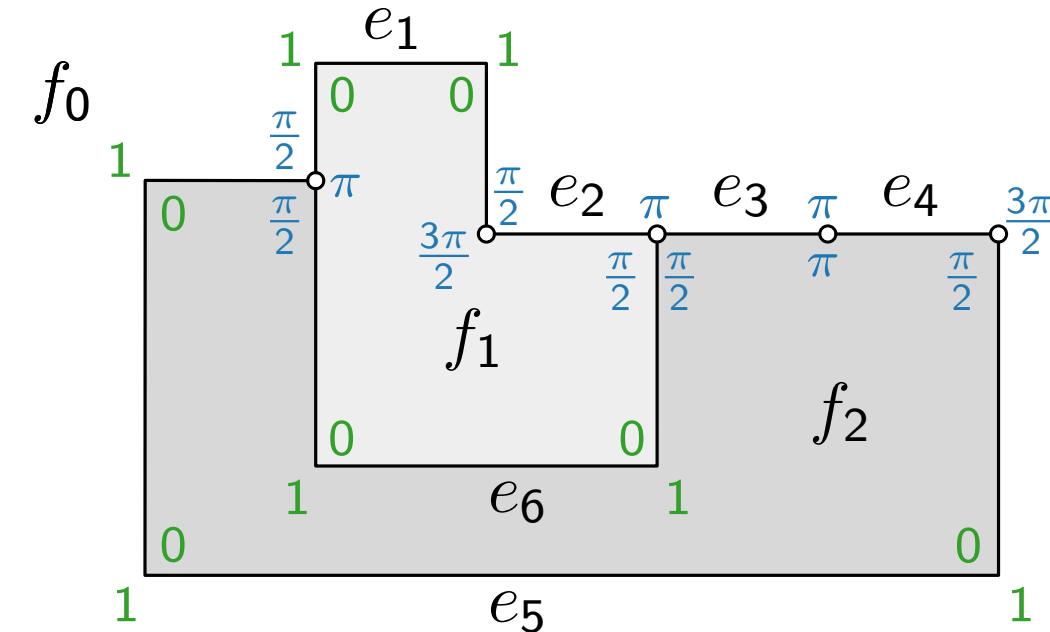


Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

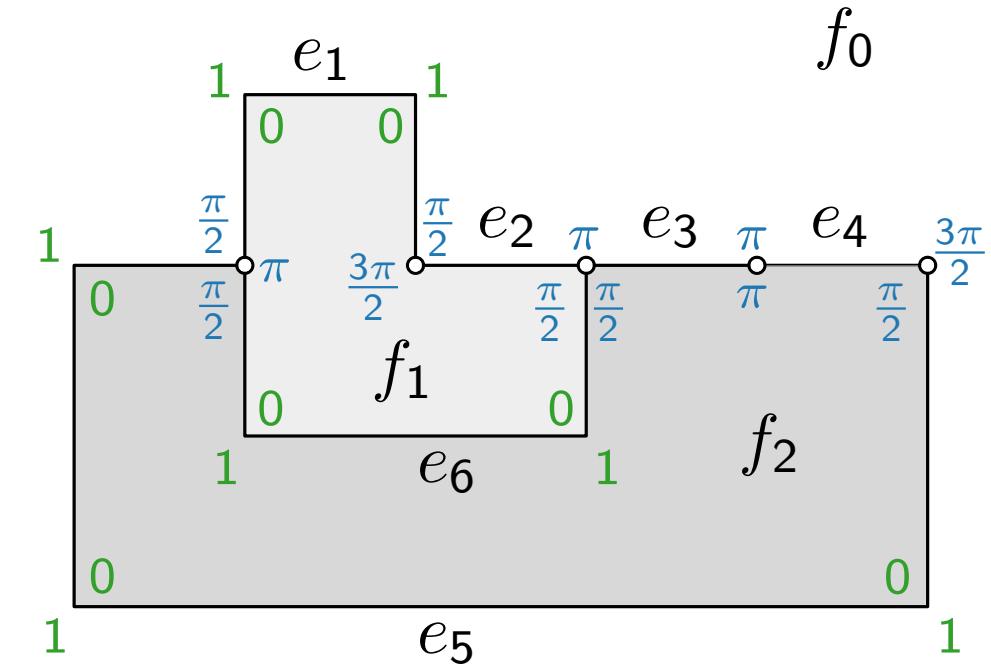
$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



Concrete coordinates are not fixed yet!

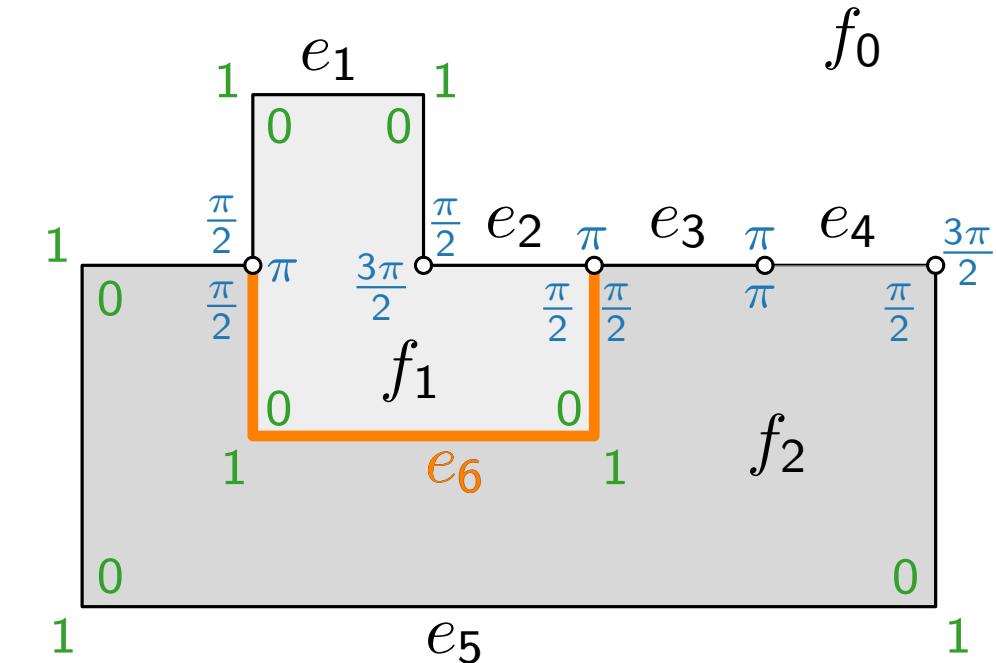
Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .



Correctness of an Orthogonal Representation

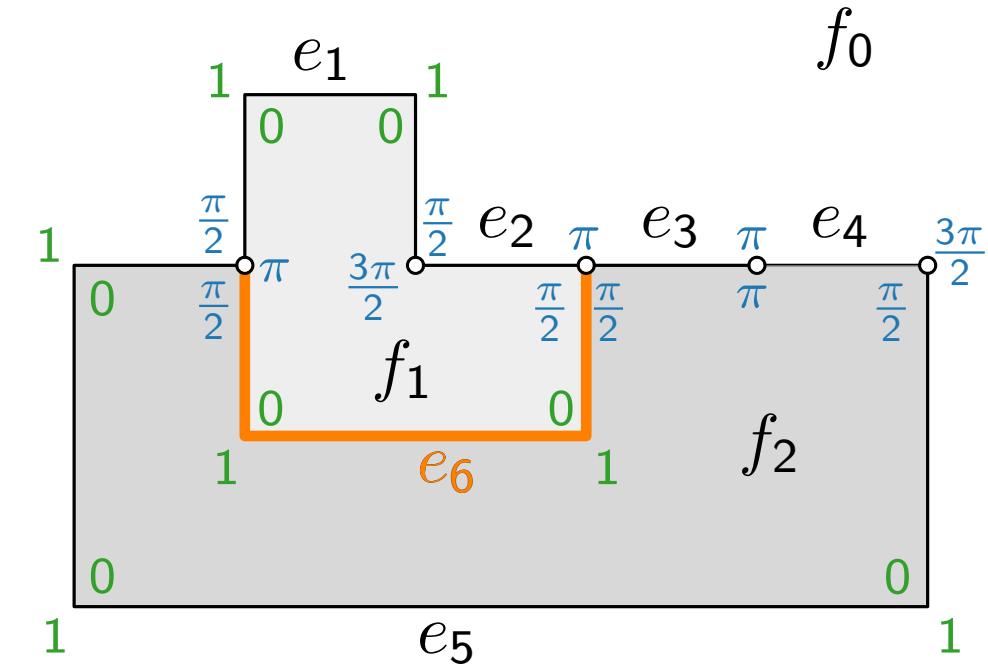
- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$



Correctness of an Orthogonal Representation

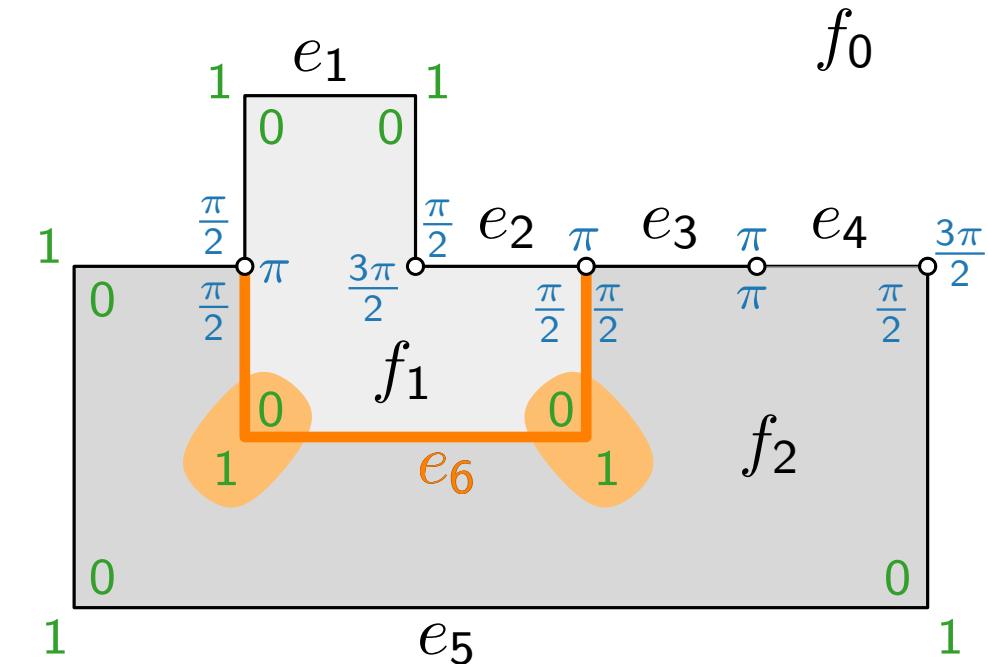
(H1) $H(G)$ corresponds to F , f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2



Correctness of an Orthogonal Representation

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

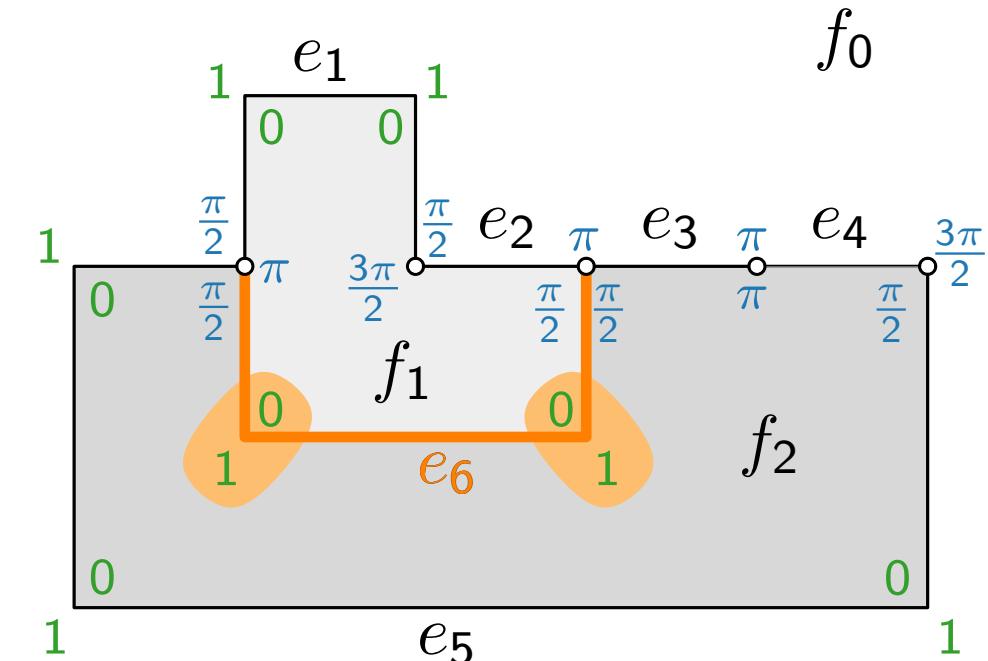


Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.
Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.



Correctness of an Orthogonal Representation

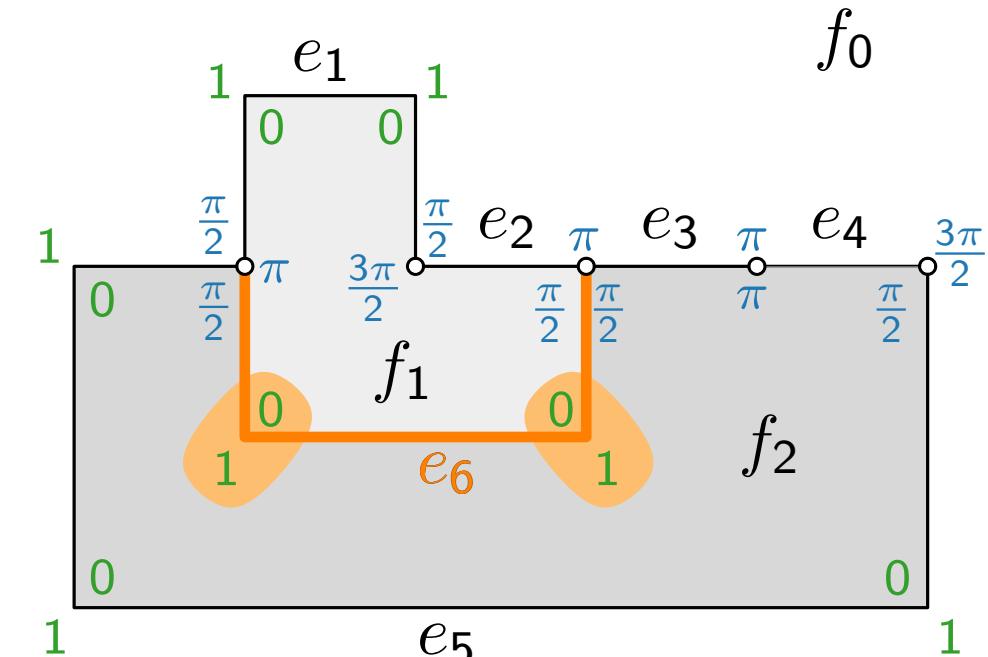
(H1) $H(G)$ corresponds to F , f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:



Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

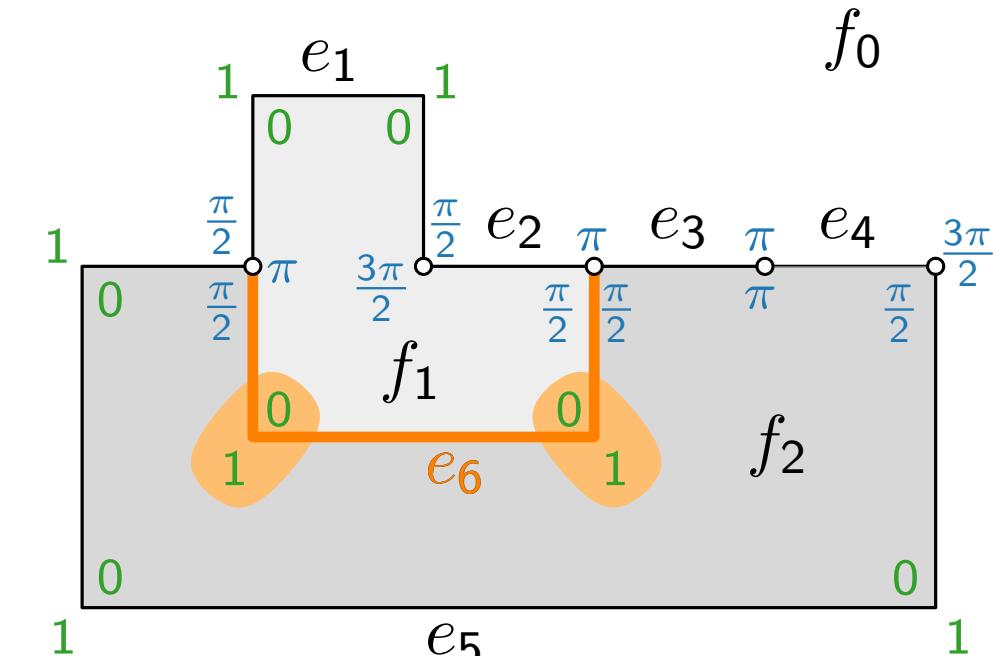
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

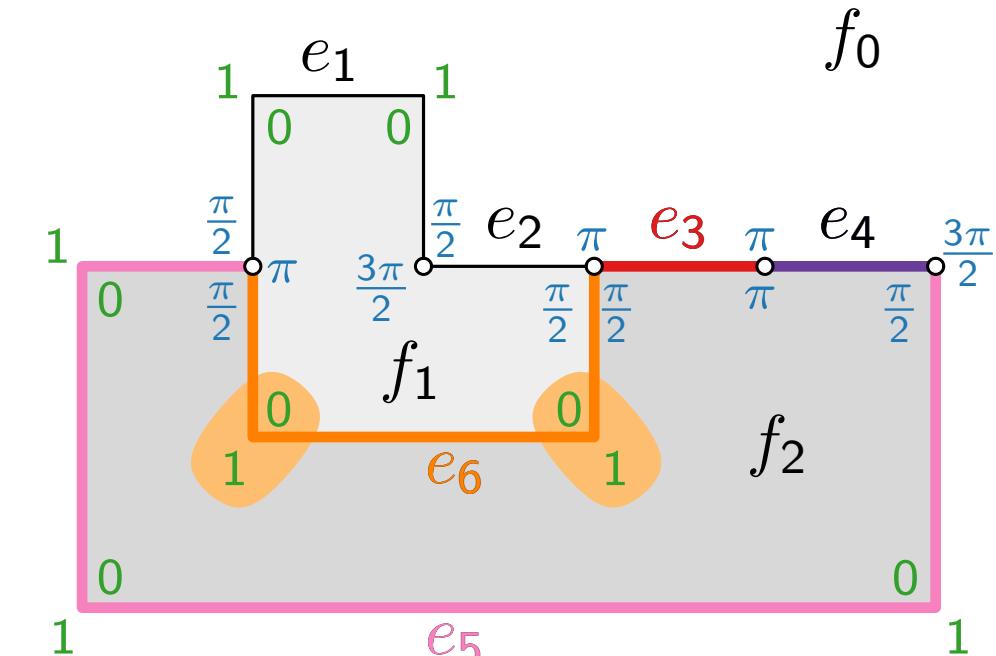
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = - + 2 - =$$

$$C(e_4) = - + 2 - =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

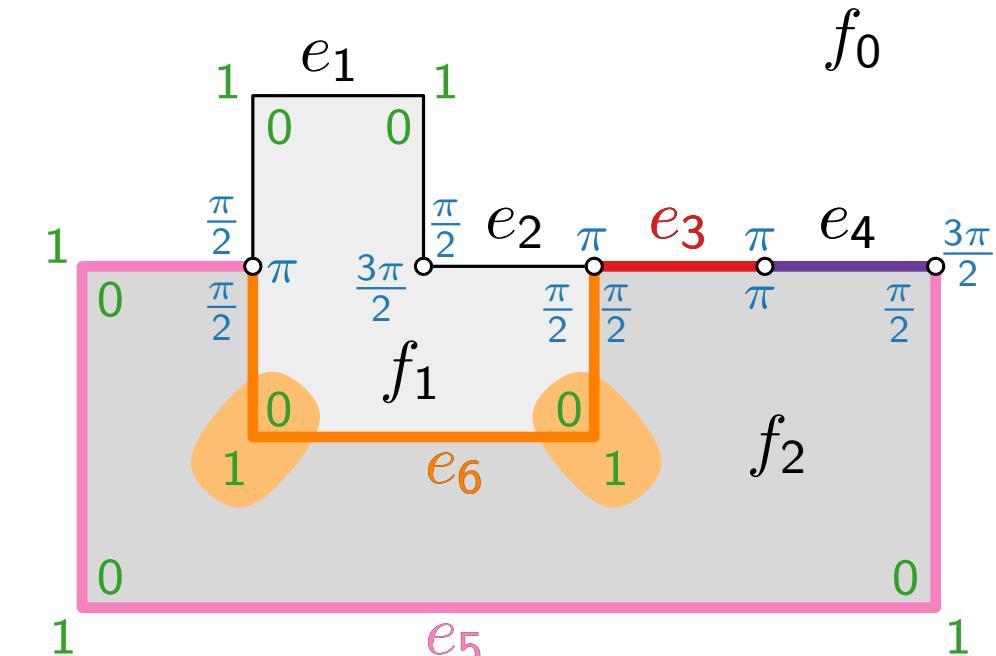
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - + 2 - =$$

$$C(e_4) = - + 2 - =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

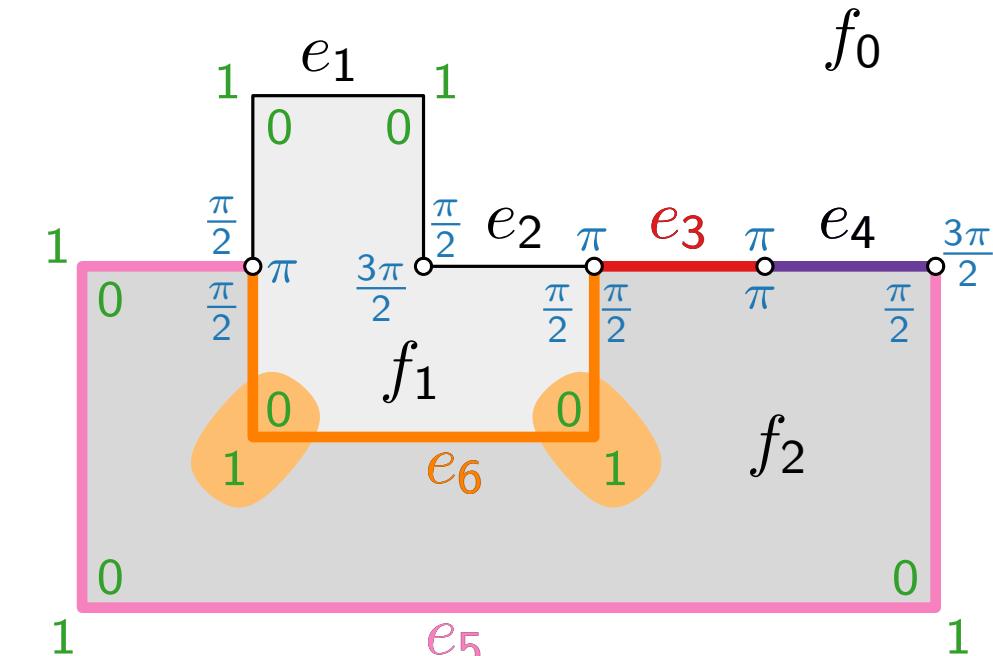
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - =$$

$$C(e_4) = - + 2 - =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

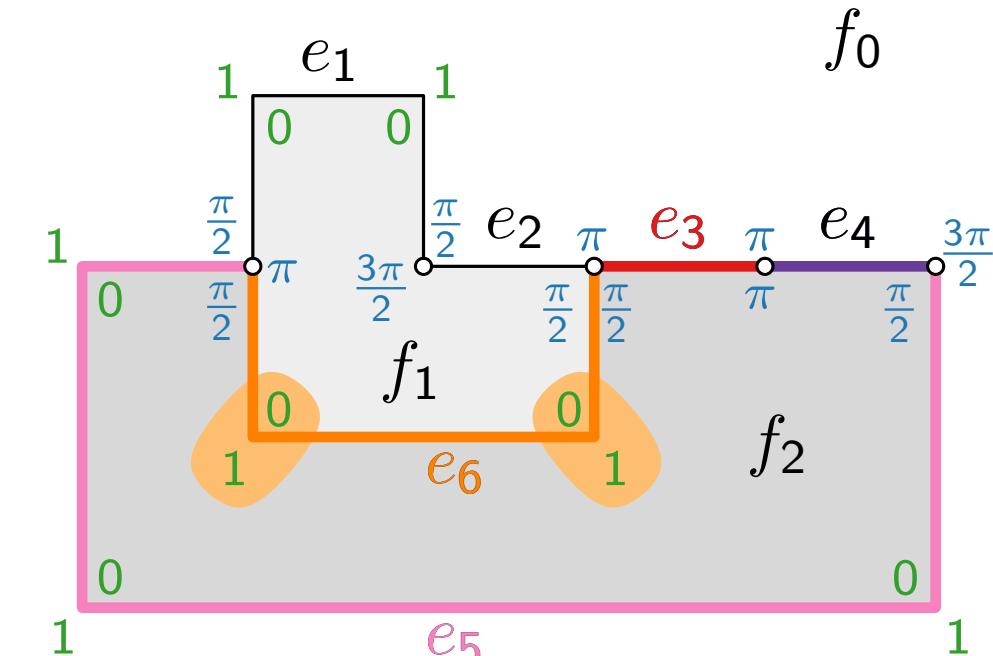
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 =$$

$$C(e_4) = - + 2 - =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

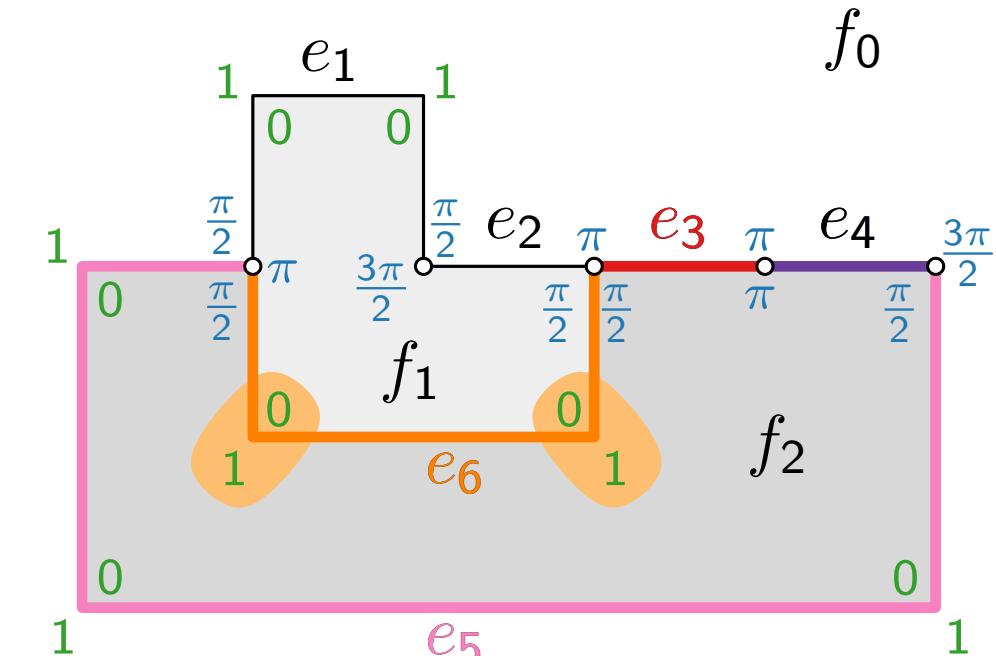
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = - + 2 - =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

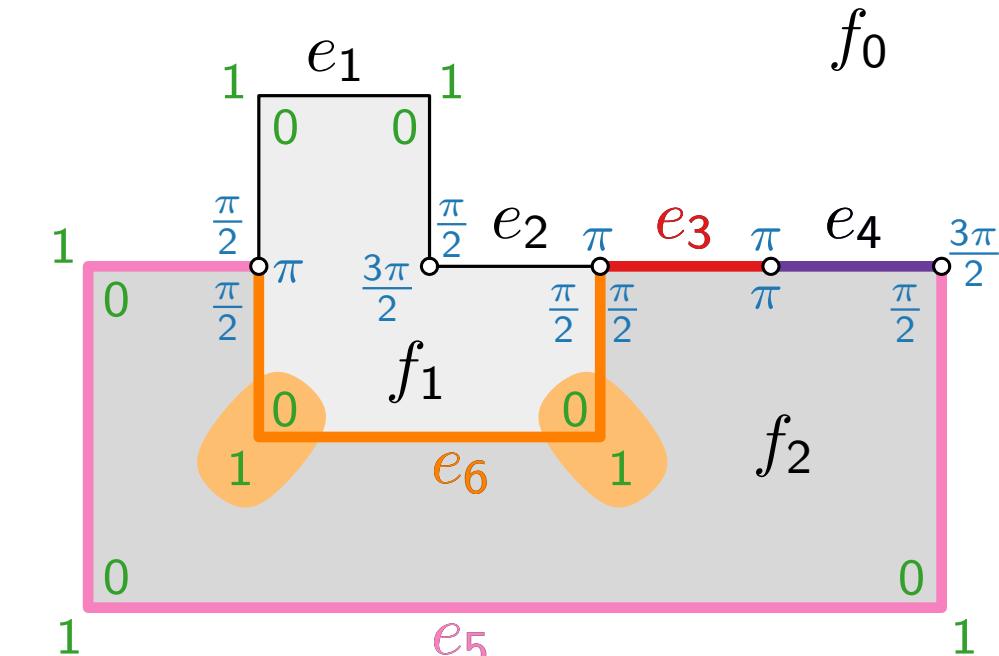
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 =$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

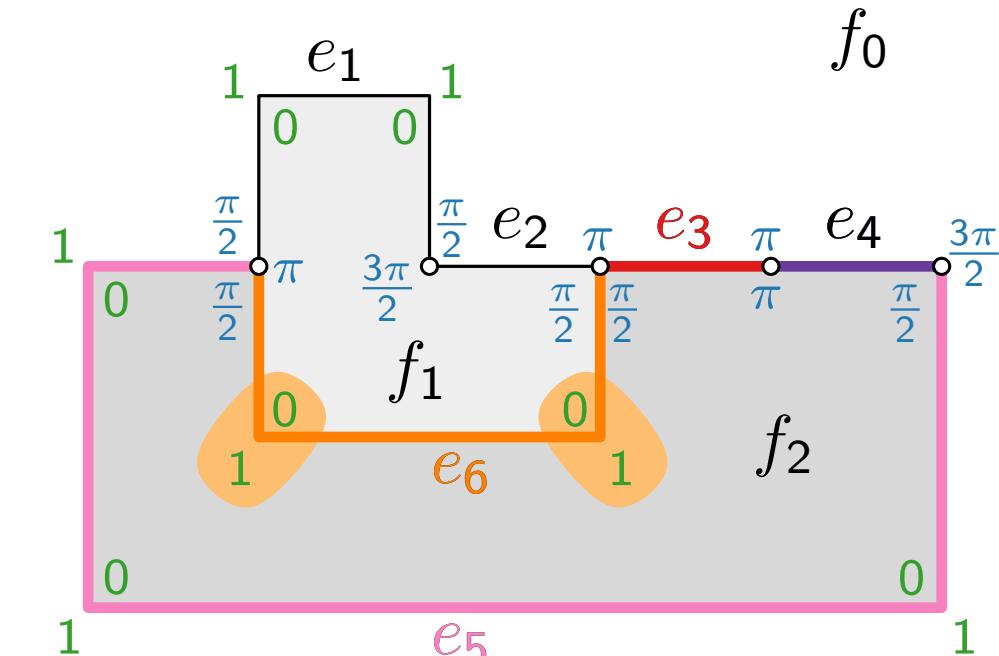
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = - + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

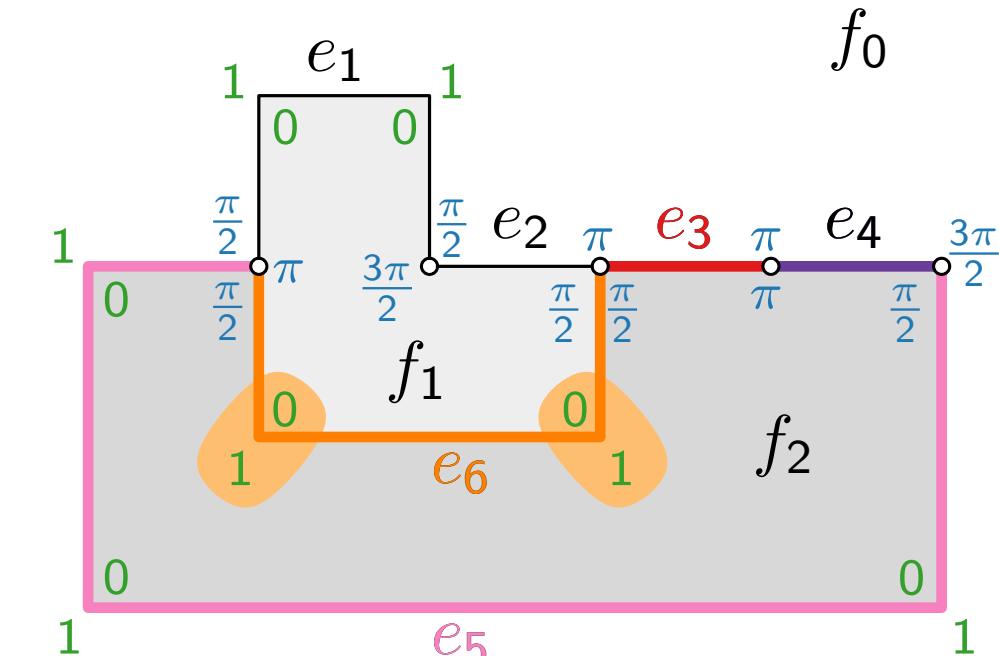
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

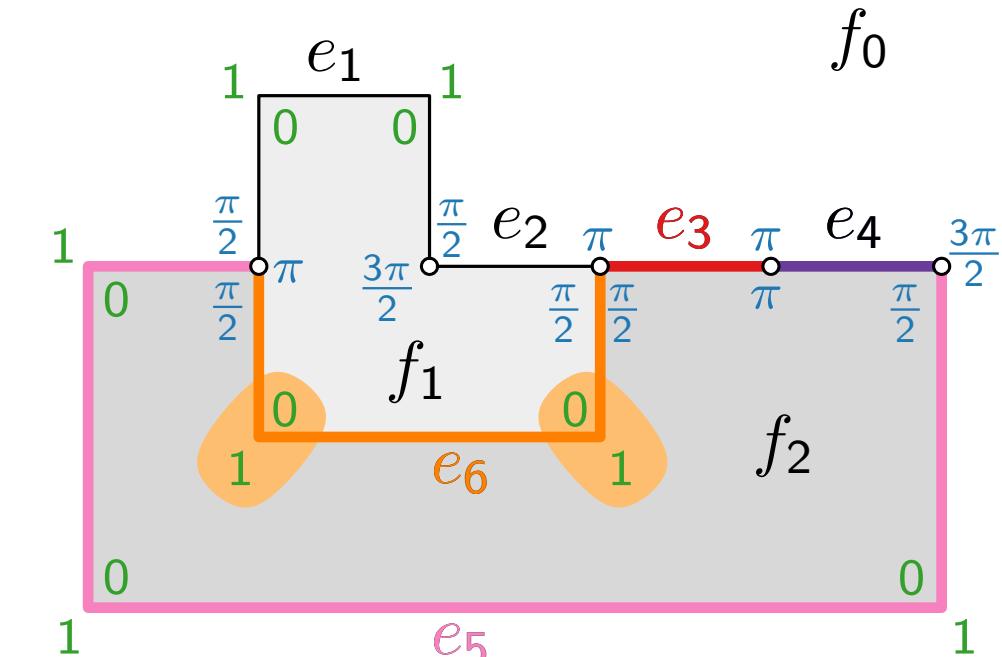
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - 1 =$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

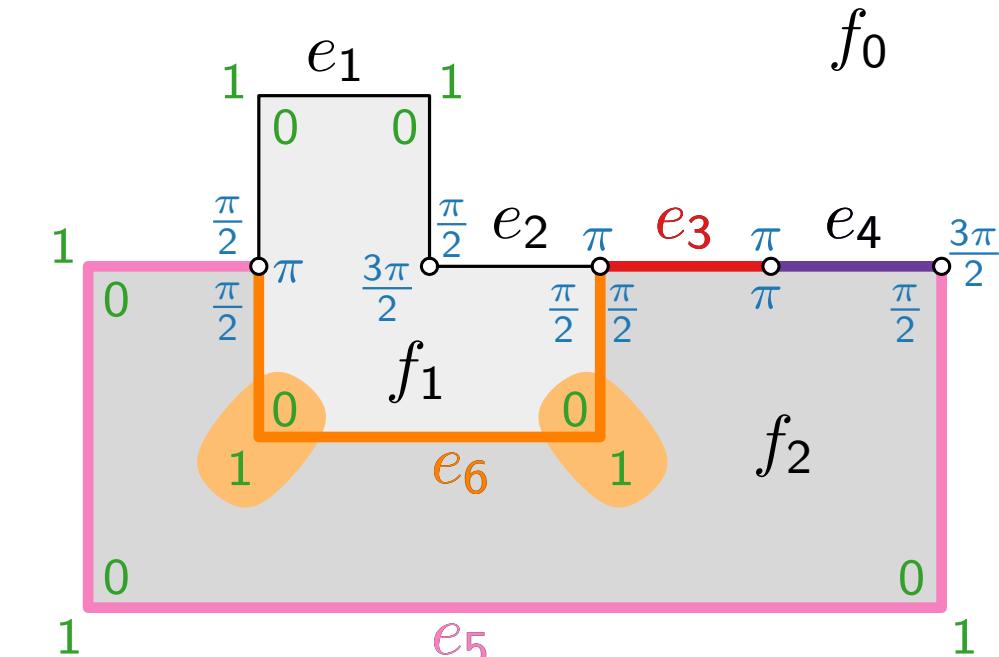
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - 1 = 4$$

$$C(e_6) = - + 2 - =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

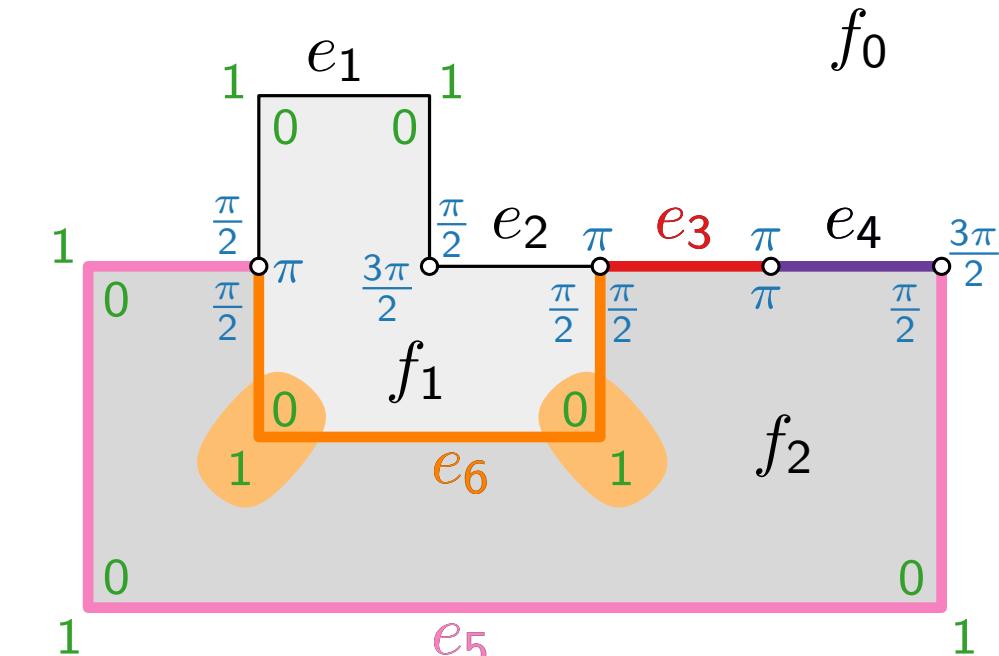
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - 1 = 4$$

$$C(e_6) = 0 - 2 + 2 - 1 =$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

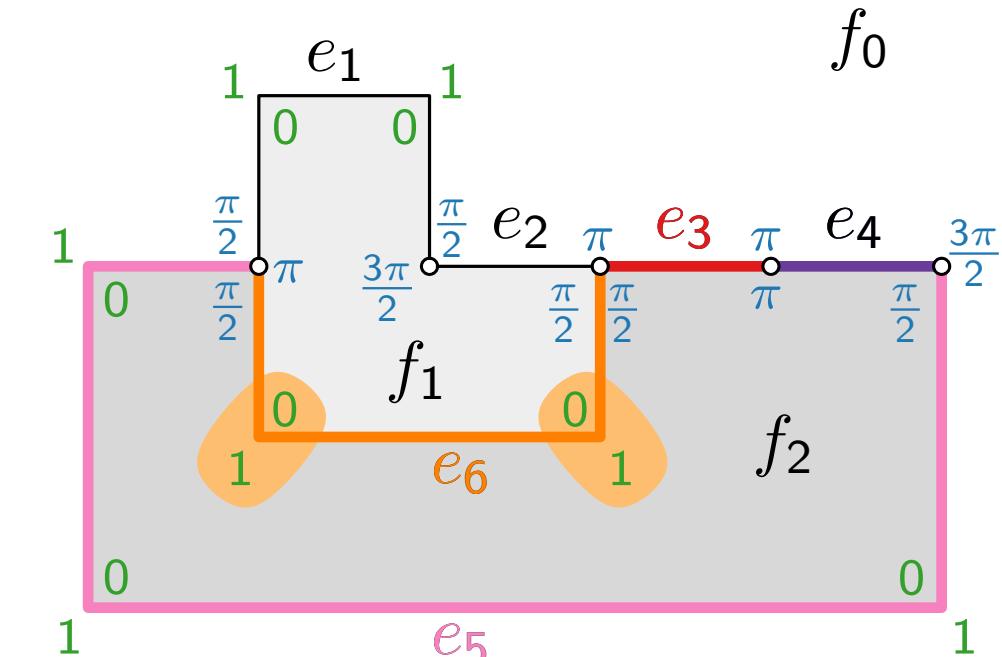
(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - 1 = 4$$

$$C(e_6) = 0 - 2 + 2 - 1 = -1$$

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F , f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

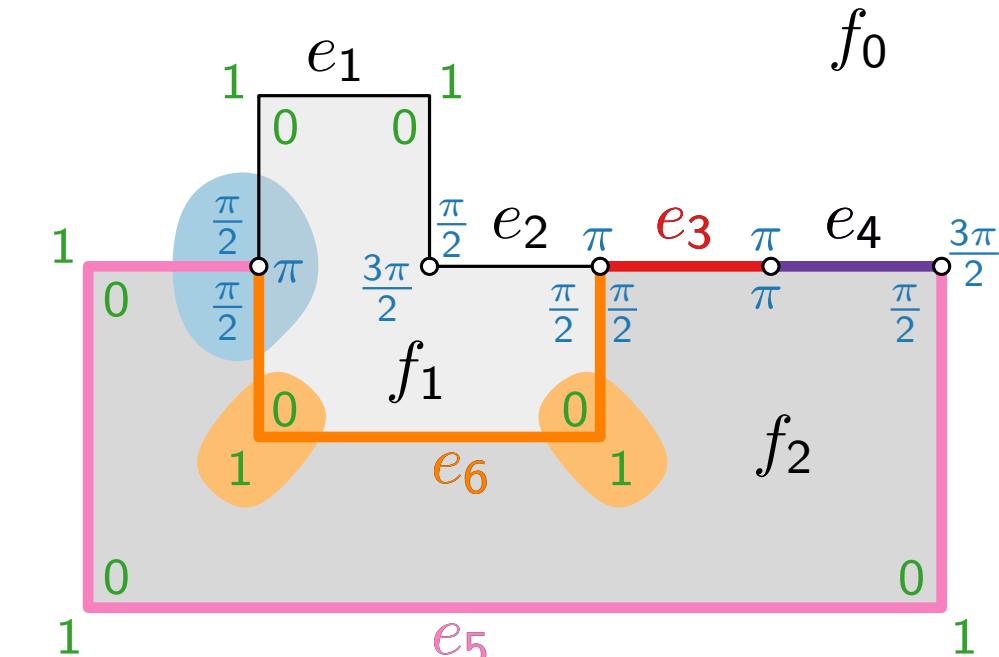
(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.

For each **face** f , it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v , the sum of incident angles is 2π .



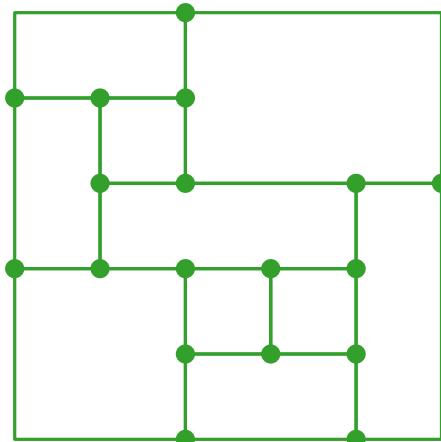
$$C(e_3) = 0 - 0 + 2 - 2 = 0$$

$$C(e_4) = 0 - 0 + 2 - 1 = 1$$

$$C(e_5) = 3 - 0 + 2 - 1 = 4$$

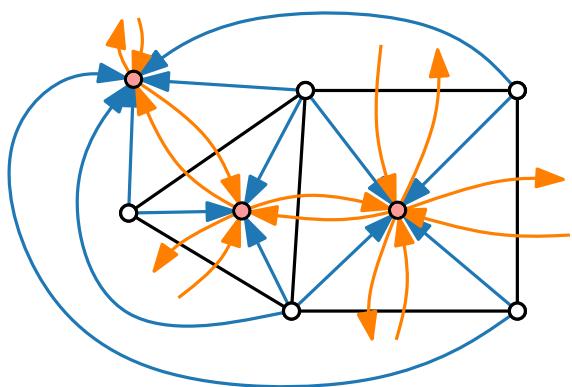
$$C(e_6) = 0 - 2 + 2 - 1 = -1$$

Visualization of Graphs

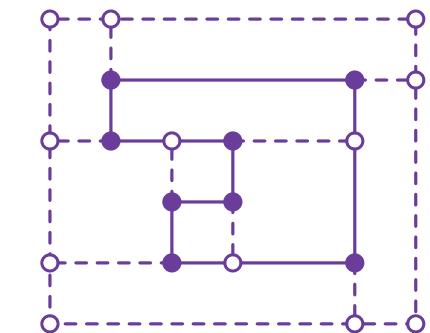


Lecture 5: Orthogonal Layouts

Part III: Bend Minimization



Alexander Wolff



Reminder: s - t -Flow Networks

Flow network $(G = (V, E); S, T; u)$ with

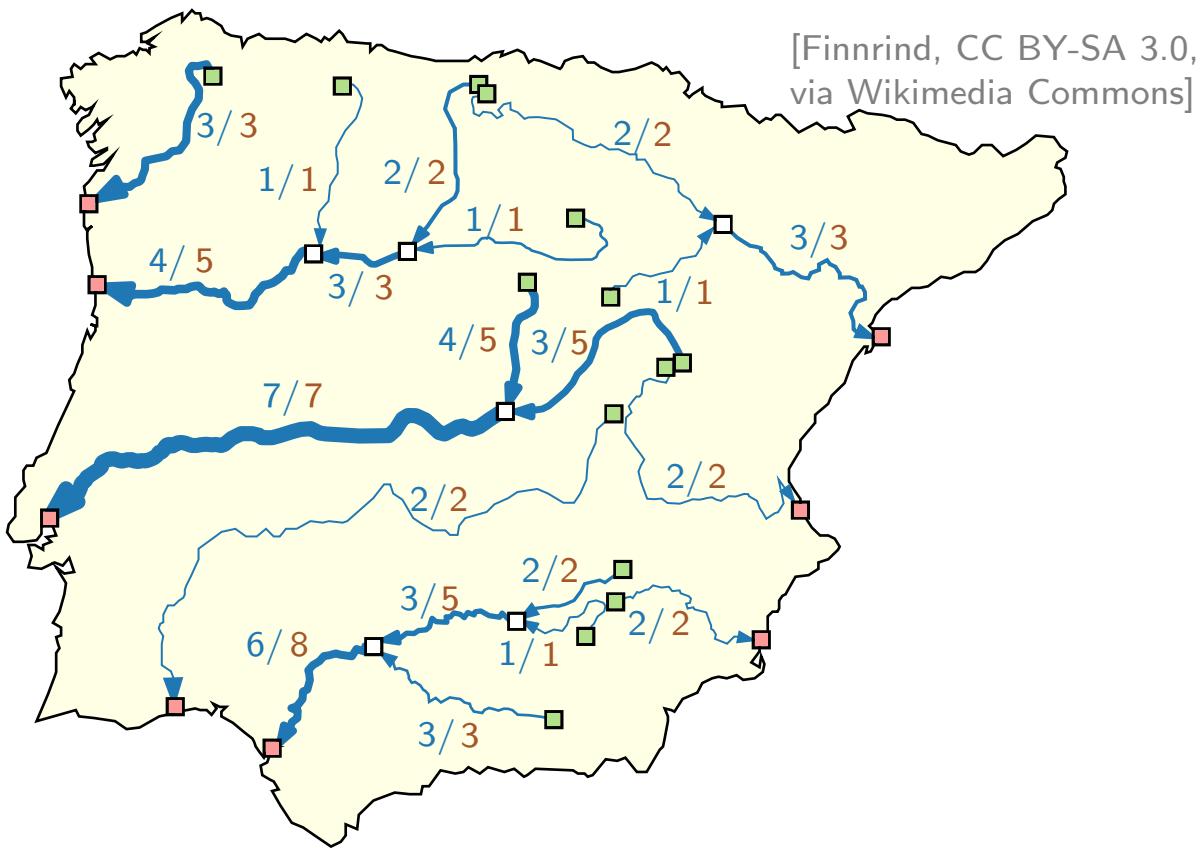
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called **S - T flow** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum S - T flow** is an S - T flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network $(G = (V, E); s, t; u)$ with

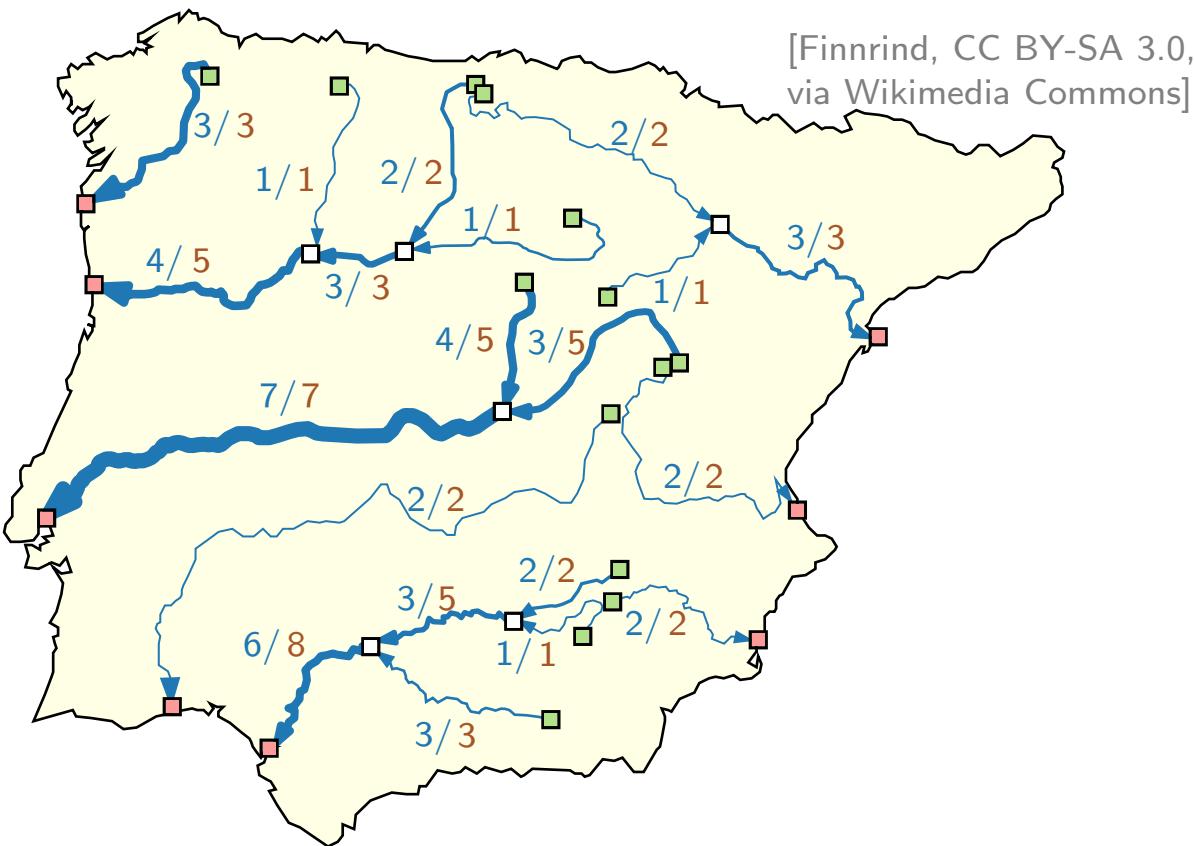
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called ***S-T flow*** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** S - T flow is an S - T flow where $\sum_{(i,j) \in E, i \in S} X(i,j)$ is maximized.



[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Reminder: s - t -Flow Networks

Flow network $(G = (V, E); s, t; u)$ with

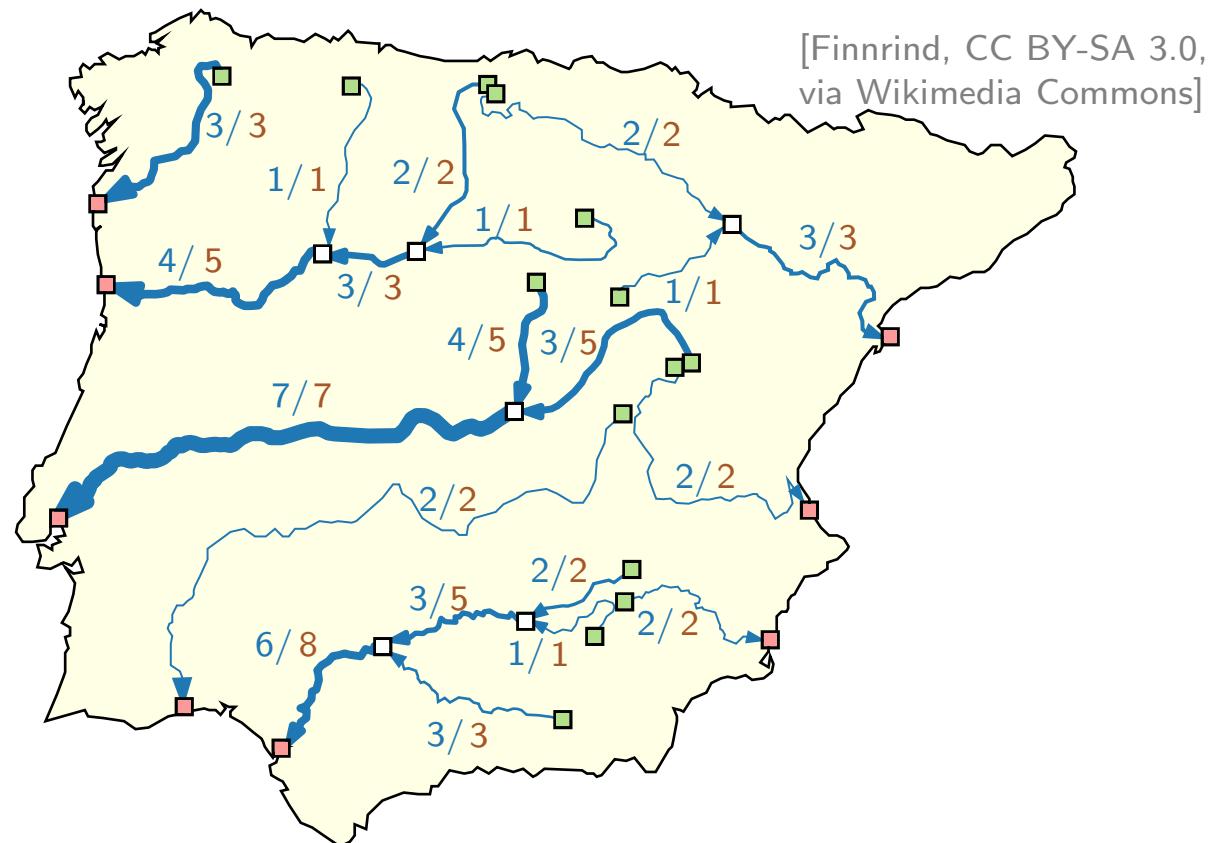
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *s*-*t* **flow** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus \{s, t\}$$

A **maximum S - T flow** is an S - T flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network $(G = (V, E); \textcolor{green}{s}, \textcolor{red}{t}; u)$ with

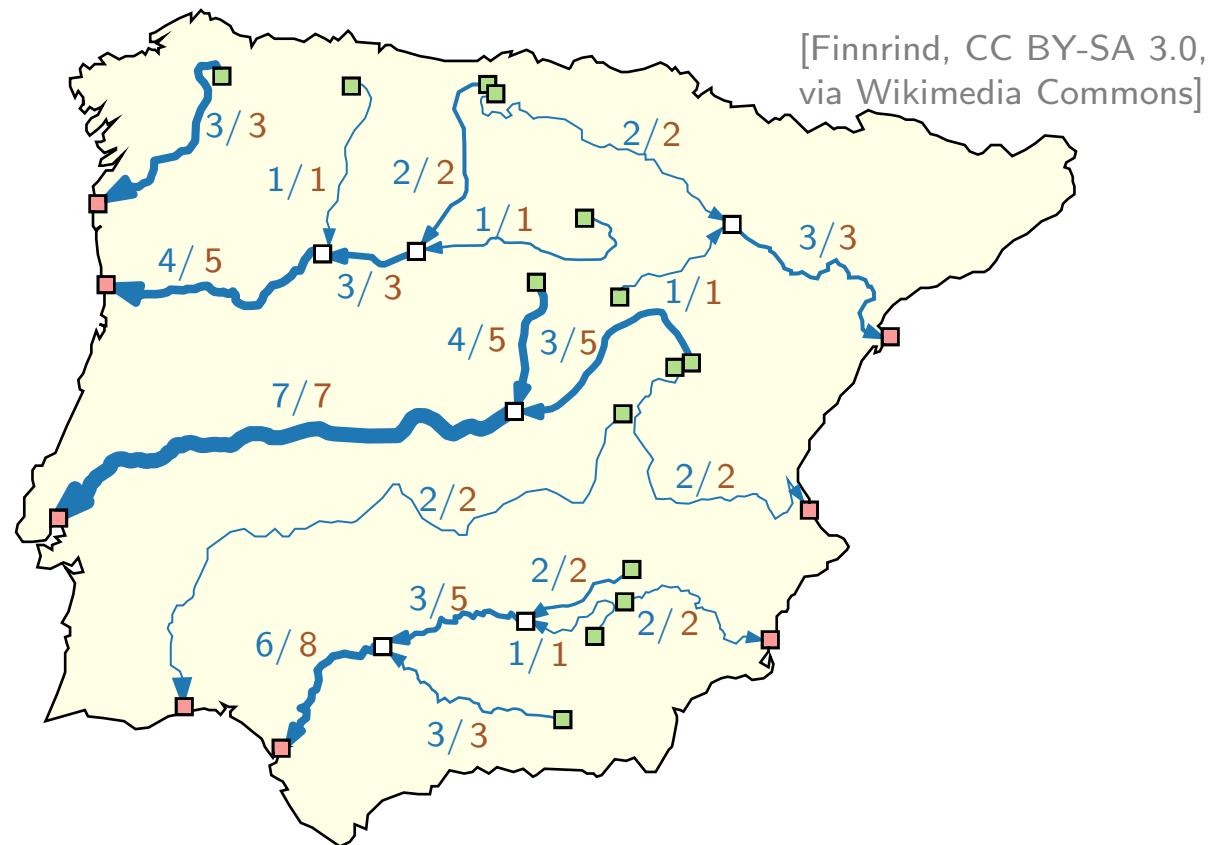
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $\textcolor{teal}{X}: E \rightarrow \mathbb{R}_0^+$ is called **s - t flow** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus \{\textcolor{green}{s}, \textcolor{red}{t}\}$$

A **maximum s - t flow** is an s - t flow where $\sum_{(\textcolor{green}{s}, j) \in E} X(s, j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network $(G = (V, E); \textcolor{green}{s}, \textcolor{red}{t}; u)$ with

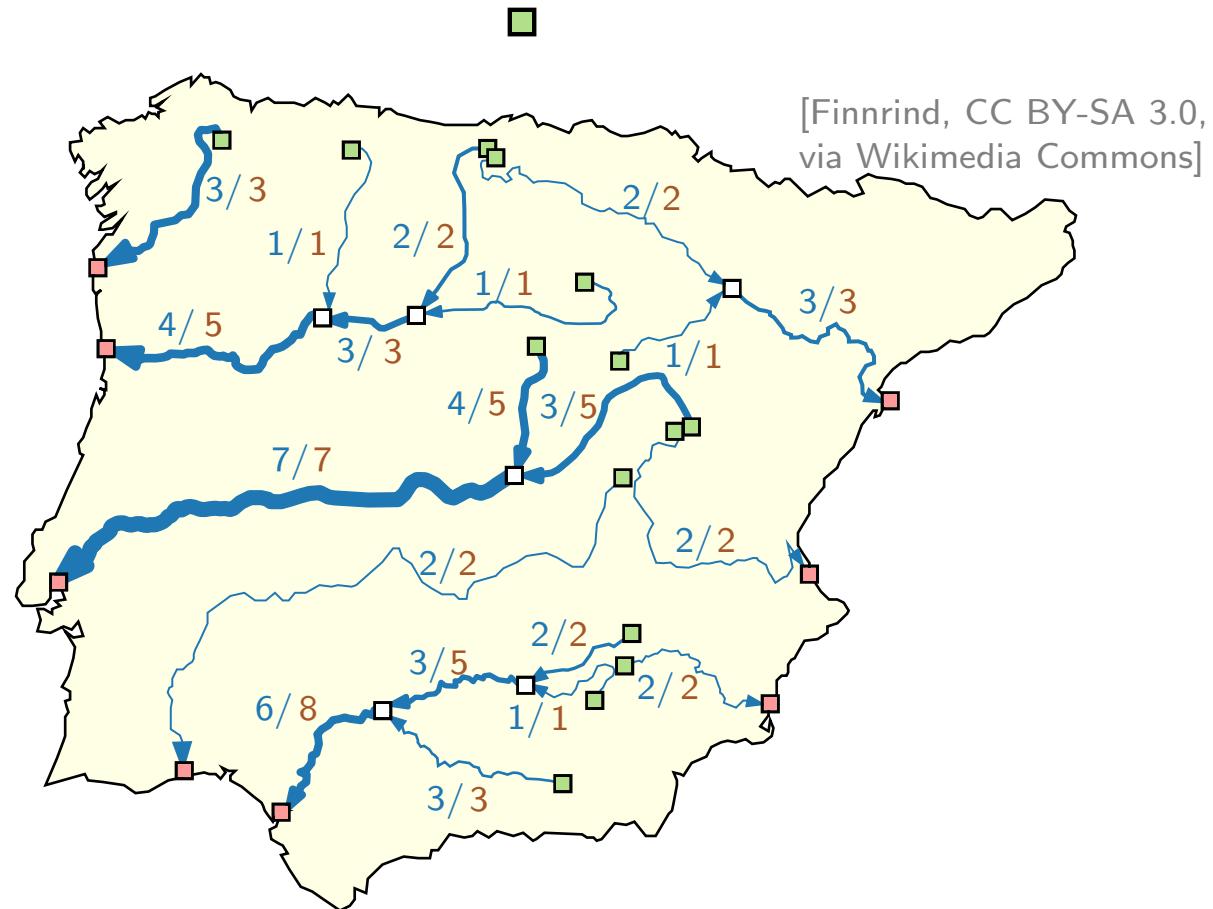
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $\textcolor{teal}{X}: E \rightarrow \mathbb{R}_0^+$ is called **s - t flow** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus \{\textcolor{green}{s}, \textcolor{red}{t}\}$$

A **maximum s - t flow** is an s - t flow where $\sum_{(\textcolor{green}{s}, j) \in E} X(s, j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network ($G = (V, E); s, t; u$) with

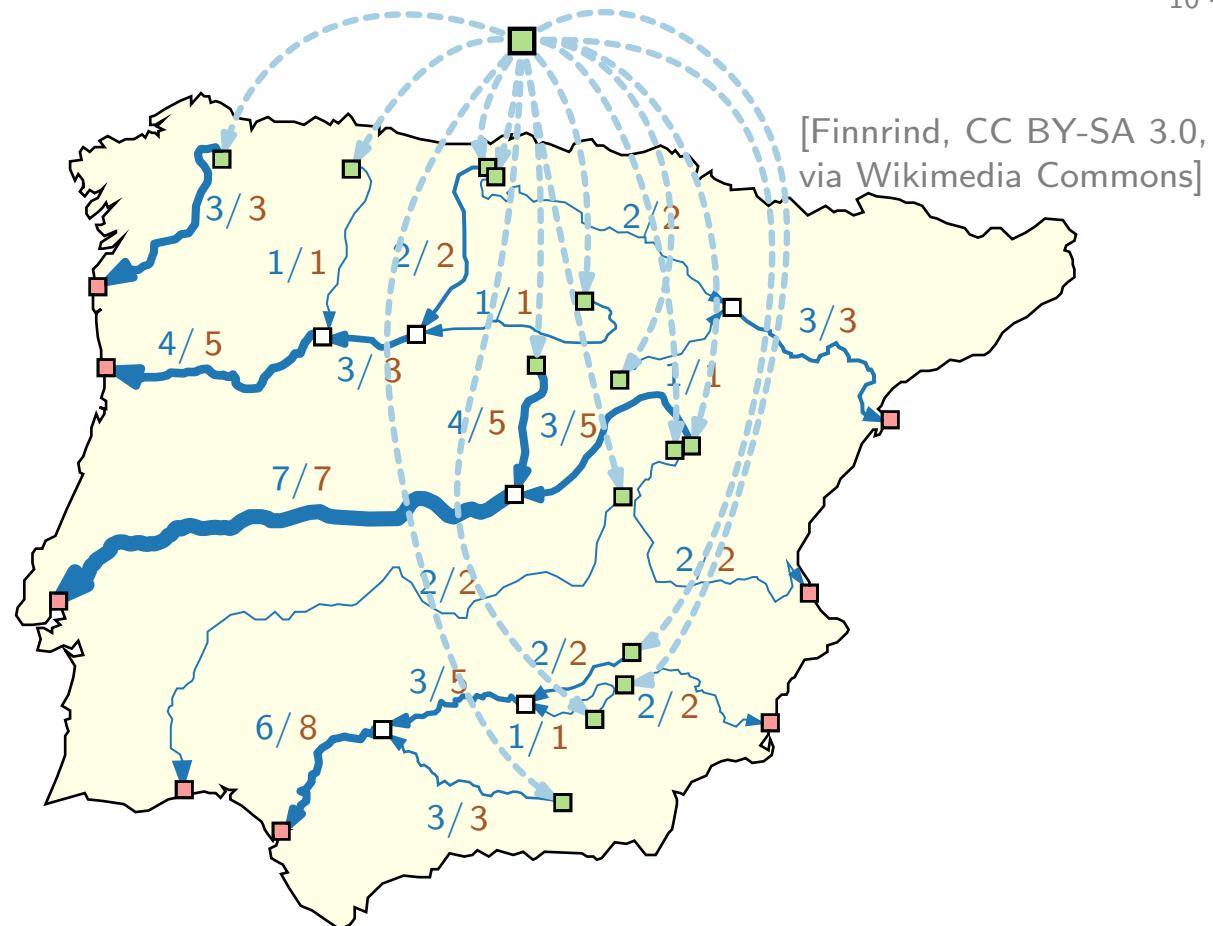
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called **s-t flow** if:

$$0 \leq X(i,j) \leq u(i,j) \quad \forall (i,j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \quad \forall i \in V \setminus \{s, t\}$$

A **maximum** s - t flow is an s - t flow where $\sum_{(s,j) \in E} X(s,j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network ($G = (V, E); s, t; u$) with

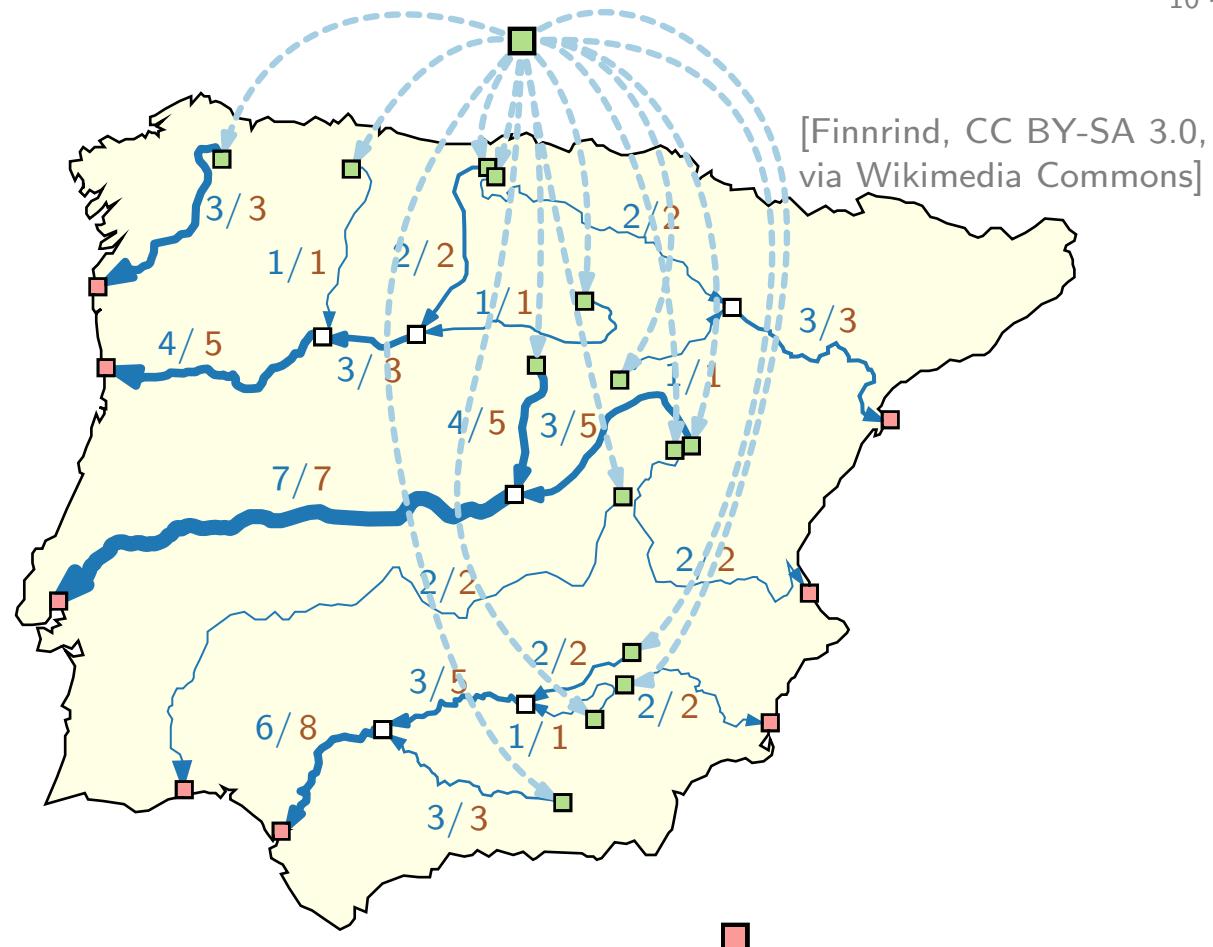
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called **s-t flow** if:

$$0 \leq X(i,j) \leq u(i,j) \quad \forall (i,j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \quad \forall i \in V \setminus \{s, t\}$$

A **maximum** s - t flow is an s - t flow where $\sum_{(s,j) \in E} X(s, j)$ is maximized.



[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Reminder: s - t -Flow Networks

Flow network $(G = (V, E); s, t; u)$ with

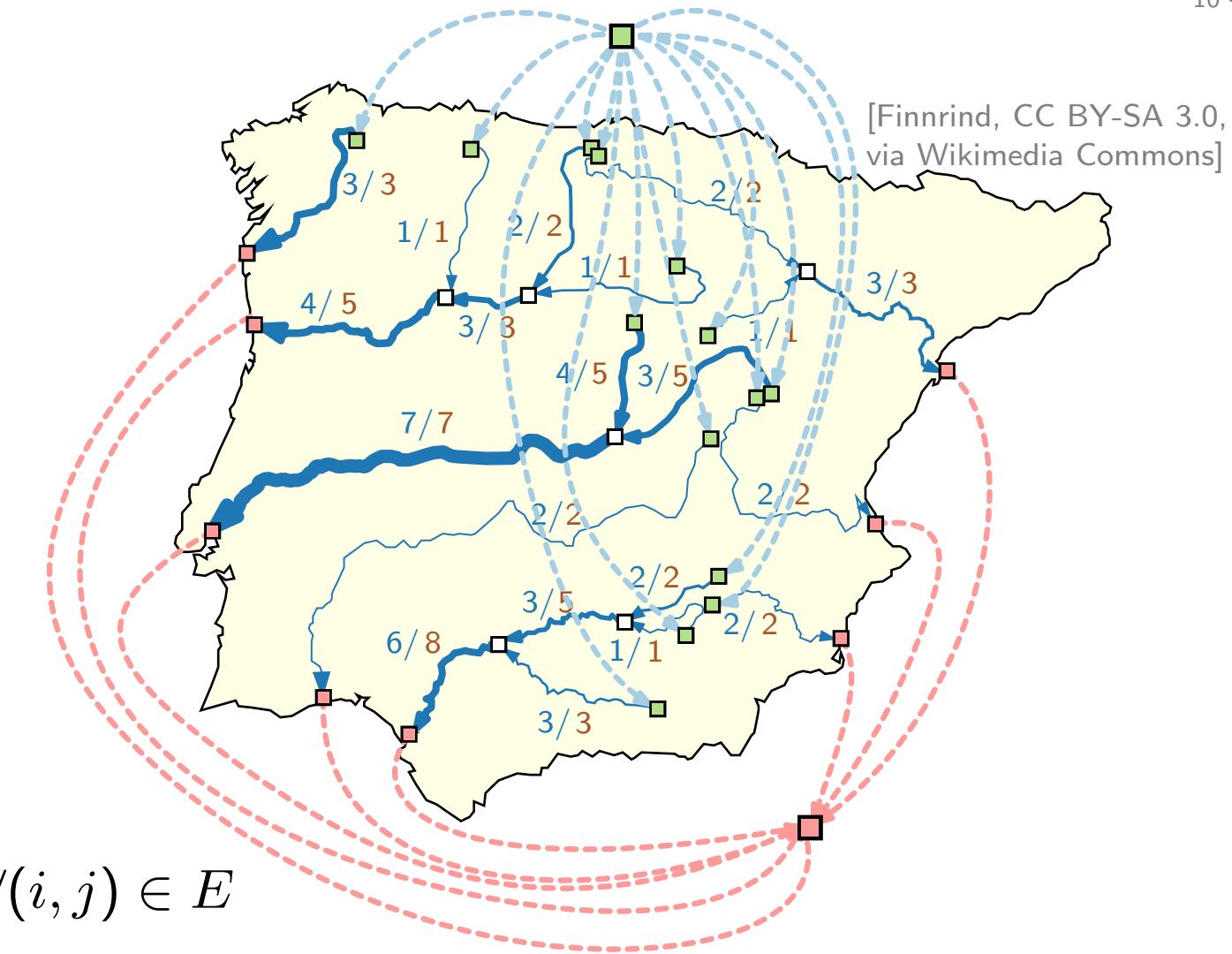
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *s*-*t* **flow** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus \{s, t\}$$

A **maximum** *s*-*t* flow is an *s*-*t* flow where $\sum_{(s, j) \in E} X(s, j)$ is maximized.



Reminder: s - t -Flow Networks

Flow network $(G = (V, E); s, t; u)$ with

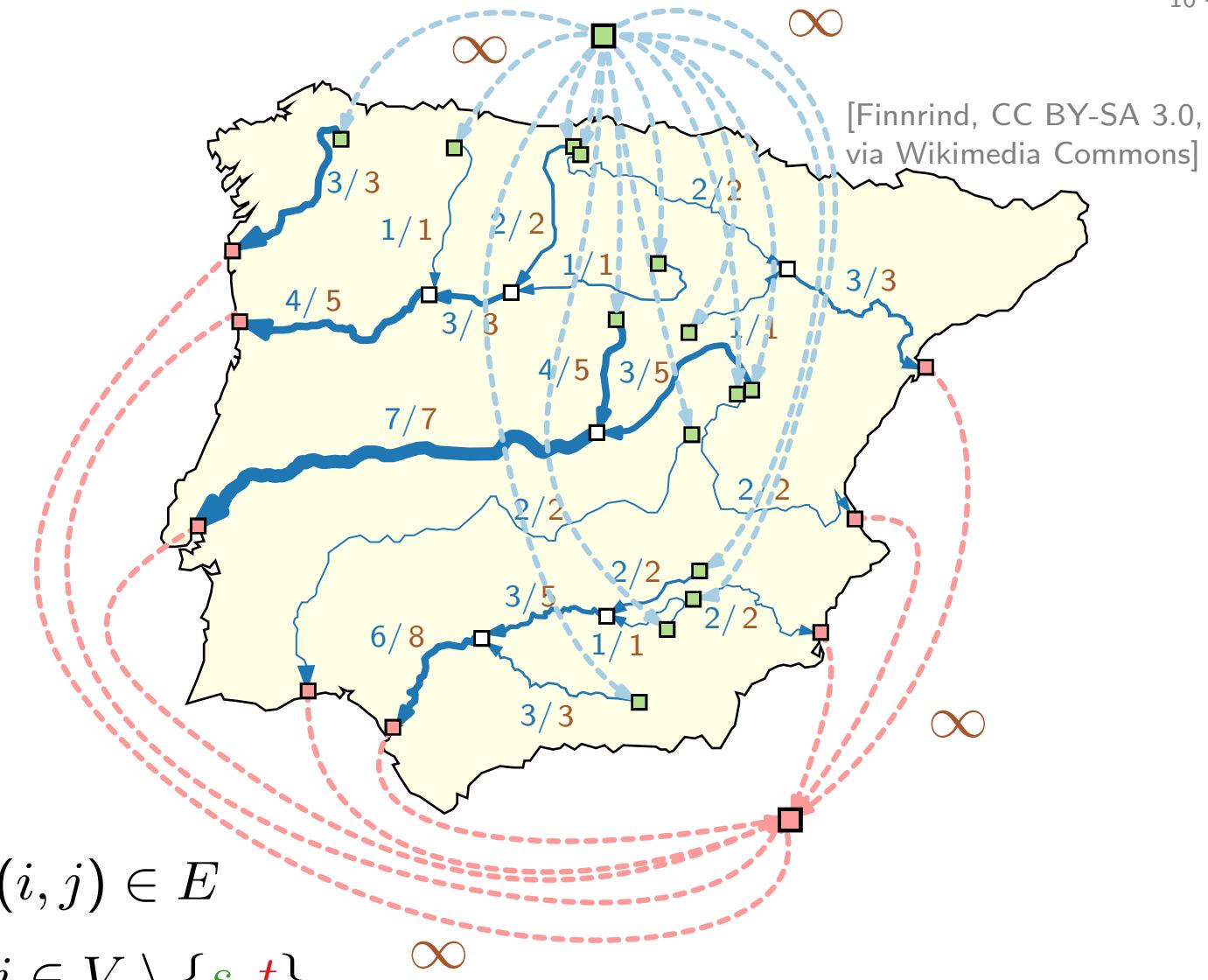
- directed graph $G = (V, E)$
- *source* $s \in V$, *sink* $t \in V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called ***s-t flow*** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \quad \forall i \in V \setminus \{\textcolor{green}{s}, \textcolor{red}{t}\}$$

A **maximum** s - t flow is an s - t flow where $\sum_{(s,j) \in E} X(s,j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); S, T; u)$ with

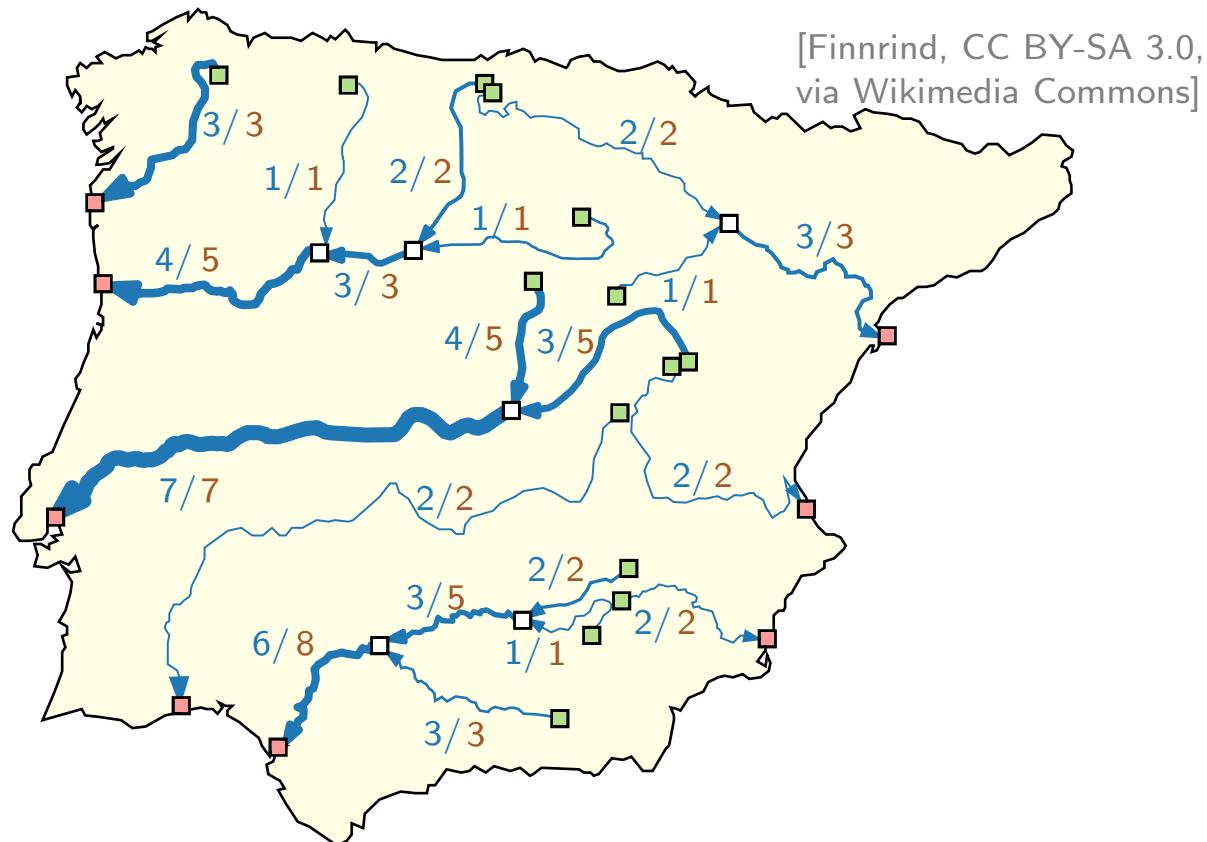
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *S-T flow* if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** *S-T* flow is an *S-T* flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); S, T; \ell; u)$ with

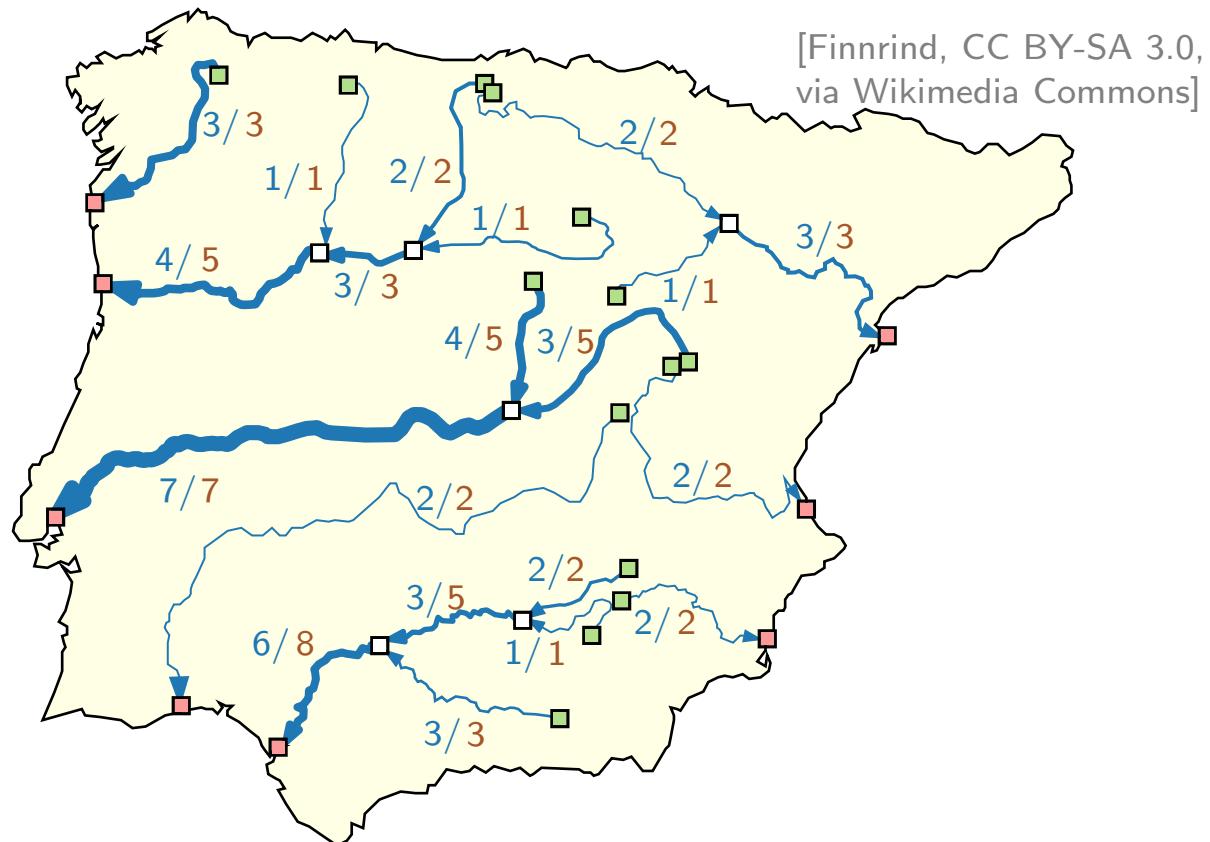
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called ***S-T flow*** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum *S-T* flow** is an *S-T* flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); S, T; \ell; u)$ with

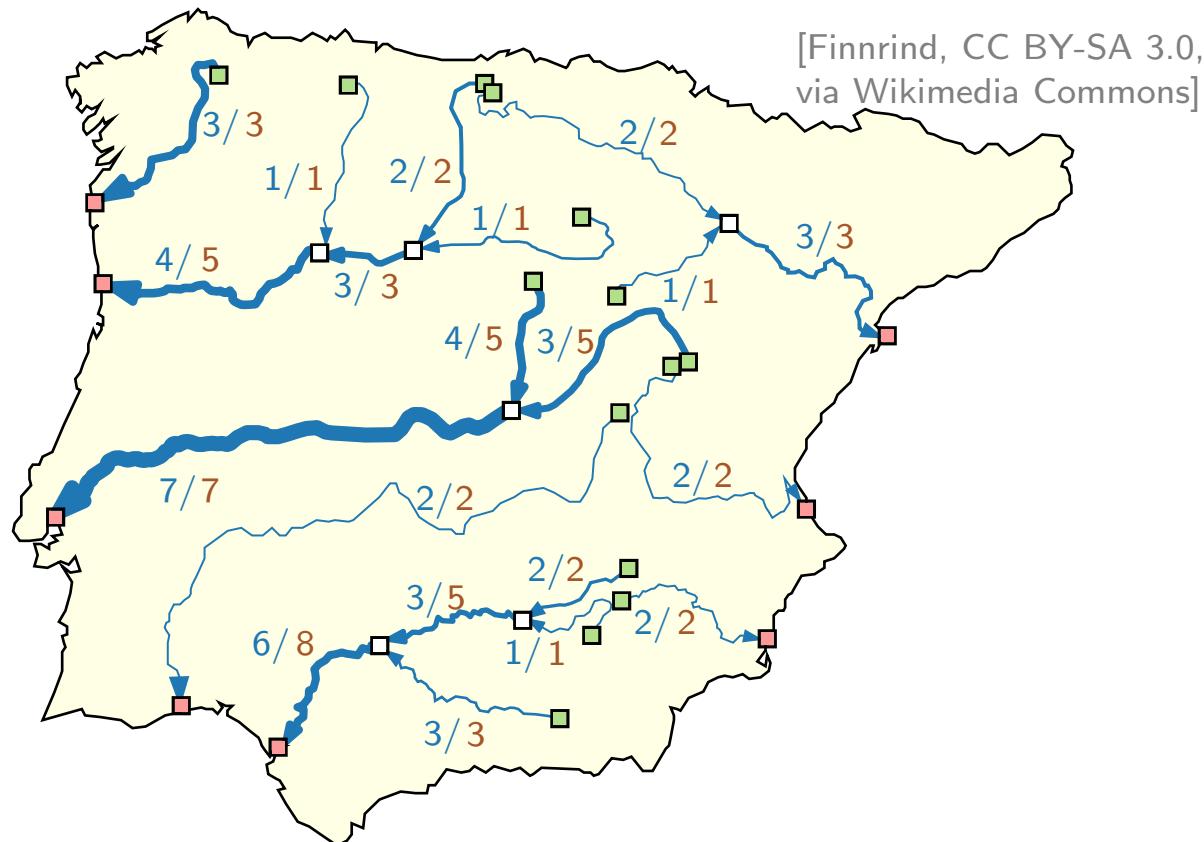
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *S-T flow* if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** *S-T flow* is an *S-T flow* where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); S, T; \ell; u)$ with

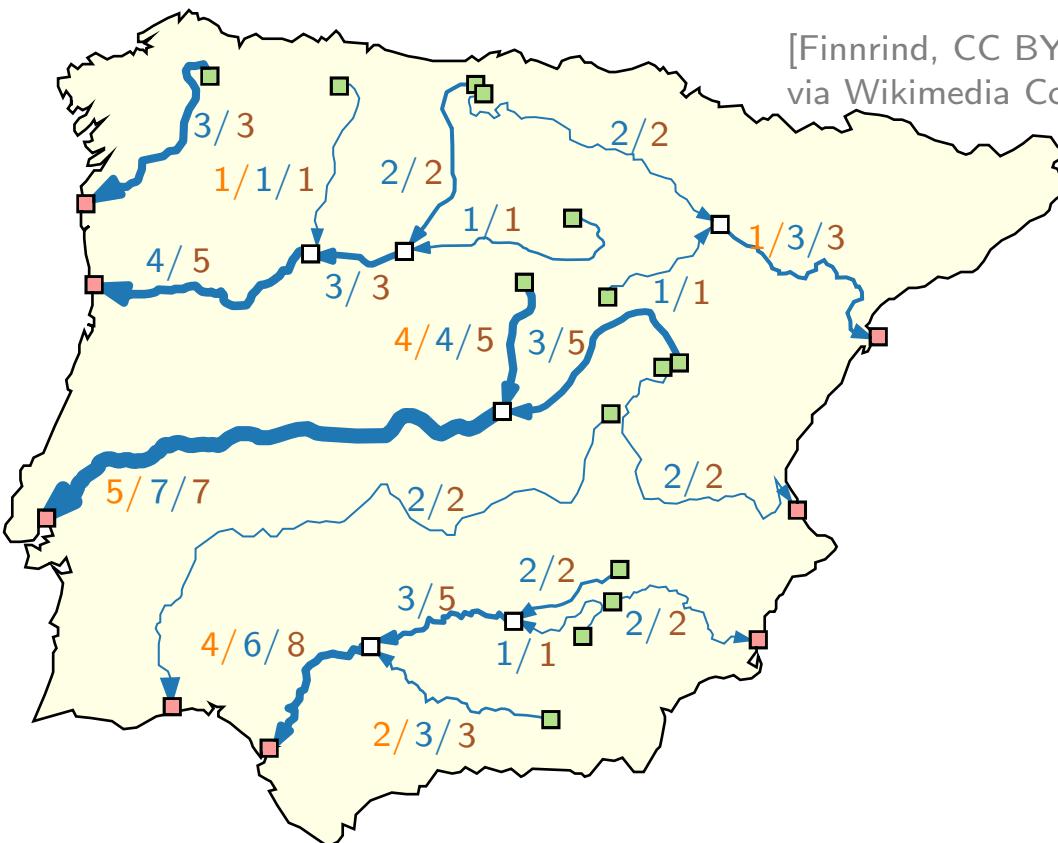
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called ***S-T flow*** if:

$$0 \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** S - T flow is an S - T flow where $\sum_{(i,j) \in E, i \in S} X(i,j)$ is maximized.



[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

General Flow Network

Flow network $(G = (V, E); S, T; \ell; u)$ with

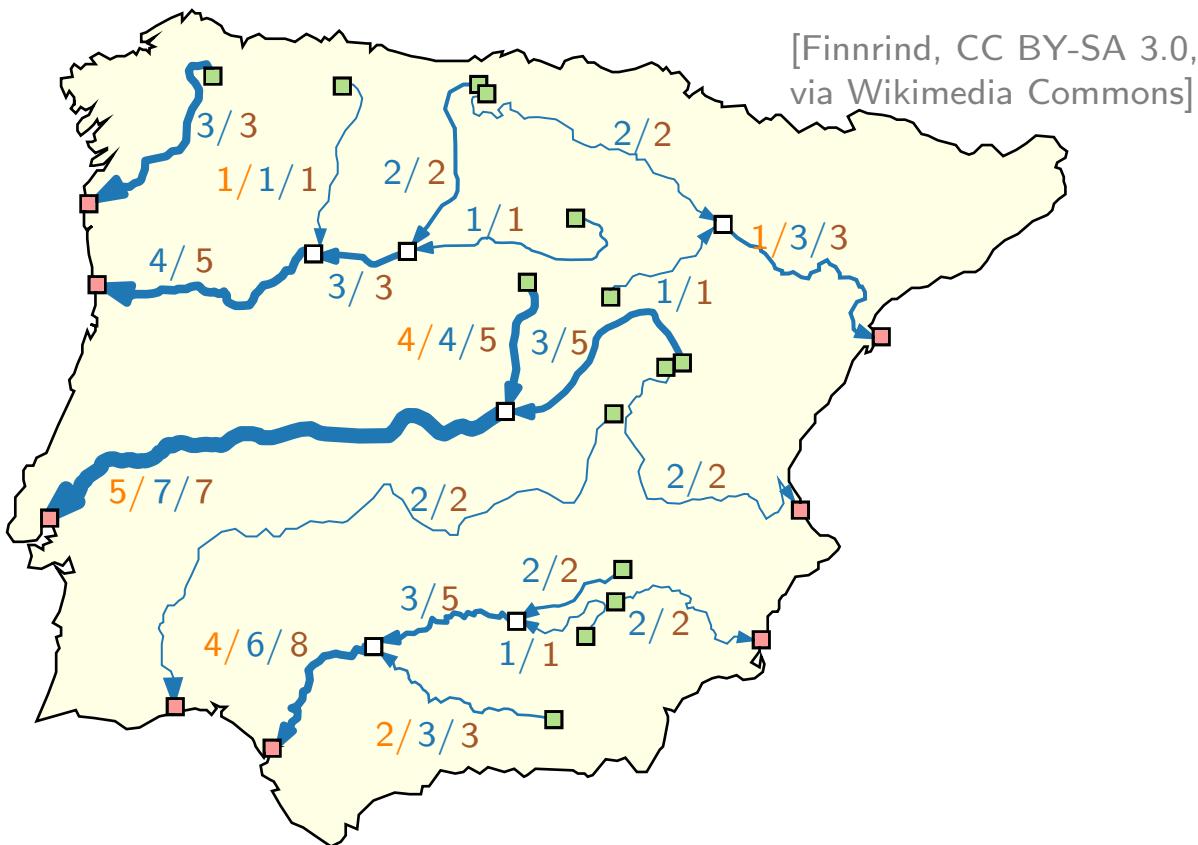
- directed graph $G = (V, E)$
- *sources* $S \subseteq V$, *sinks* $T \subseteq V$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *S-T flow* if:

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** *S-T flow* is an *S-T flow* where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

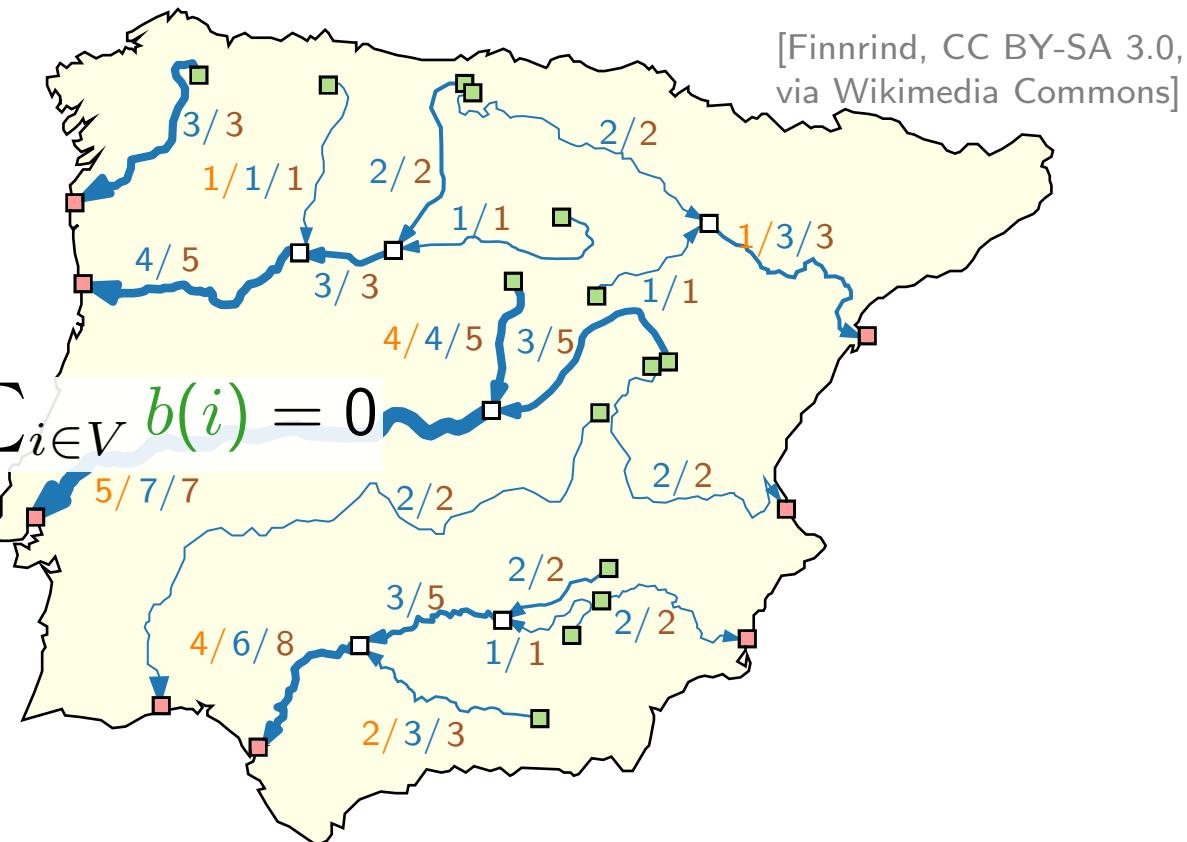
- directed graph $G = (V, E)$
- node *production/consumption* $b: V \rightarrow \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called *S-T flow* if:

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = 0 \quad \forall i \in V \setminus (S \cup T)$$

A **maximum** *S-T flow* is an *S-T flow* where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

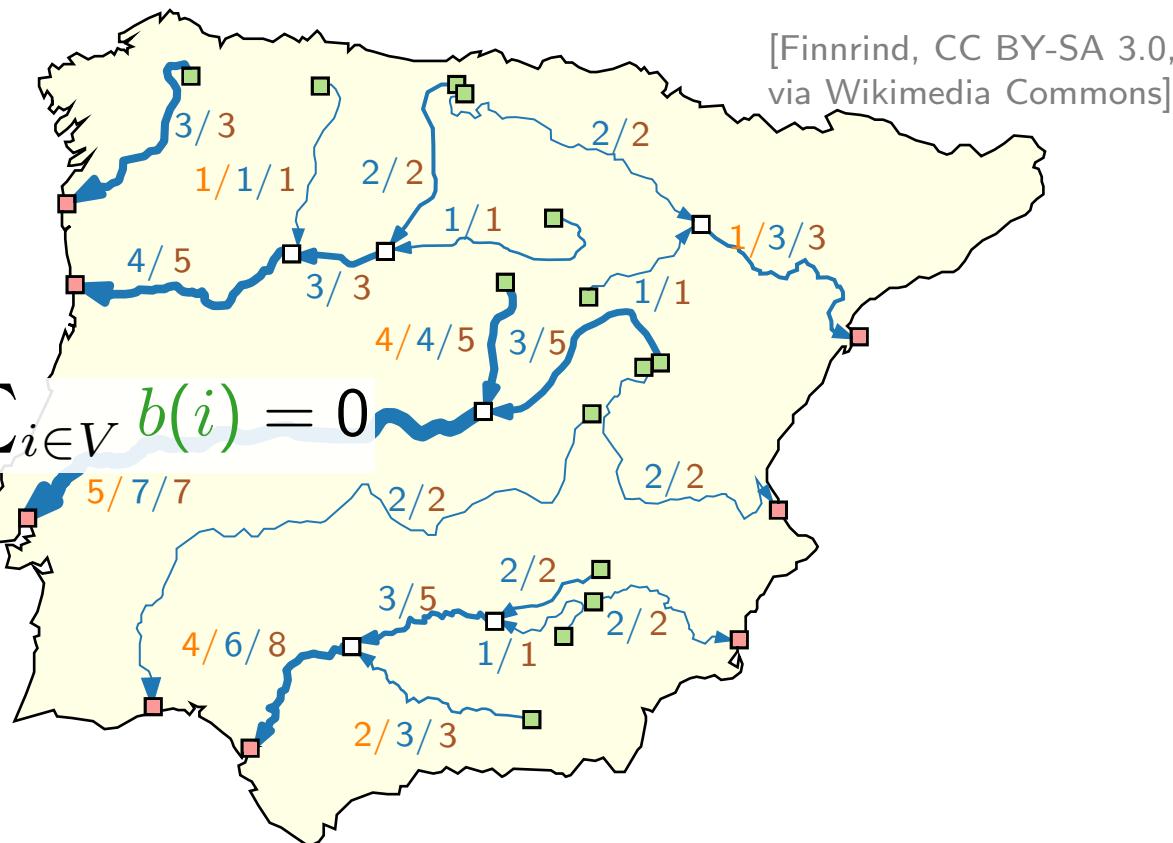
- directed graph $G = (V, E)$
- node *production/consumption* $b: V \rightarrow \mathbb{R}$ with
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \rightarrow \mathbb{R}_0^+$ is called **valid flow**, if

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = b(i) \quad \forall i \in V$$

A **maximum** S - T flow is an S - T flow where $\sum_{(i,j) \in E, i \in S} X(i,j)$ is maximized.



[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph $G = (V, E)$
- node *production/consumption* $b: V \rightarrow \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

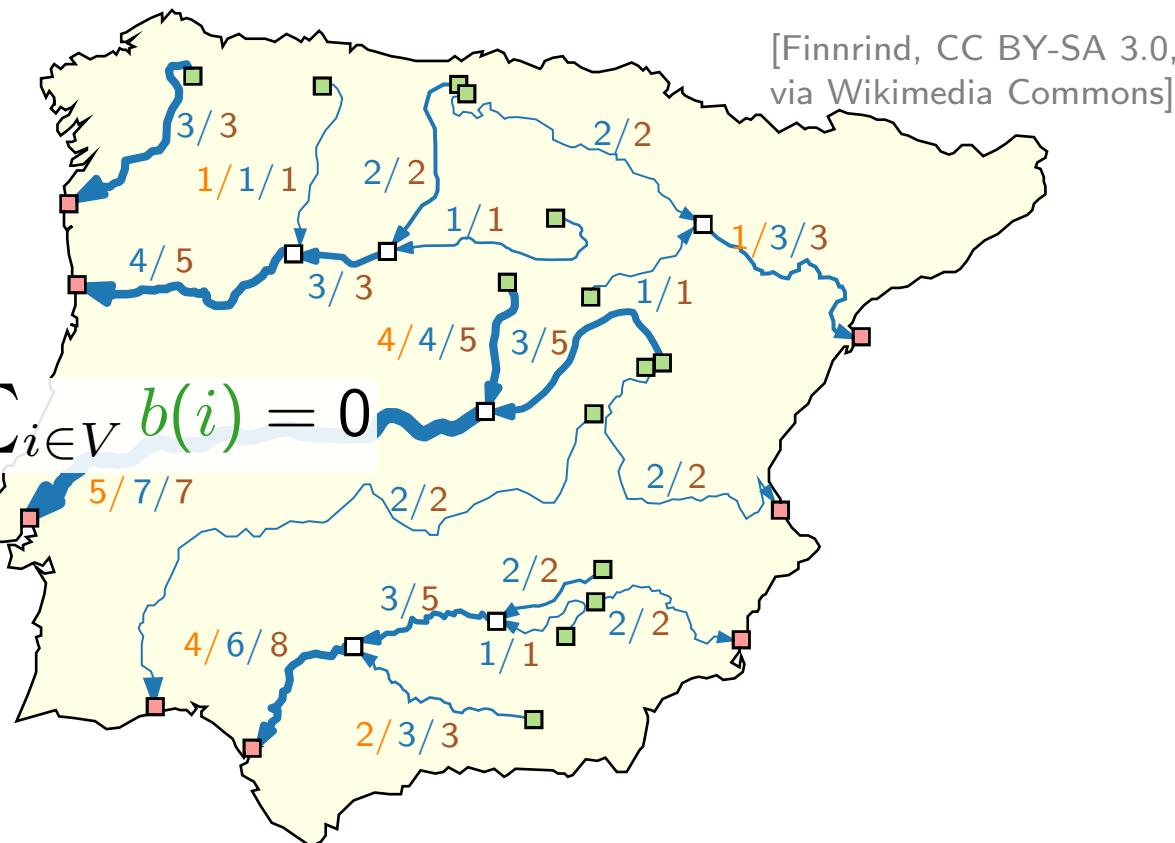
A function $X: E \rightarrow \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = b(i) \quad \forall i \in V$$

- *Cost function* $\text{cost}: E \rightarrow \mathbb{R}_0^+$

A **maximum $S-T$ flow** is an $S-T$ flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph $G = (V, E)$
- node *production/consumption* $b: V \rightarrow \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

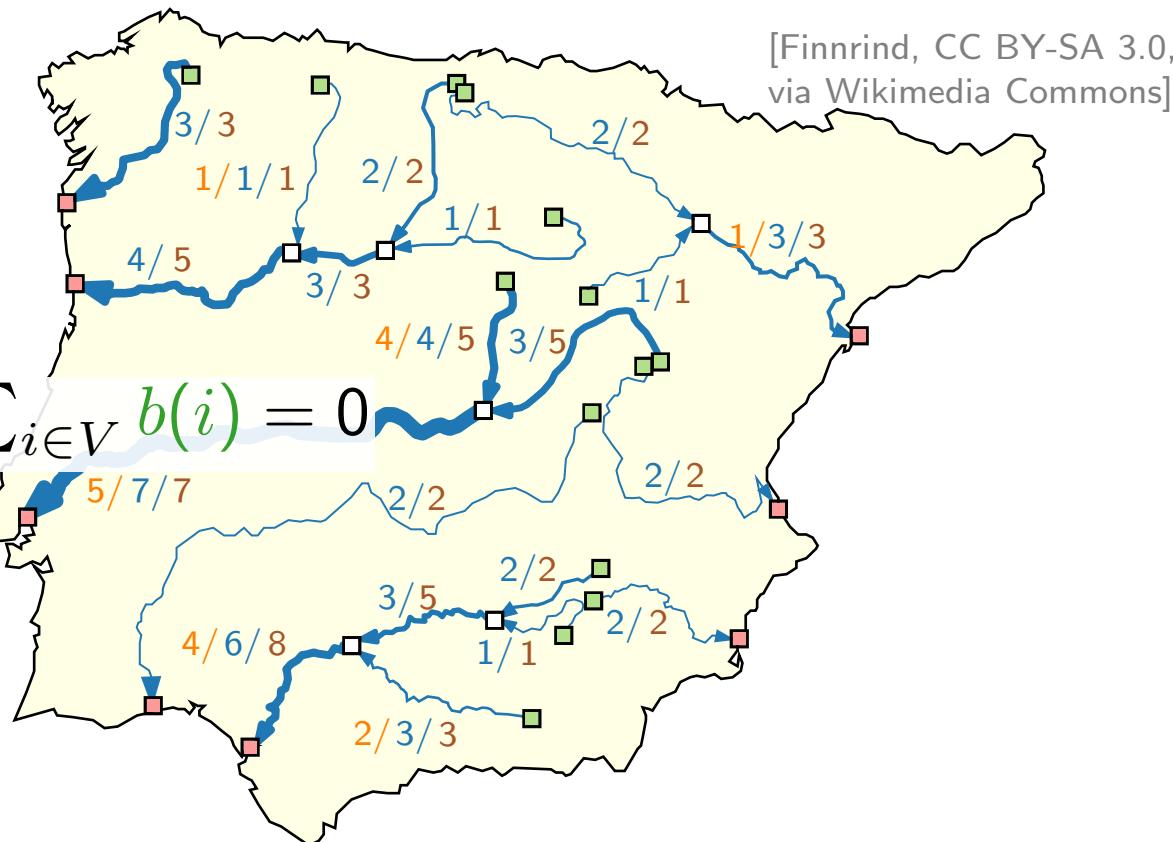
A function $X: E \rightarrow \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = b(i) \quad \forall i \in V$$

- *Cost function* $\text{cost}: E \rightarrow \mathbb{R}_0^+$ and $\text{cost}(X) := \sum_{(i, j) \in E} \text{cost}(i, j) \cdot X(i, j)$

A **maximum $S-T$ flow** is an $S-T$ flow where $\sum_{(i, j) \in E, i \in S} X(i, j)$ is maximized.



General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph $G = (V, E)$
- node *production/consumption* $b: V \rightarrow \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$
- edge *lower bound* $\ell: E \rightarrow \mathbb{R}_0^+$
- edge *capacity* $u: E \rightarrow \mathbb{R}_0^+ \cup \{\infty\}$

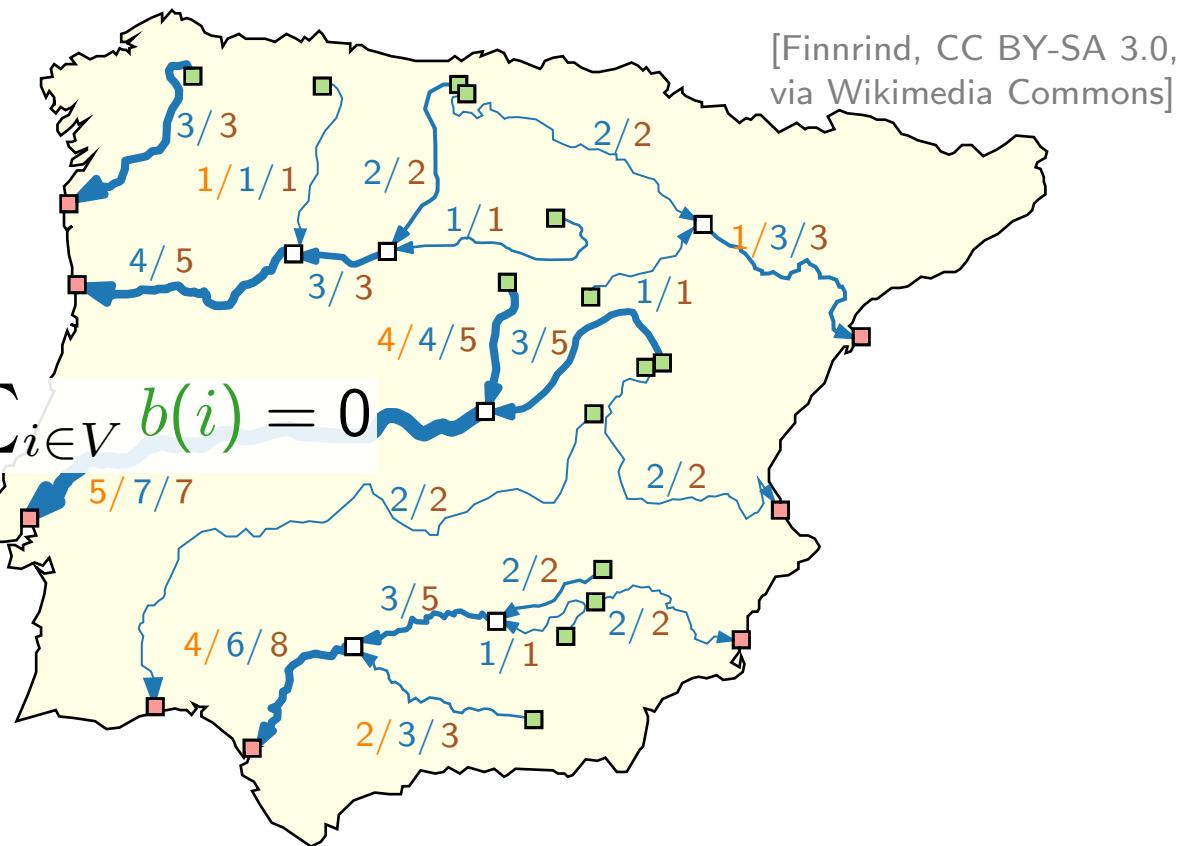
A function $X: E \rightarrow \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i, j) \leq X(i, j) \leq u(i, j) \quad \forall (i, j) \in E$$

$$\sum_{(i, j) \in E} X(i, j) - \sum_{(j, i) \in E} X(j, i) = b(i) \quad \forall i \in V$$

- *Cost function* $\text{cost}: E \rightarrow \mathbb{R}_0^+$ and $\text{cost}(X) := \sum_{(i, j) \in E} \text{cost}(i, j) \cdot X(i, j)$

A **minimum cost flow** is a valid flow where $\text{cost}(X)$ is minimized.



General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	$O(n \log C M(n, m, U))$
4	Bland and Jensen	1985	$O(m \log C M(n, m, U))$
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	$O(nm \log n \log (nC))$
7	Ahuja, Goldberg, Orlin and Tarjan	1988	$O(nm \log \log U \log (nC))$

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	$O(m^4)$
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 \log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

$$S(n, m) = O(m + n \log n)$$

Fredman and Tarjan [1984]

$$S(n, m, C) = O(\min(m + n\sqrt{\log C}, (m \log \log C))$$

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

$$M(n, m) = O(\min(nm + n^{2+\epsilon}, nm \log n))$$

where ϵ is any fixed constant.

King, Rao, and Tarjan [1991]

$$M(n, m, U) = O(nm \log (\frac{n}{m} \sqrt{\log U} + 2))$$

Ahuja, Orlin and Tarjan [1989]

General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	$O(n \log C M(n, m, U))$
4	Bland and Jensen	1985	$O(m \log C M(n, m, U))$
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	$O(nm \log n \log (nC))$
7	Ahuja, Goldberg, Orlin and Tarjan	1988	$O(nm \log \log U \log (nC))$

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	$O(m^4)$
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 \log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

$$S(n, m) = O(m + n \log n)$$

Fredman and Tarjan [1984]

$$S(n, m, C) = O(\min(m + n\sqrt{\log C}, m \log \log C))$$

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra [1977]

$$M(n, m) = O(\min(nm + n^{2+\epsilon}, nm \log n)) \text{ where } \epsilon \text{ is any fixed constant.}$$

King, Rao, and Tarjan [1991]

$$M(n, m, U) = O(nm \log (\frac{n}{m} \sqrt{\log U} + 2))$$

Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	$O(n \log C M(n, m, U))$
4	Bland and Jensen	1985	$O(m \log C M(n, m, U))$
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	$O(nm \log n \log (nC))$
7	Ahuja, Goldberg, Orlin and Tarjan	1988	$O(nm \log \log U \log (nC))$

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	$O(m^4)$
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 \log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

$$S(n, m) = O(m + n \log n)$$

Fredman and Tarjan [1984]

$$S(n, m, C) = O(\min(m + n\sqrt{\log C}, m \log \log C))$$

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra [1977]

$$M(n, m) = O(\min(nm + n^{2+\epsilon}, nm \log n)) \text{ where } \epsilon \text{ is any fixed constant.}$$

King, Rao, and Tarjan [1991]

$$M(n, m, U) = O(nm \log (\frac{n}{m} \sqrt{\log U} + 2))$$

Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

Topology – Shape – Metrics

Three-step approach:

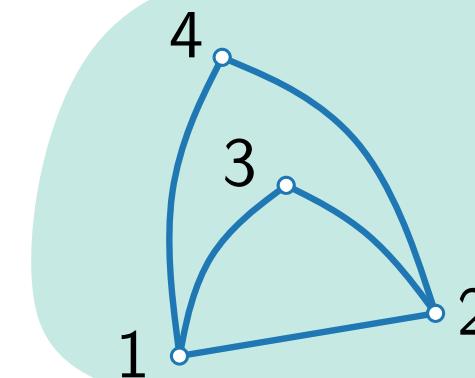
[Tamassia 1987]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



TOPOLOGY

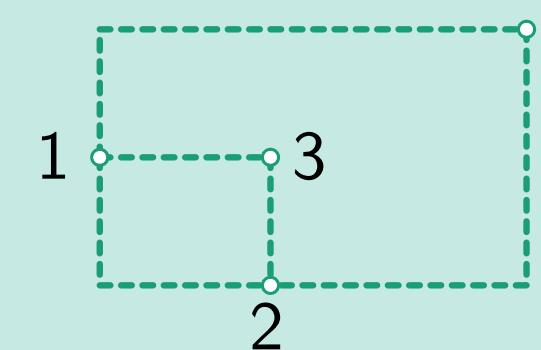
SHAPE

bend minimization

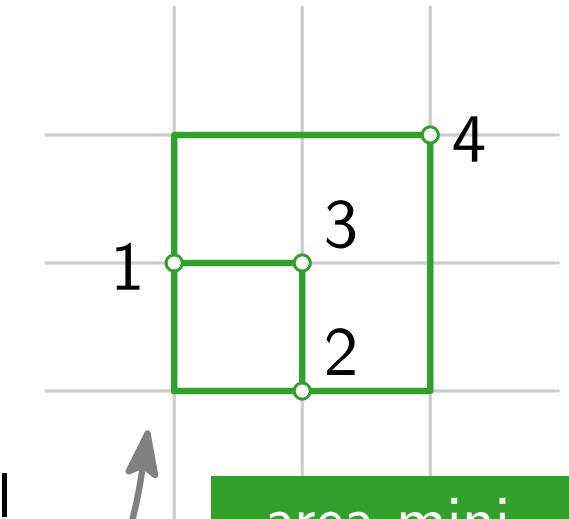
orthogonal
representation

planar
orthogonal
drawing

area mini-
mization



METRICS



Bend Minimization with Given Embedding

Geometric bend minimization.

Given:

Find:

Bend Minimization with Given Embedding

Geometric bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

Find:

Bend Minimization with Given Embedding

Geometric bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find:

Bend Minimization with Given Embedding

Geometric bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Bend Minimization with Given Embedding

Geometric bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.

Given:

Find:

Bend Minimization with Given Embedding

Geometric bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find:

Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find:

Bend Minimization with Given Embedding

Geometric bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find: **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding.

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Combinatorial embedding F and outer face f_0

Find: **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Combinatorial embedding F and outer face f_0

Find: **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Combinatorial embedding F and outer face f_0

Find: **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

■ a unit of flow = $\angle \frac{\pi}{2}$

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find:

■ **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

- a unit of flow = $\angle \frac{\pi}{2}$
- vertices $\xrightarrow{4}$ faces ($\# \angle \frac{\pi}{2}$ per face)

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Combinatorial embedding F and outer face f_0

Find:

■ **Orthogonal representation** $H(G)$ with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

- a unit of flow = $\angle \frac{\pi}{2}$
- vertices $\xrightarrow{4}$ faces (# $\angle \frac{\pi}{2}$ per face)
- faces $\xrightarrow{4}$ neighbouring faces (# bends toward the neighbour)

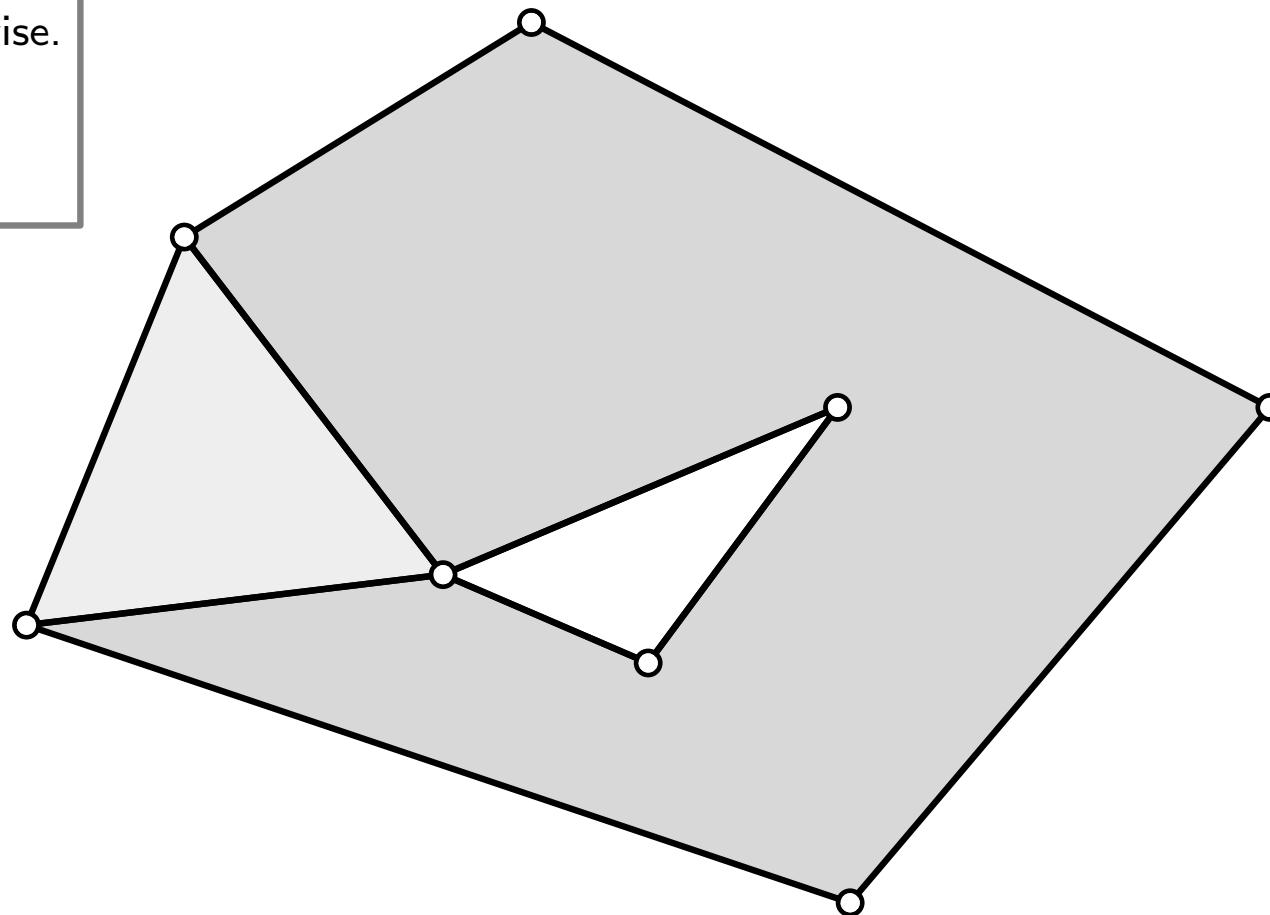
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:
$$\sum_{r \in H(f)} C(\textcolor{red}{r}) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(\textcolor{red}{r}) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

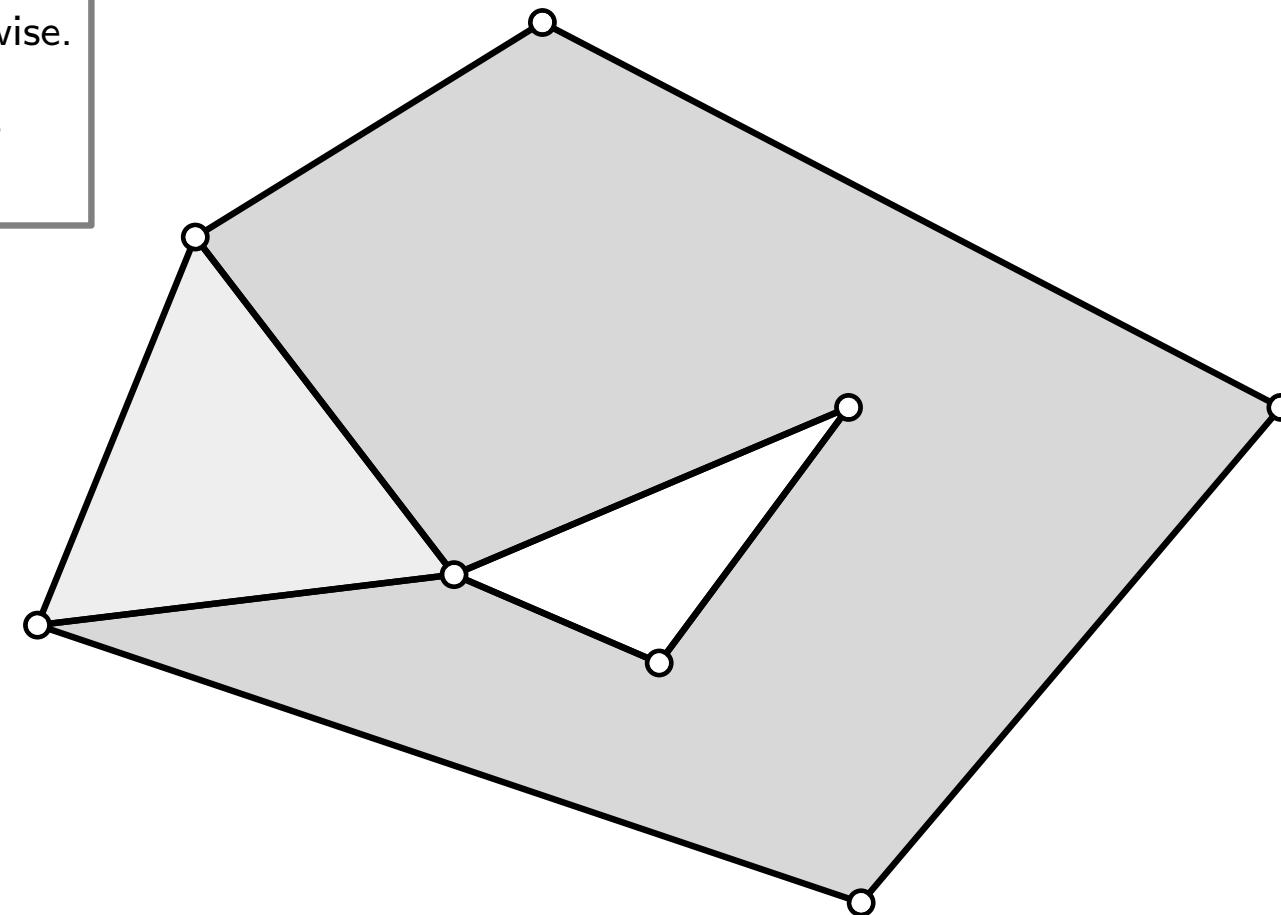


Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

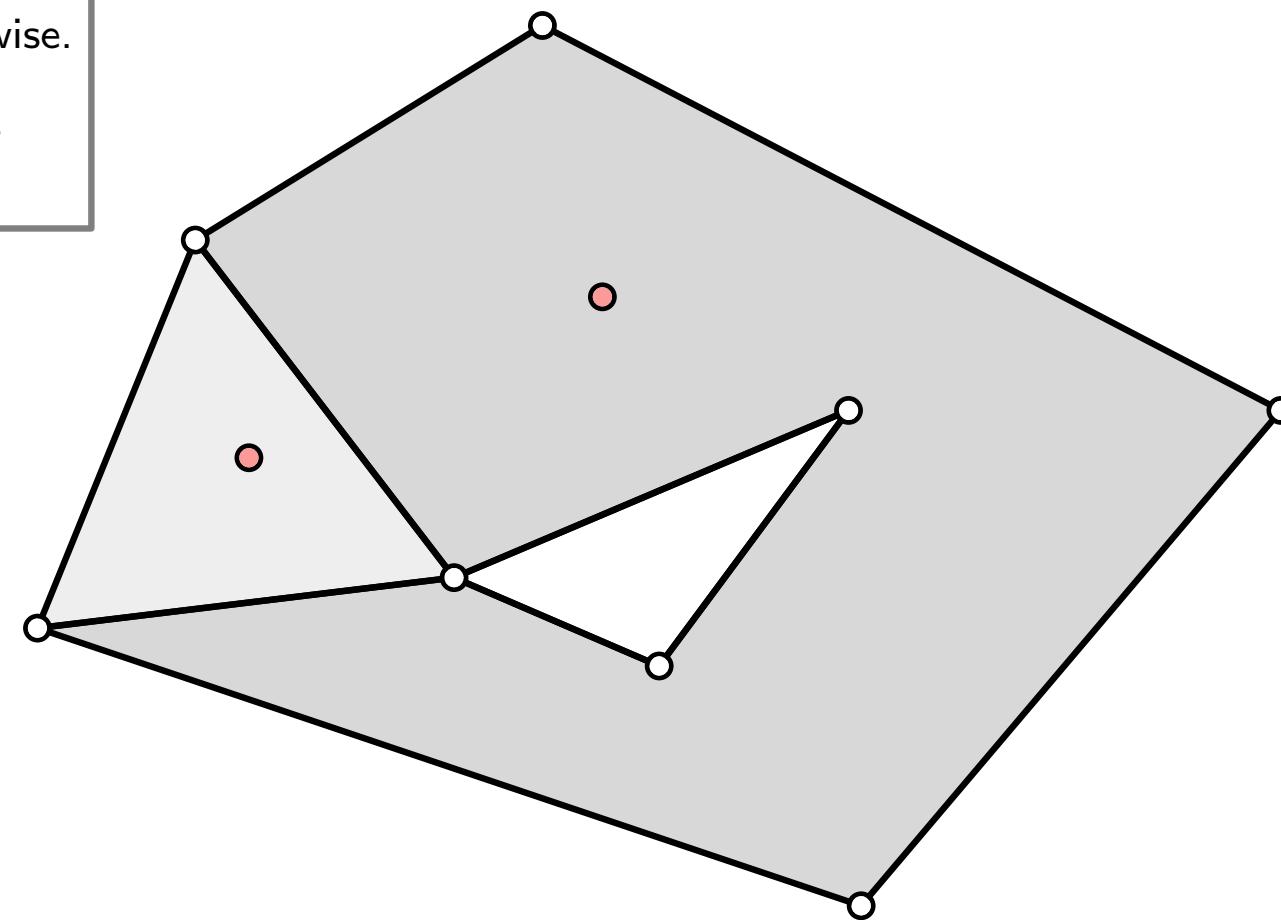


Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); \mathbf{b}; \mathbf{l}; \mathbf{u}; \mathbf{cost})$:



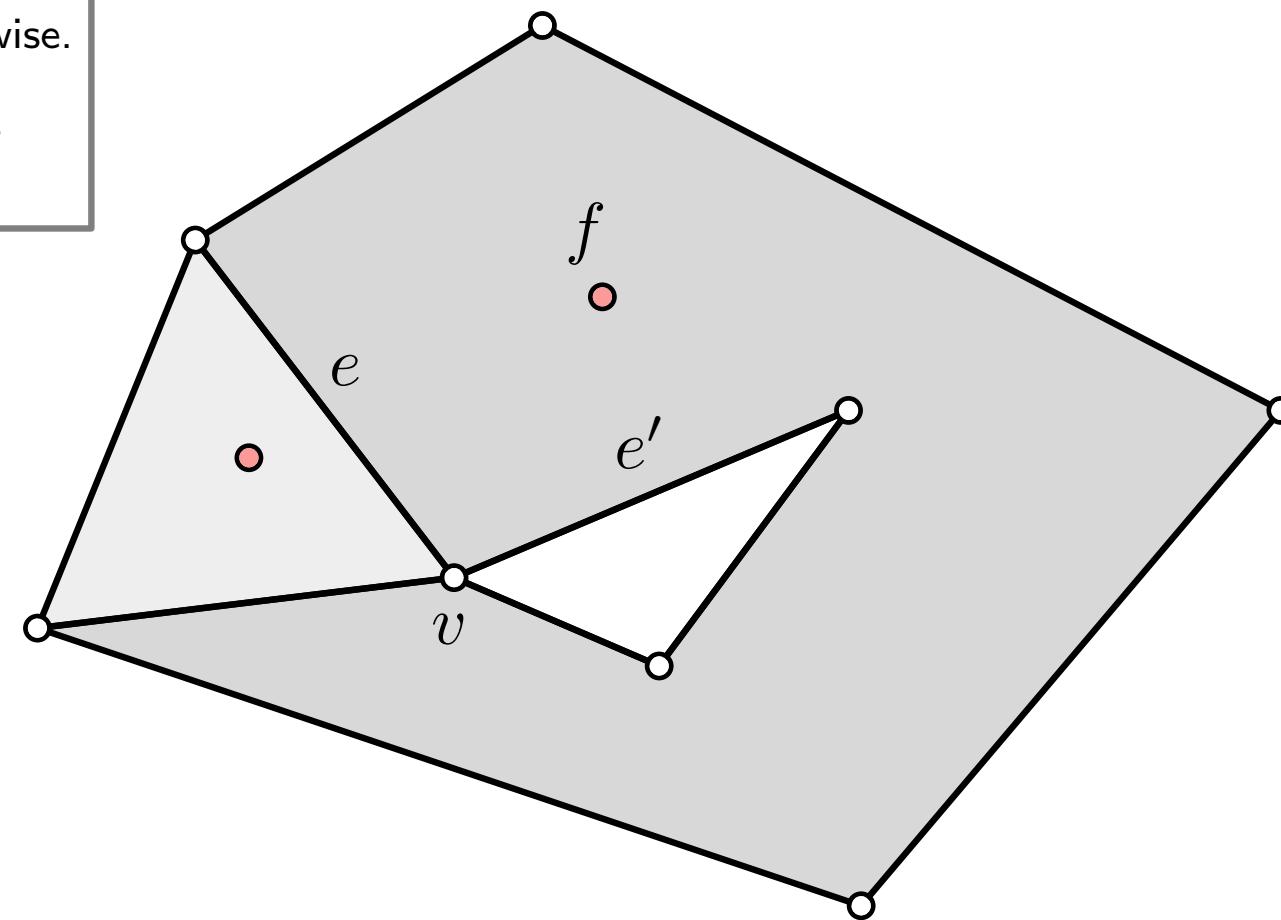
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



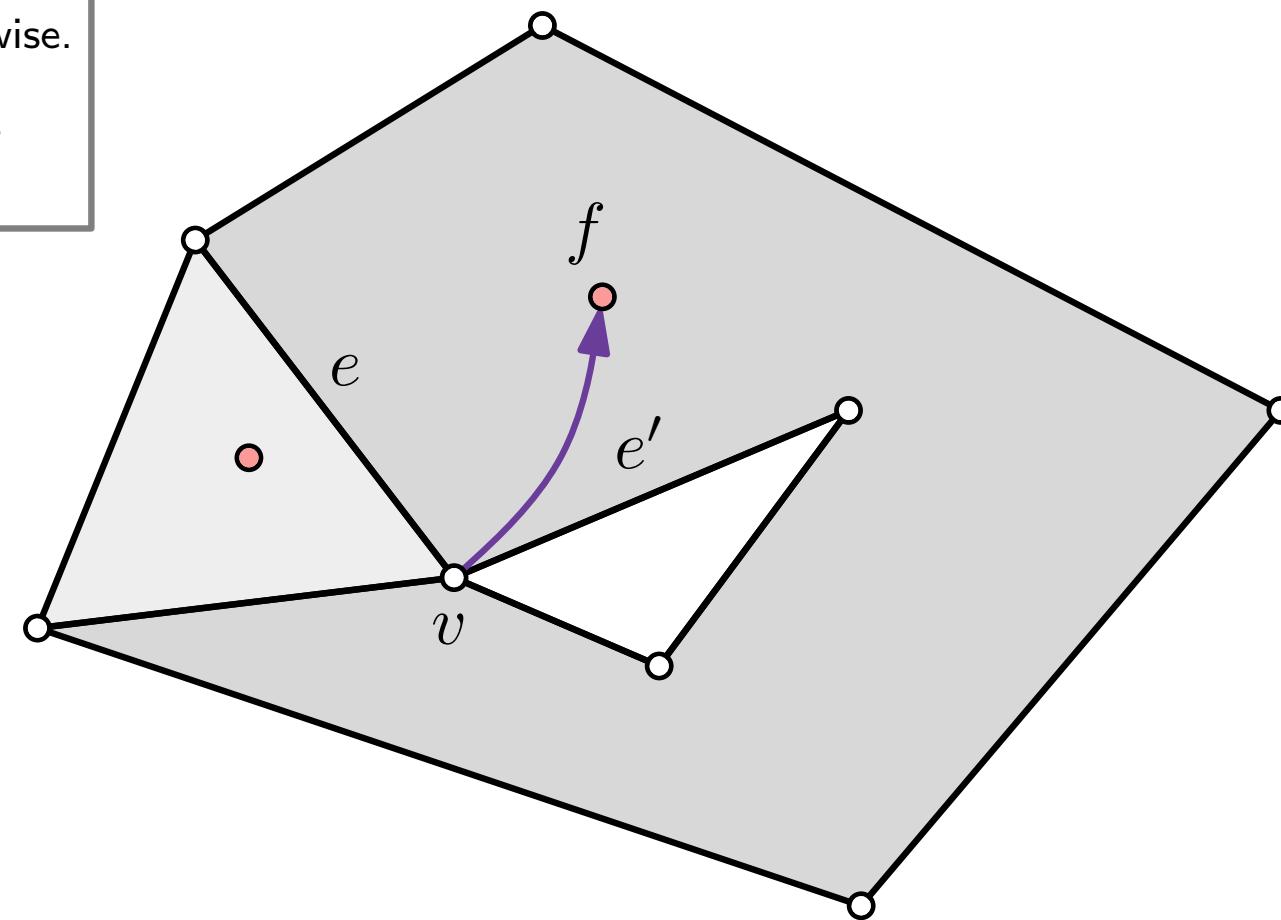
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



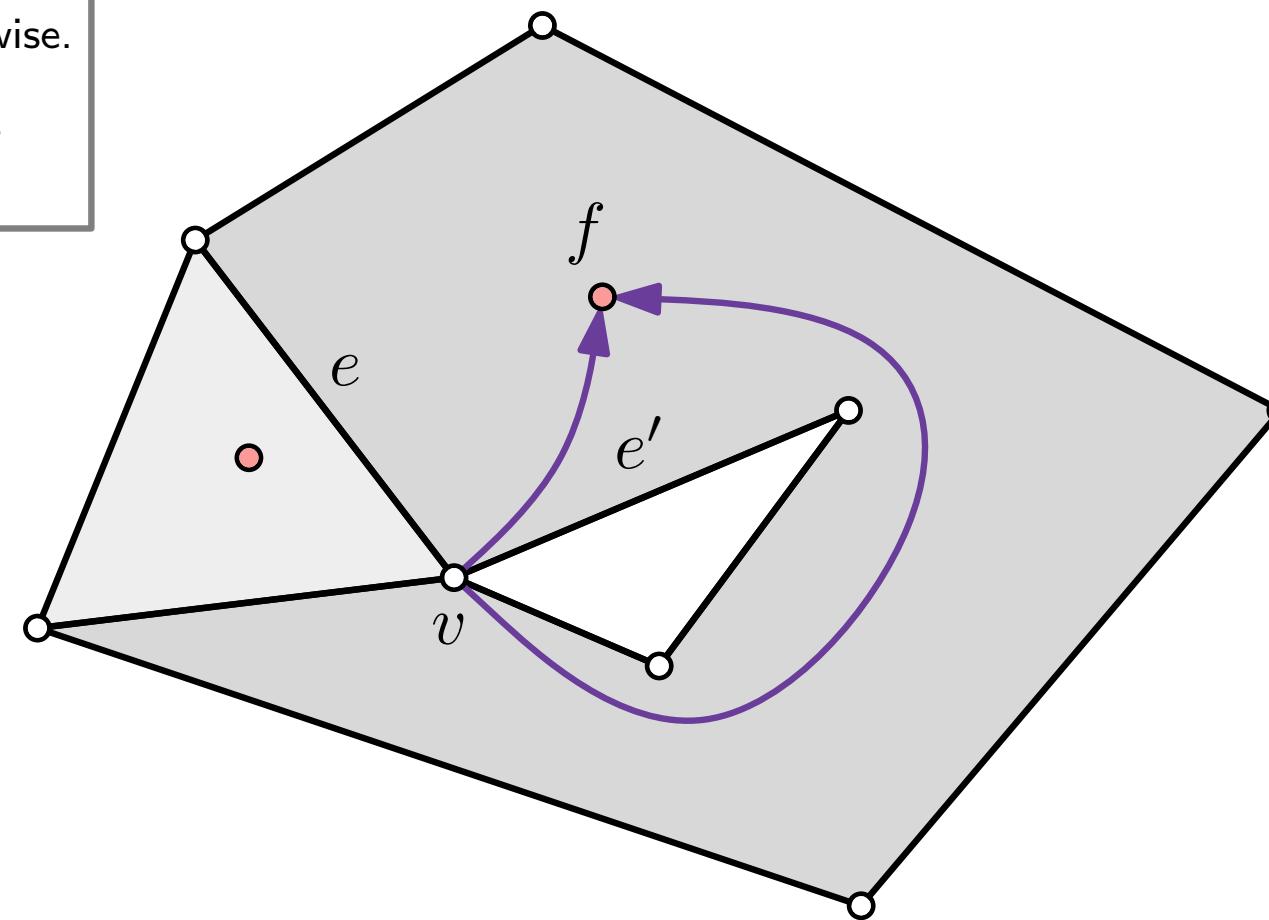
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



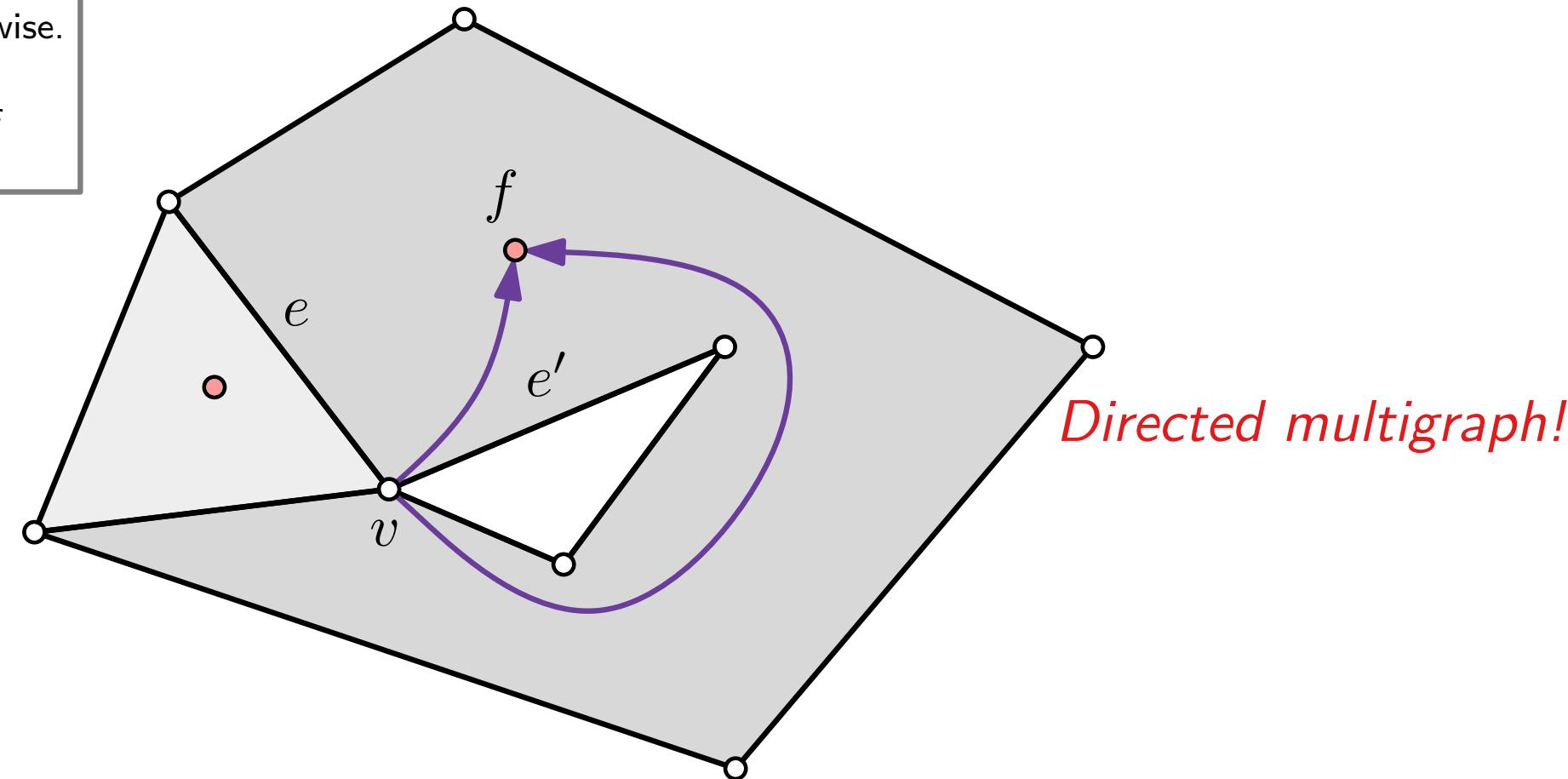
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



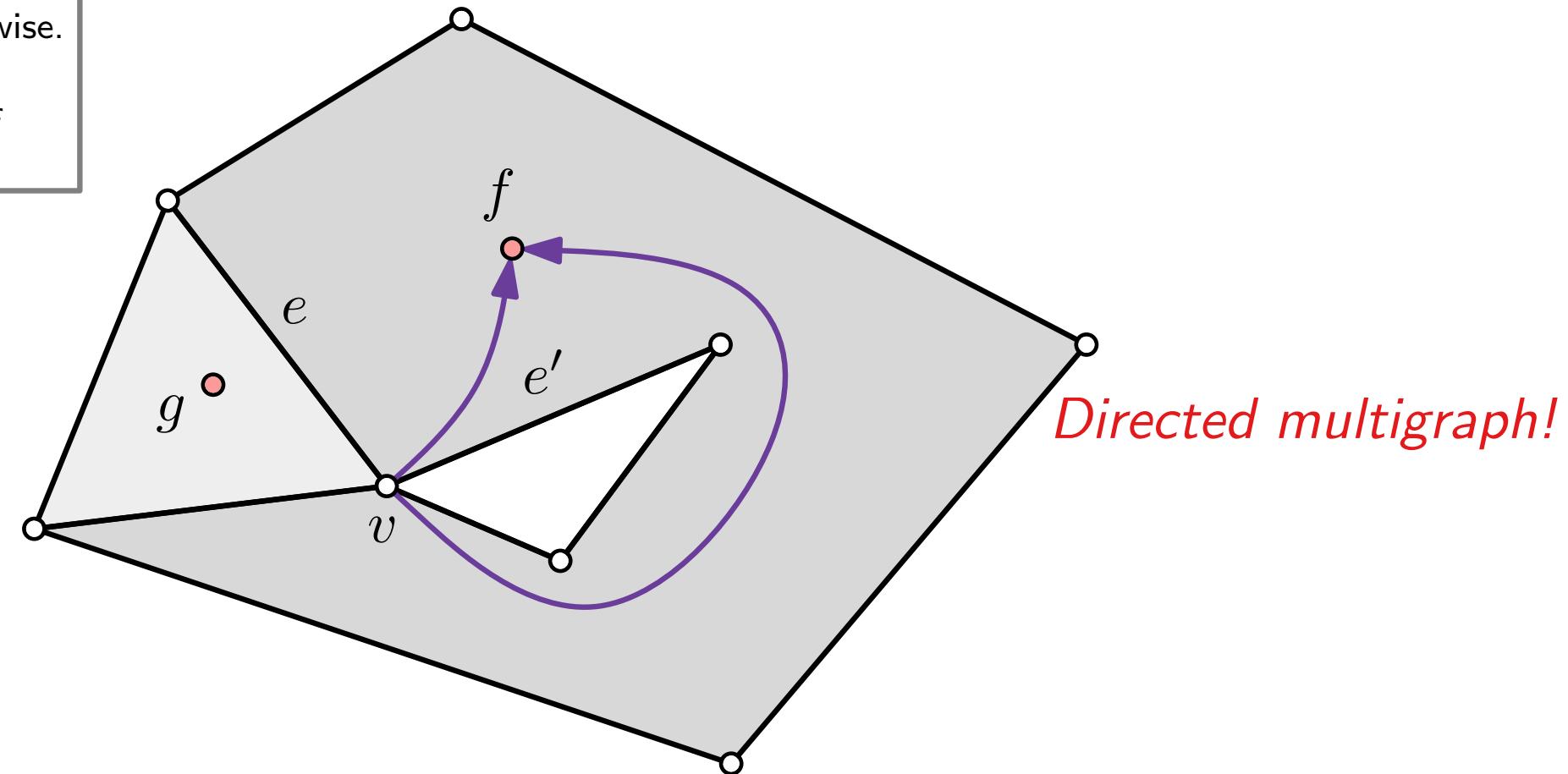
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); \mathbf{b}; \mathbf{l}; \mathbf{u}; \mathbf{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



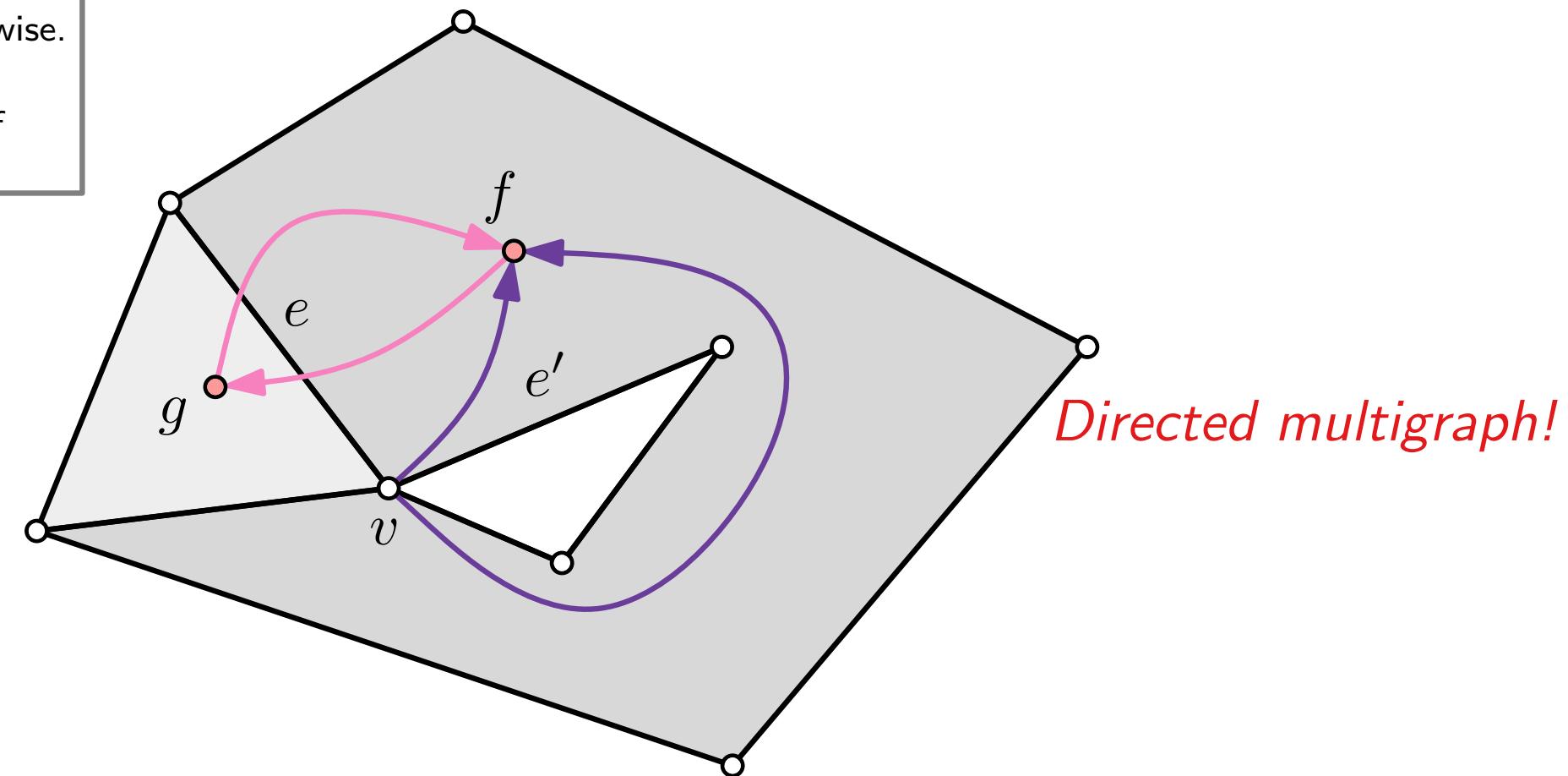
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



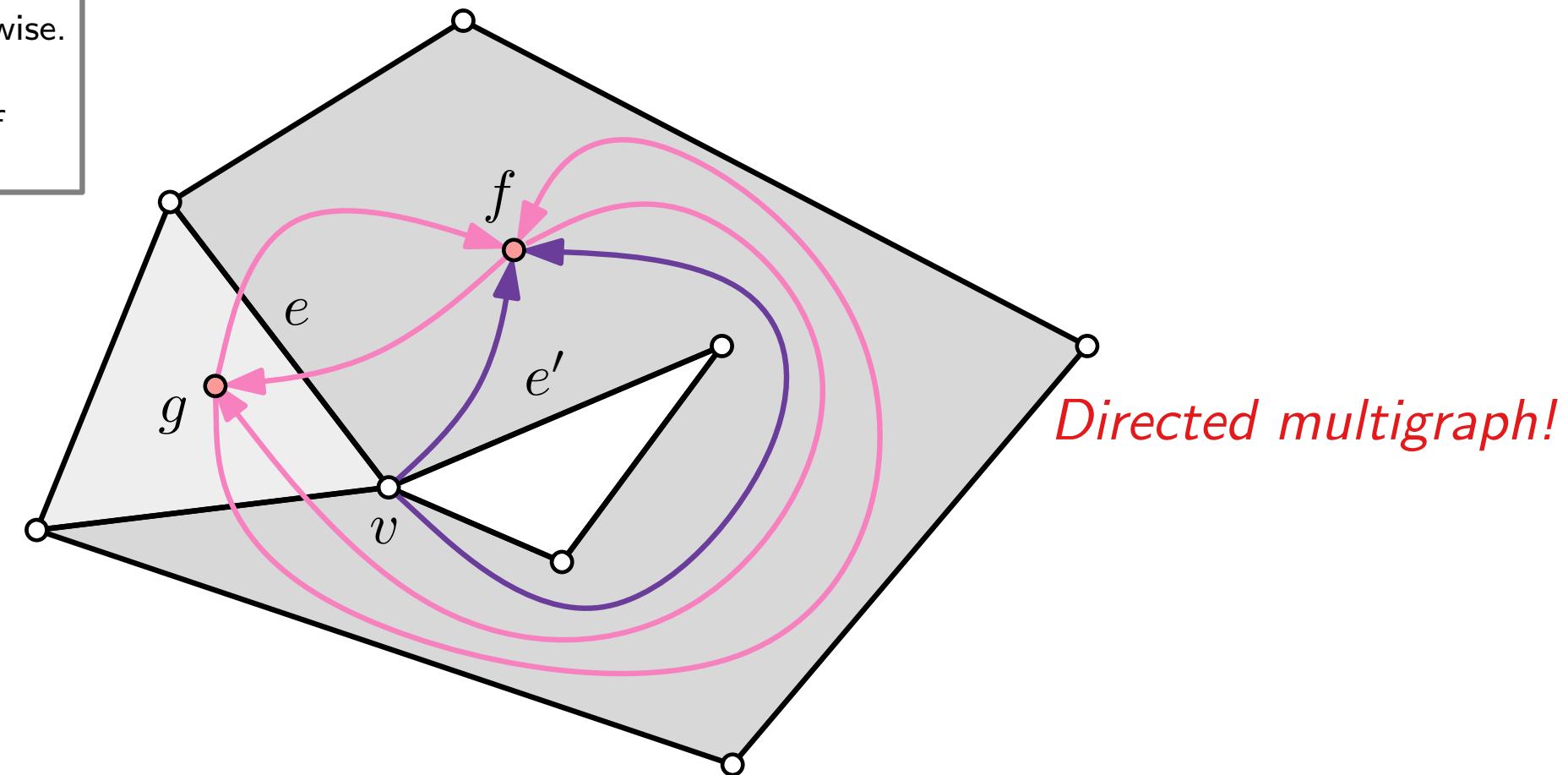
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(\textcolor{red}{r}) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); \textcolor{green}{b}; \textcolor{brown}{l}; \textcolor{brown}{u}; \textcolor{red}{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

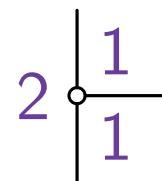
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$



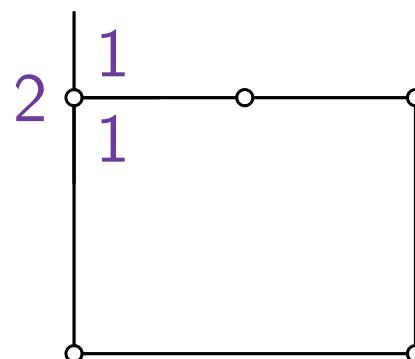
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) =$



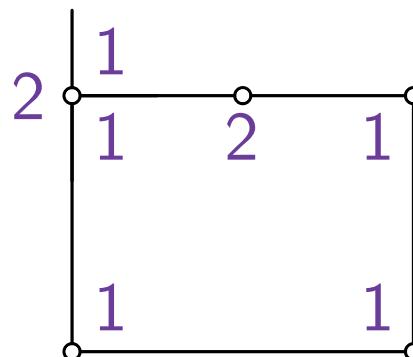
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) =$



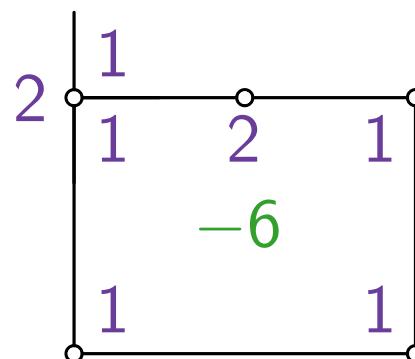
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) =$



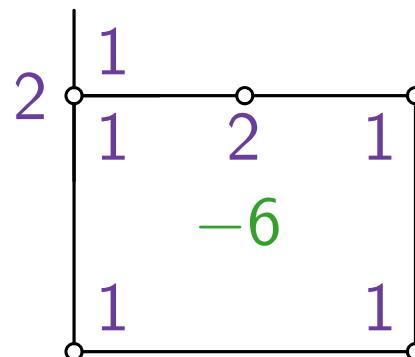
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$



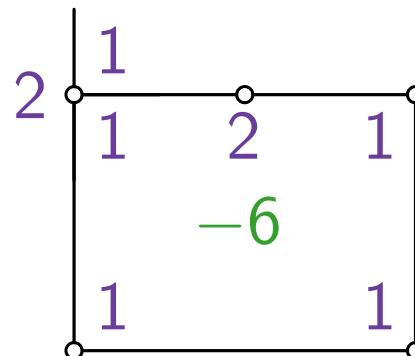
Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$$\Rightarrow \sum_w b(w) \stackrel{?}{=} 0$$


Flow Network for Bend Minimization

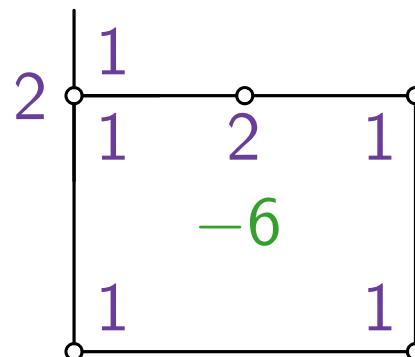
- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)



Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

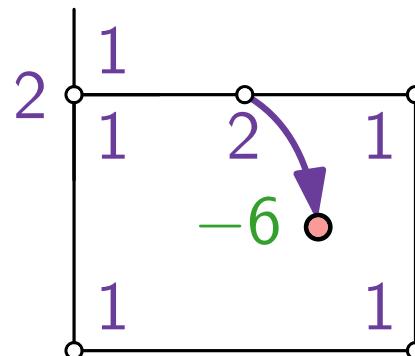
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

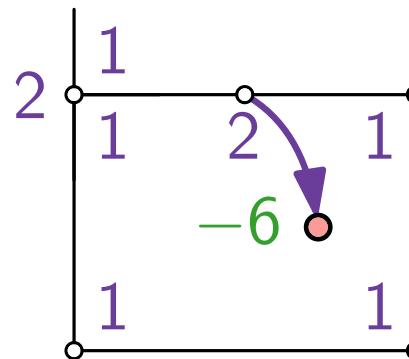
$\forall (v, f) \in E, v \in V, f \in F$



Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

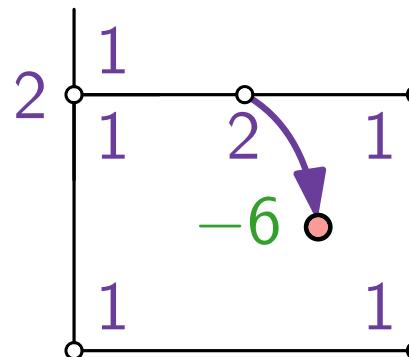
$$\forall (v, f) \in E, v \in V, f \in F \quad \ell(v, f) := \quad \leq X(v, f) \leq \quad =: u(v, f)$$

$$\text{cost}(v, f) =$$

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

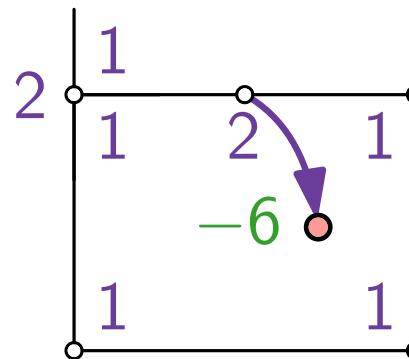
$$\forall (v, f) \in E, v \in V, f \in F \quad \ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\text{cost}(v, f) =$$

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

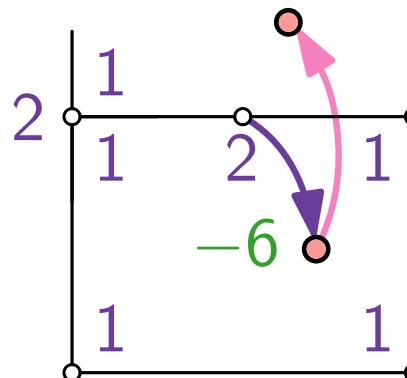
$$\forall (v, f) \in E, v \in V, f \in F \quad \ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\text{cost}(v, f) = 0$$

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \quad \Rightarrow \sum_w b(w) = 0 \quad (\text{Euler})$

$$\forall (v, f) \in E, v \in V, f \in F$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\forall (f, g) \in E, f, g \in F$$

$$\text{cost}(v, f) = 0$$

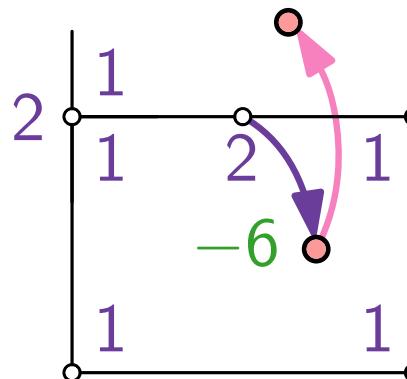
$$\ell(f, g) := \quad \leq X(f, g) \leq \quad =: u(f, g)$$

$$\text{cost}(f, g) =$$

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \quad \Rightarrow \sum_w b(w) = 0 \quad (\text{Euler})$

$$\forall (v, f) \in E, v \in V, f \in F$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\forall (f, g) \in E, f, g \in F$$

$$\text{cost}(v, f) = 0$$

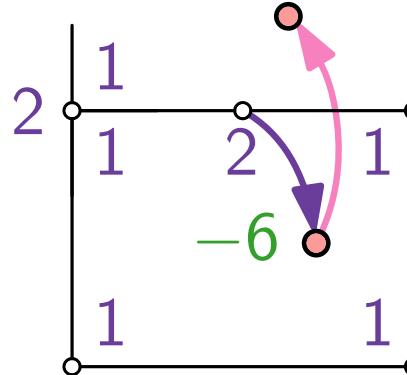
$$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$$

$$\text{cost}(f, g) = 1$$

Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

$\forall (v, f) \in E, v \in V, f \in F$

$\forall (f, g) \in E, f, g \in F$

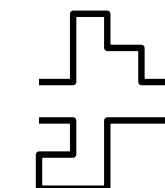
$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$

$\text{cost}(v, f) = 0$

$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$

$\text{cost}(f, g) = 1$

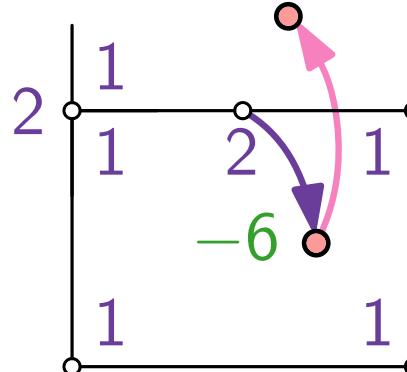
We model only the *number* of bends.
Why is it enough?



Flow Network for Bend Minimization

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each vertex v the sum of incident angles is 2π .



Define flow network $N(G) = ((V \cup F, E); b; \ell; u; \text{cost})$:

- $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$\Rightarrow \sum_w b(w) = 0$ (Euler)

$$\forall (v, f) \in E, v \in V, f \in F$$

$$\forall (f, g) \in E, f, g \in F$$

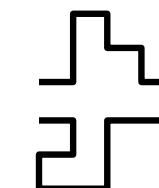
$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\text{cost}(v, f) = 0$$

$$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$$

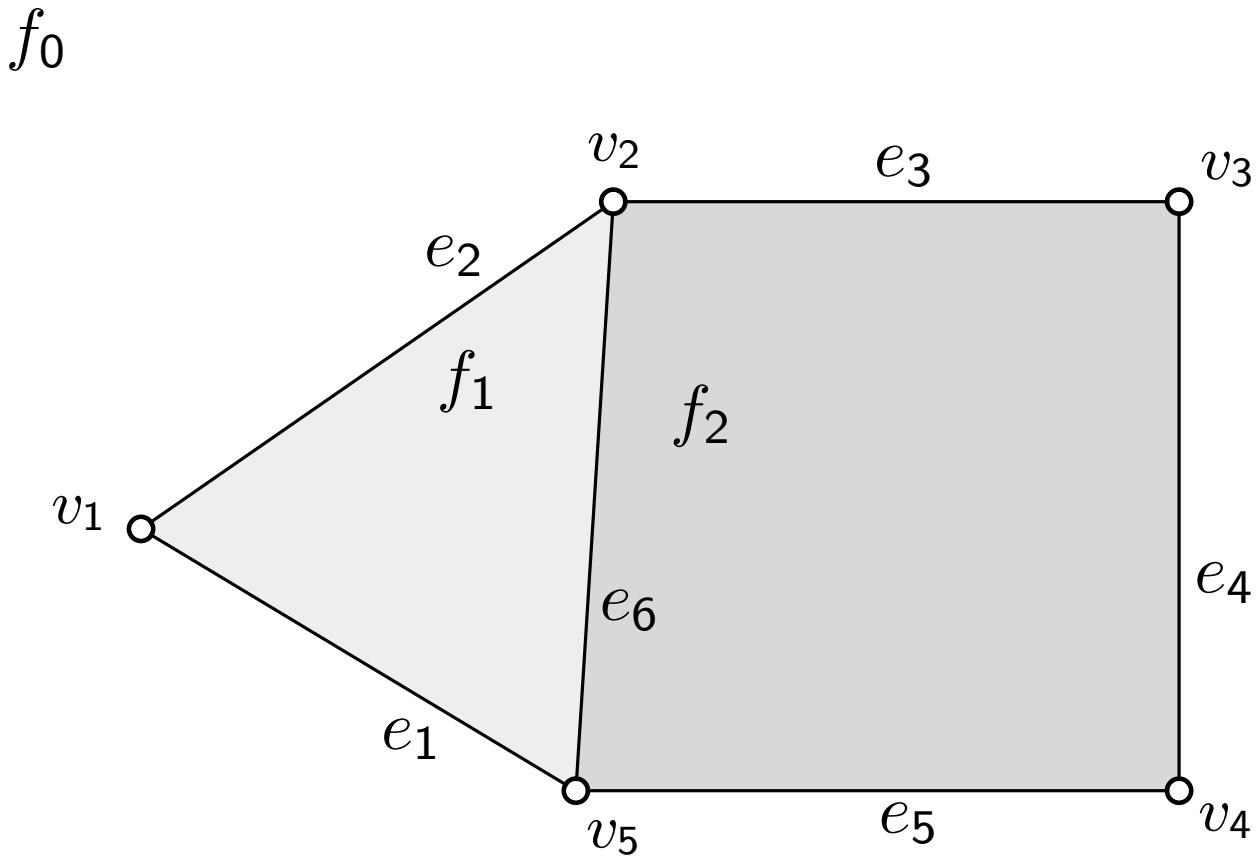
$$\text{cost}(f, g) = 1$$

We model only the *number* of bends.
Why is it enough?

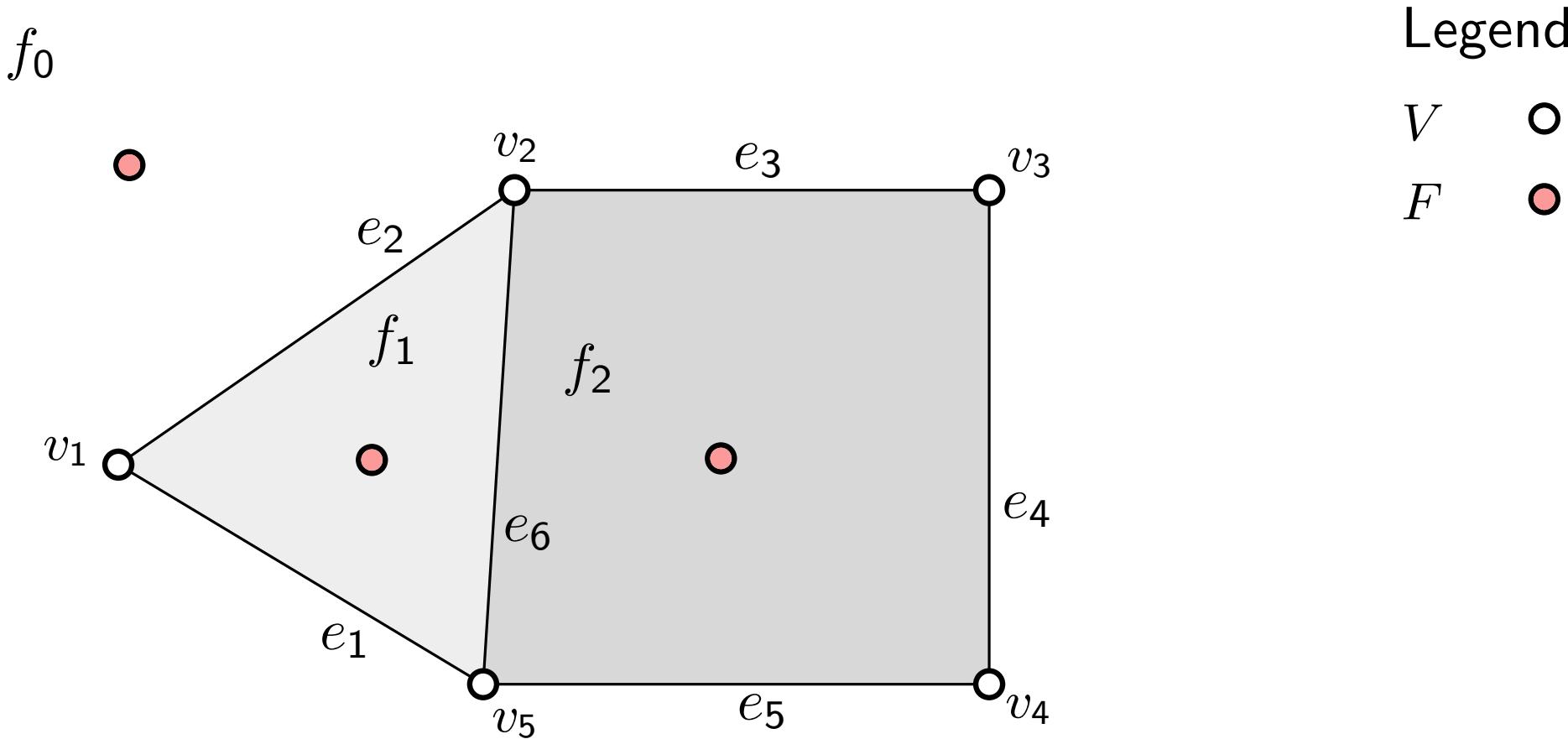


→ *Exercise!*

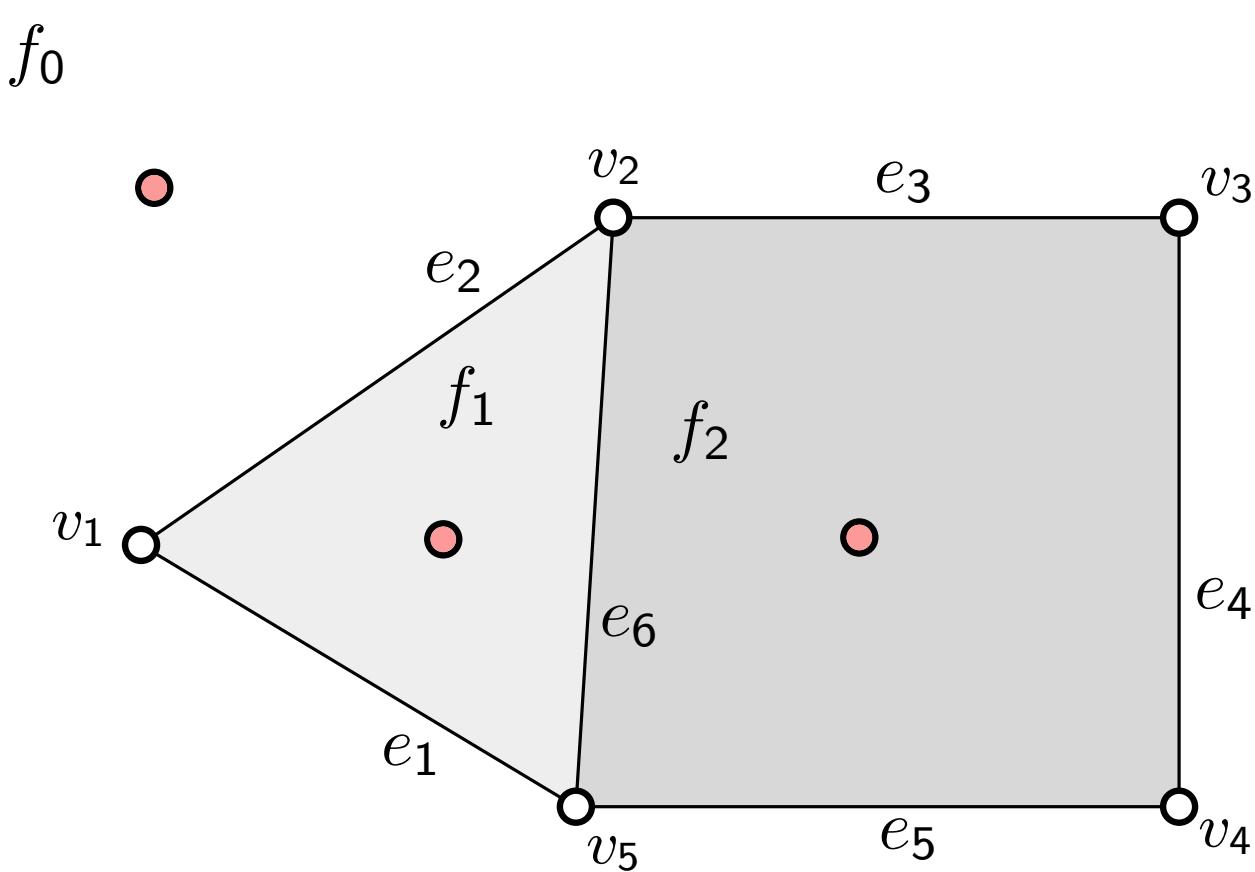
Flow Network Example



Flow Network Example



Flow Network Example



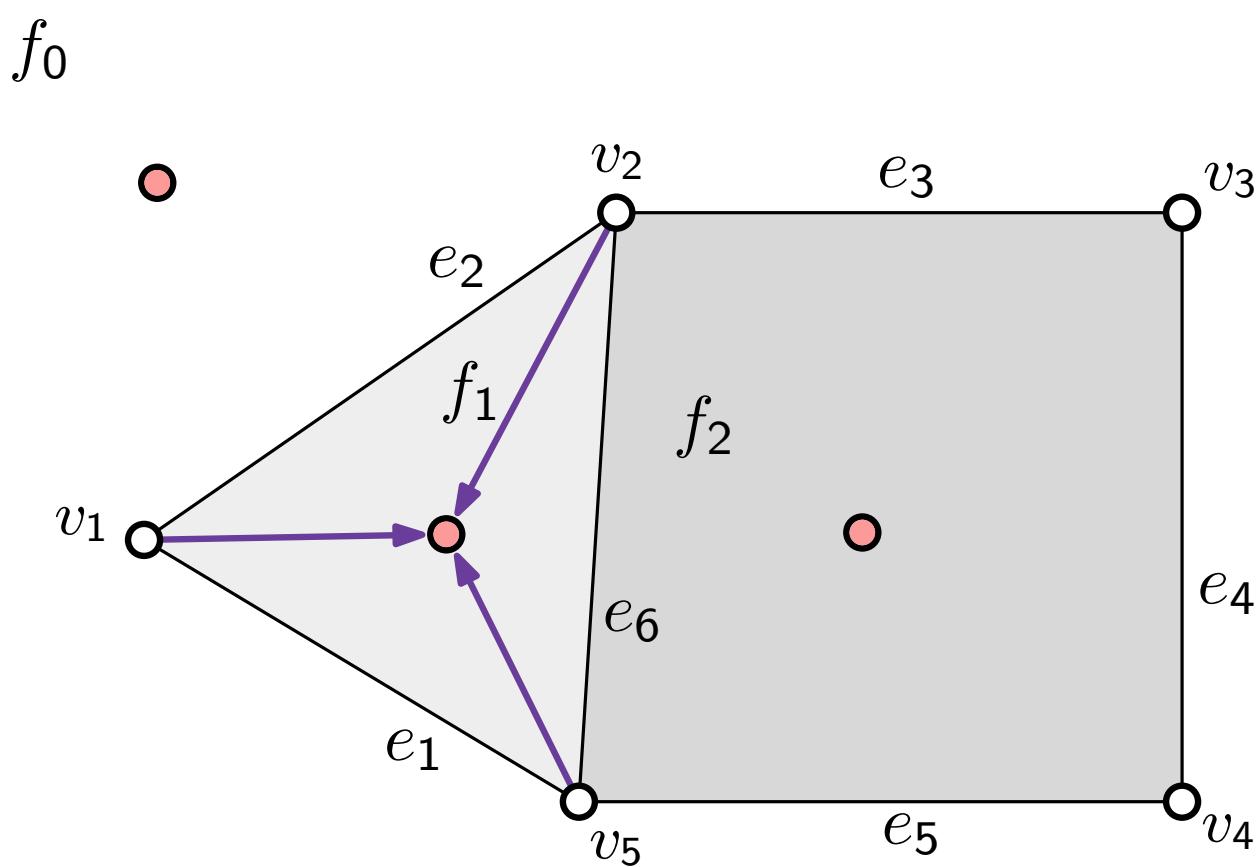
Legend

V

F

$V \times F \supseteq$ $\ell/u/\text{cost}$
 $1/4/0$

Flow Network Example

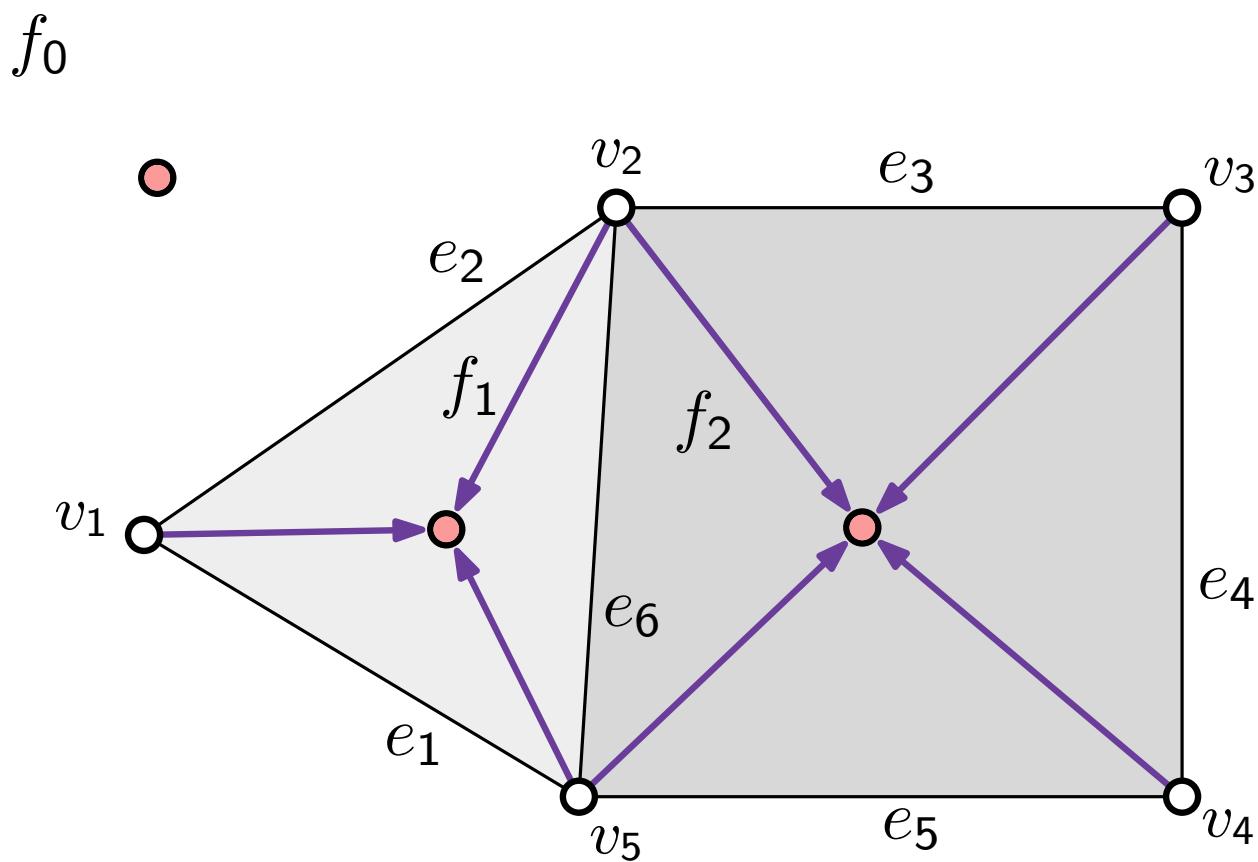


Legend

V	○
F	●
$V \times F \supseteq$	$\xrightarrow{1/4/0}$

$\ell/u/\text{cost}$

Flow Network Example



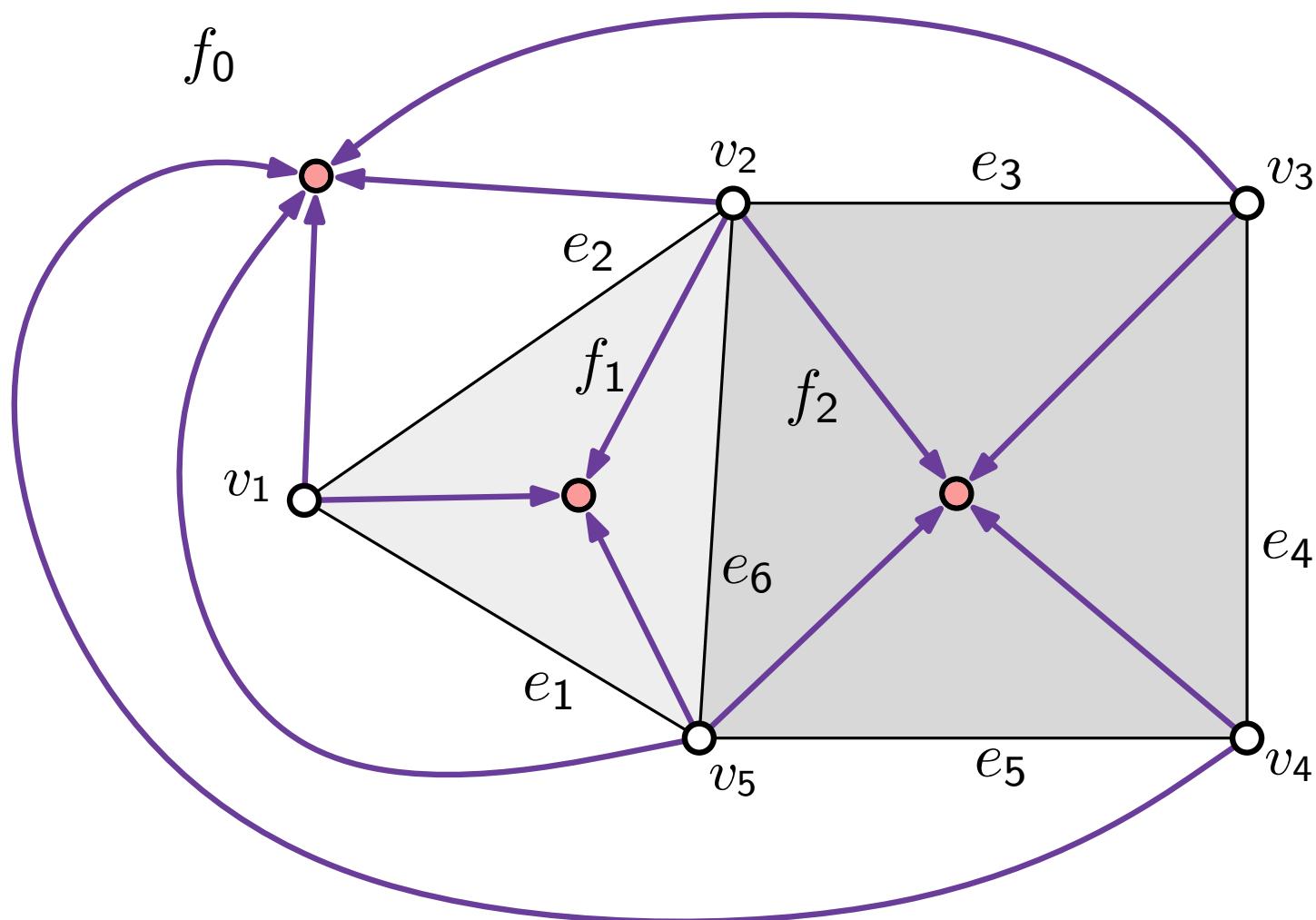
Legend

V

F

$V \times F \supseteq$ $\ell/u/\text{cost}$
 $1/4/0$

Flow Network Example



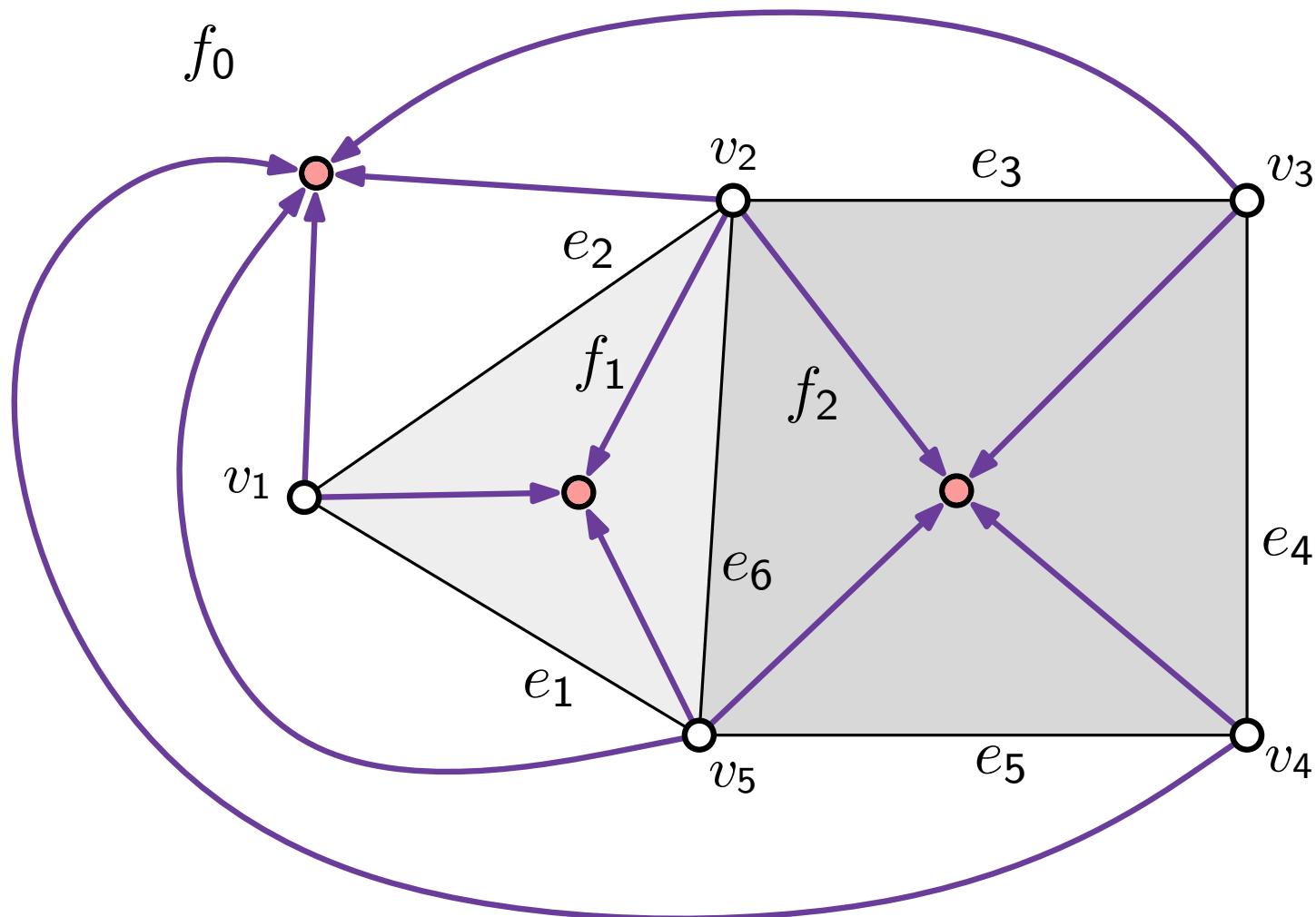
Legend

V

F

$\ell/u/\text{cost}$
 $1/4/0$

Flow Network Example



Legend

V

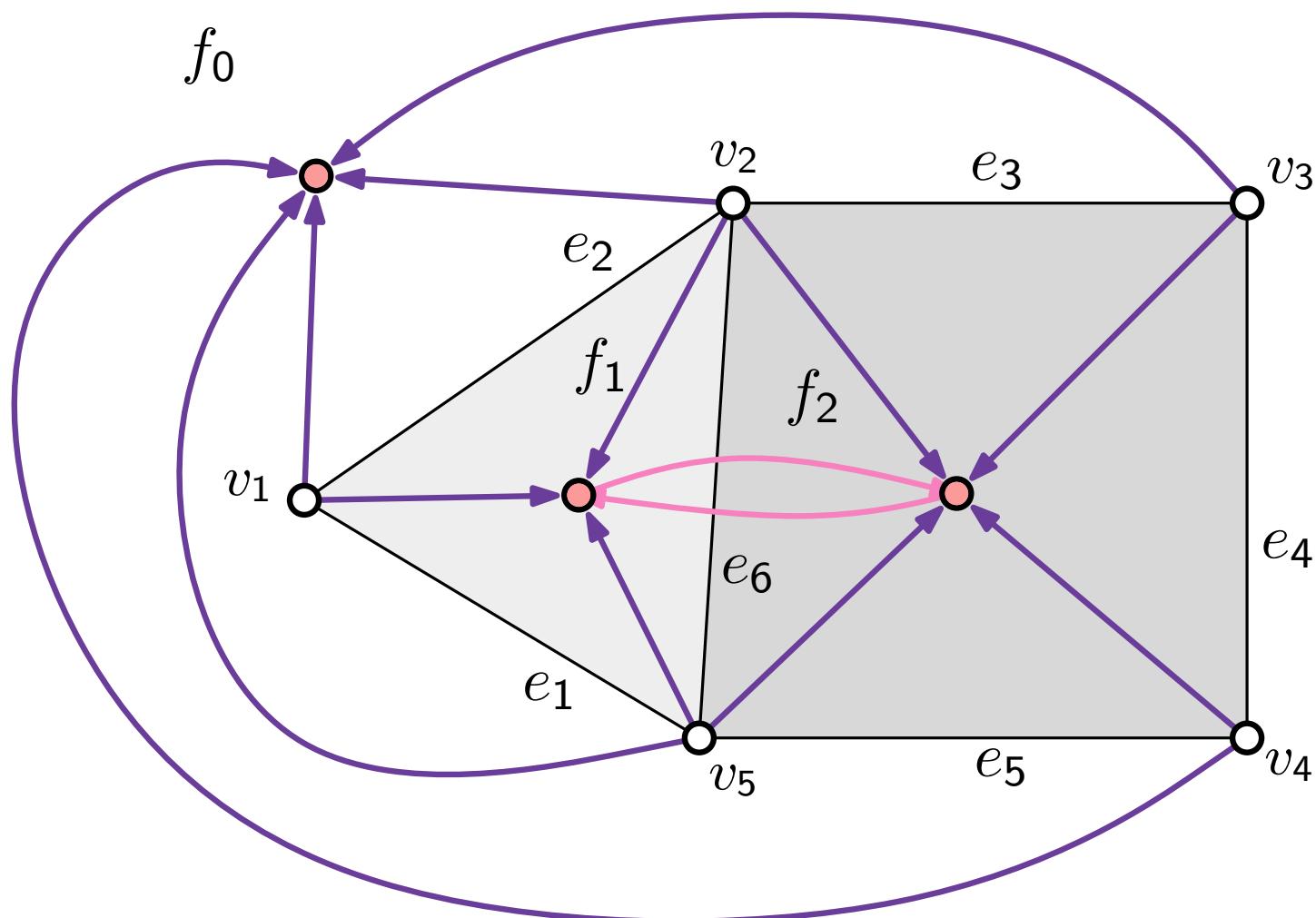
F

$\ell/u/\text{cost}$

$1/4/0$

$0/\infty/1$

Flow Network Example



Legend

V

F

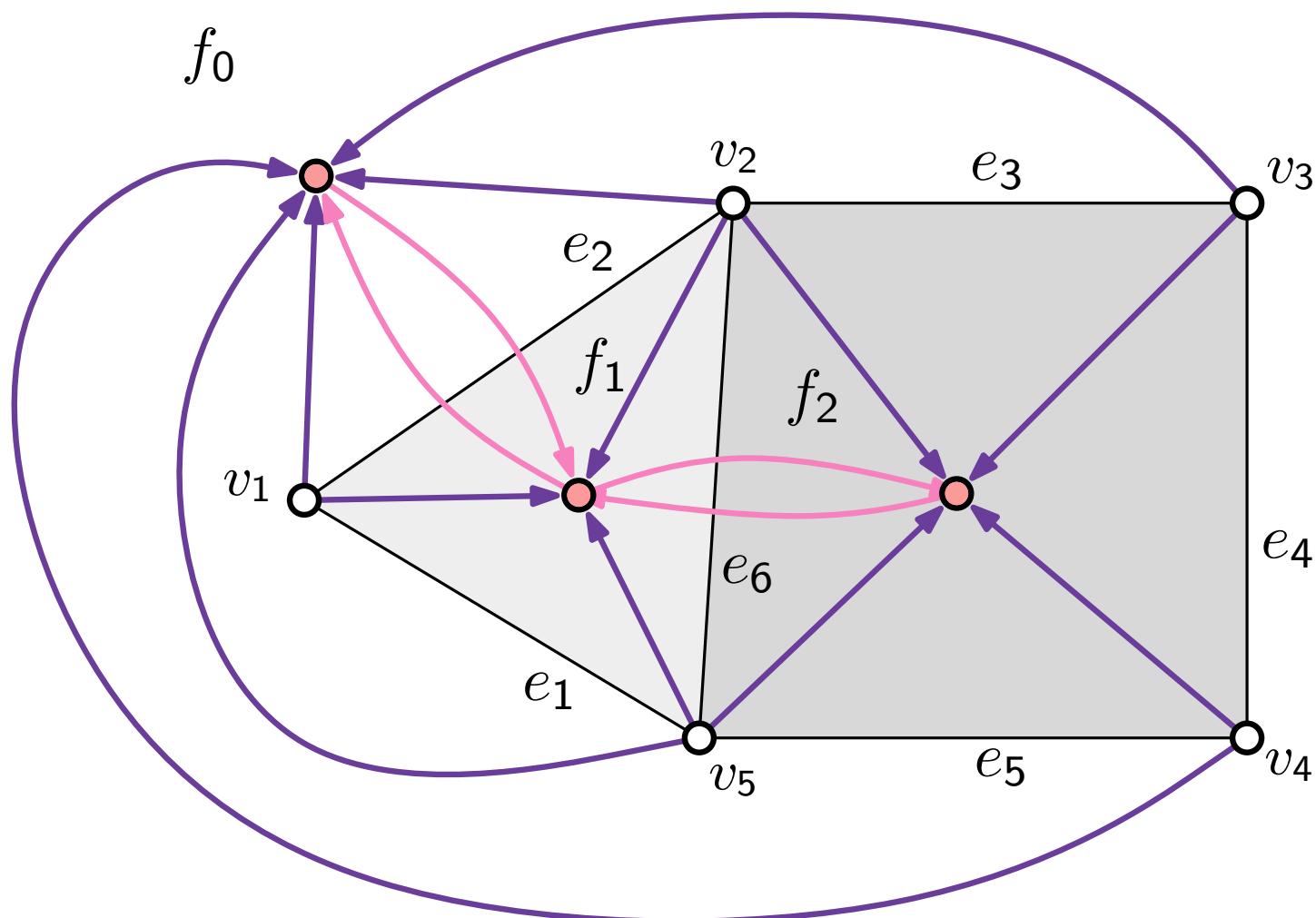
$\ell/u/\text{cost}$

$1/4/0$

$V \times F \supseteq$

$F \times F \supseteq$

Flow Network Example



Legend

V

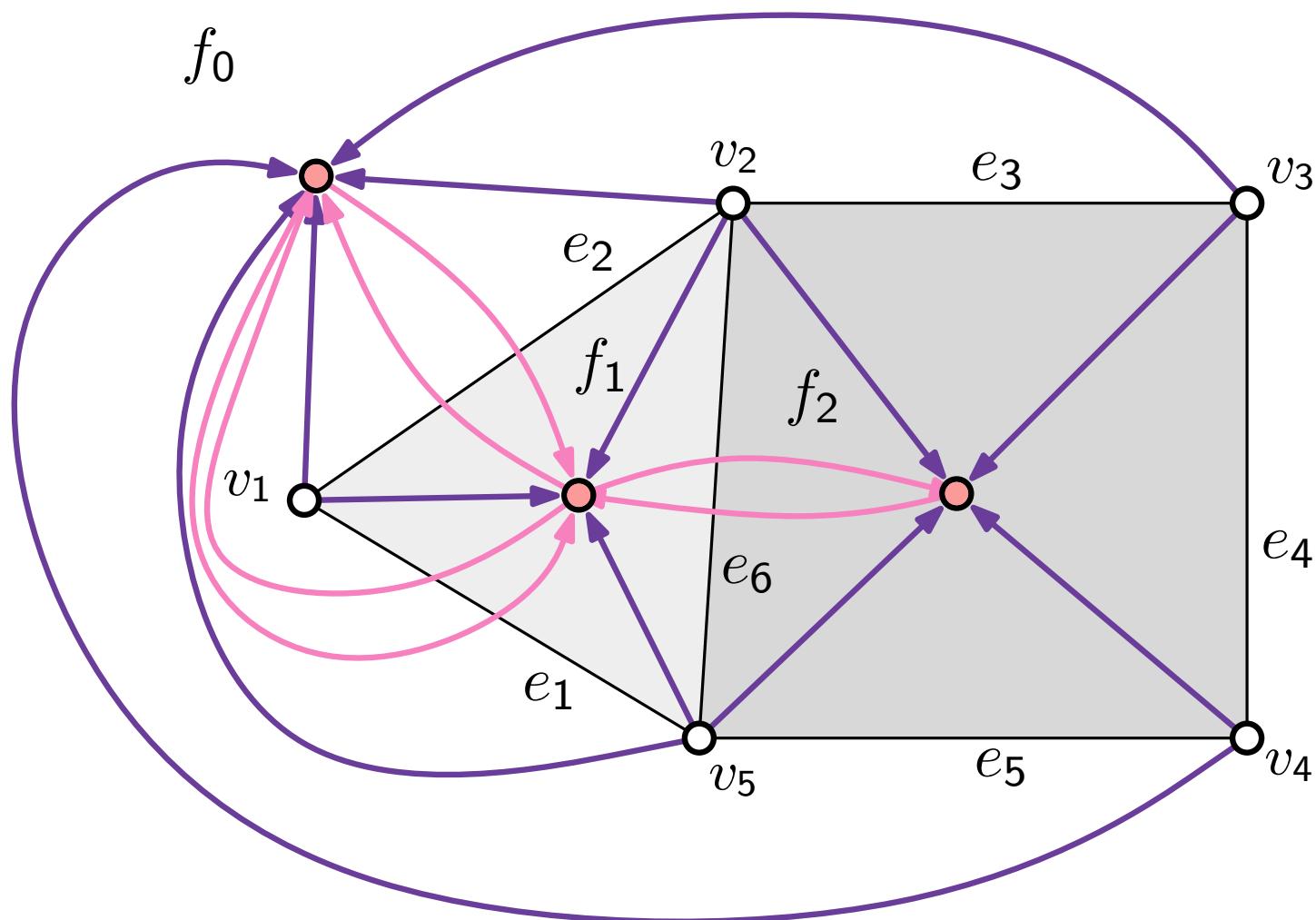
F

$\ell/u/cost$

$1/4/0$

$0/\infty/1$

Flow Network Example



Legend

V

F

$\ell/u/cost$

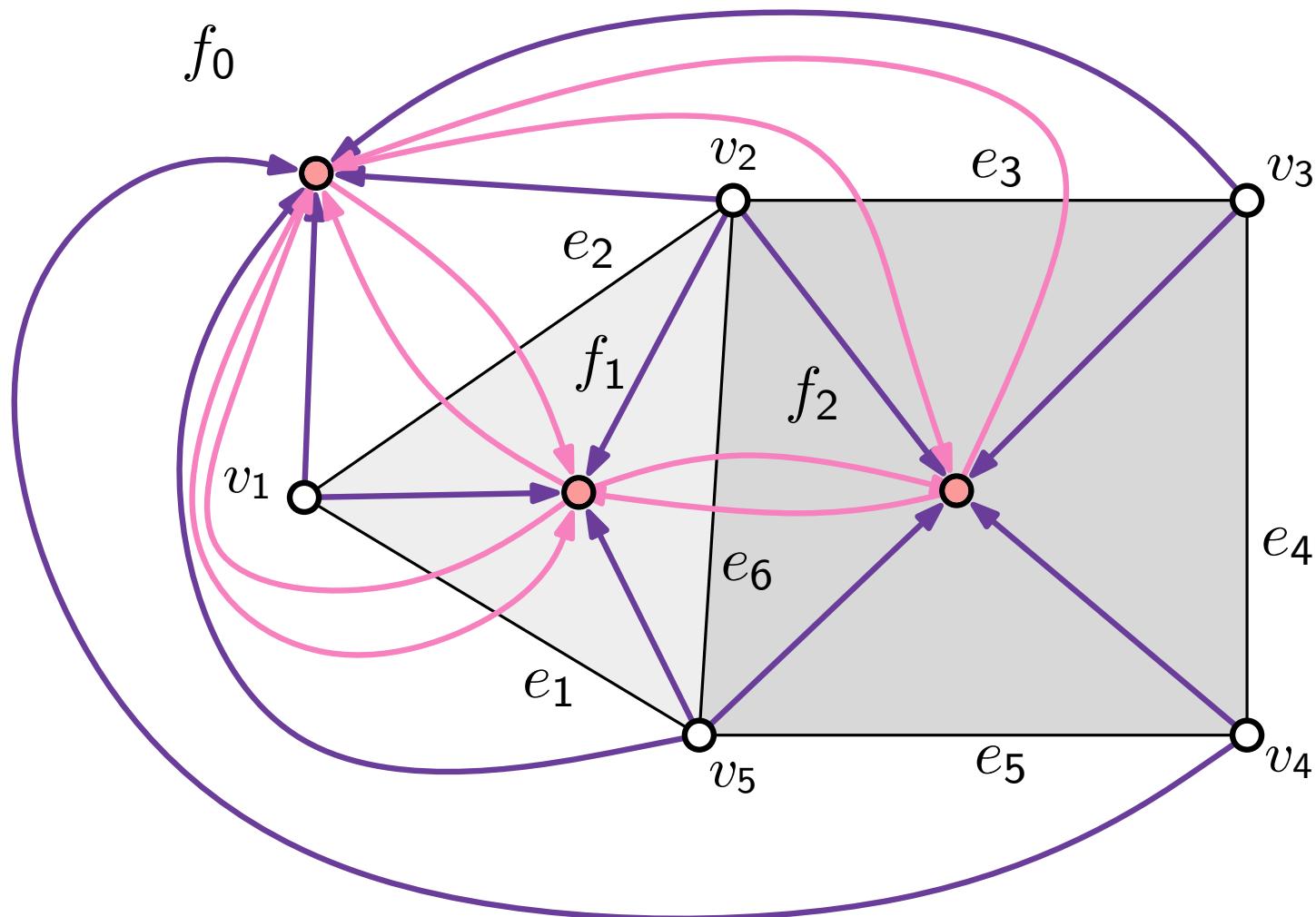
$1/4/0$

$V \times F \supseteq$

$0/\infty/1$

$F \times F \supseteq$

Flow Network Example



Legend

V C

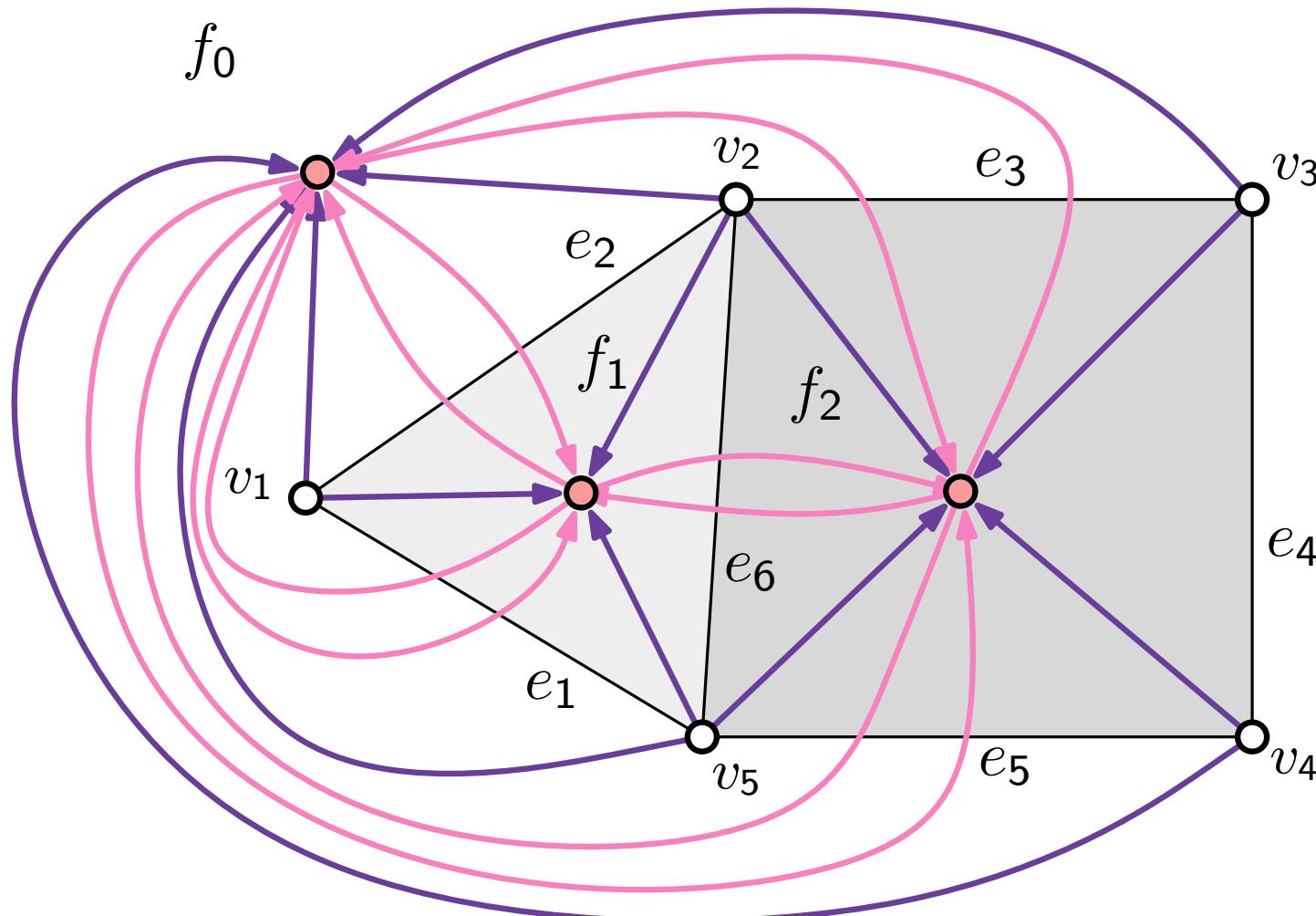
F

$\ell/u/\text{cost}$

1/4/0

0/ ∞ /1

Flow Network Example



Legend

V

F

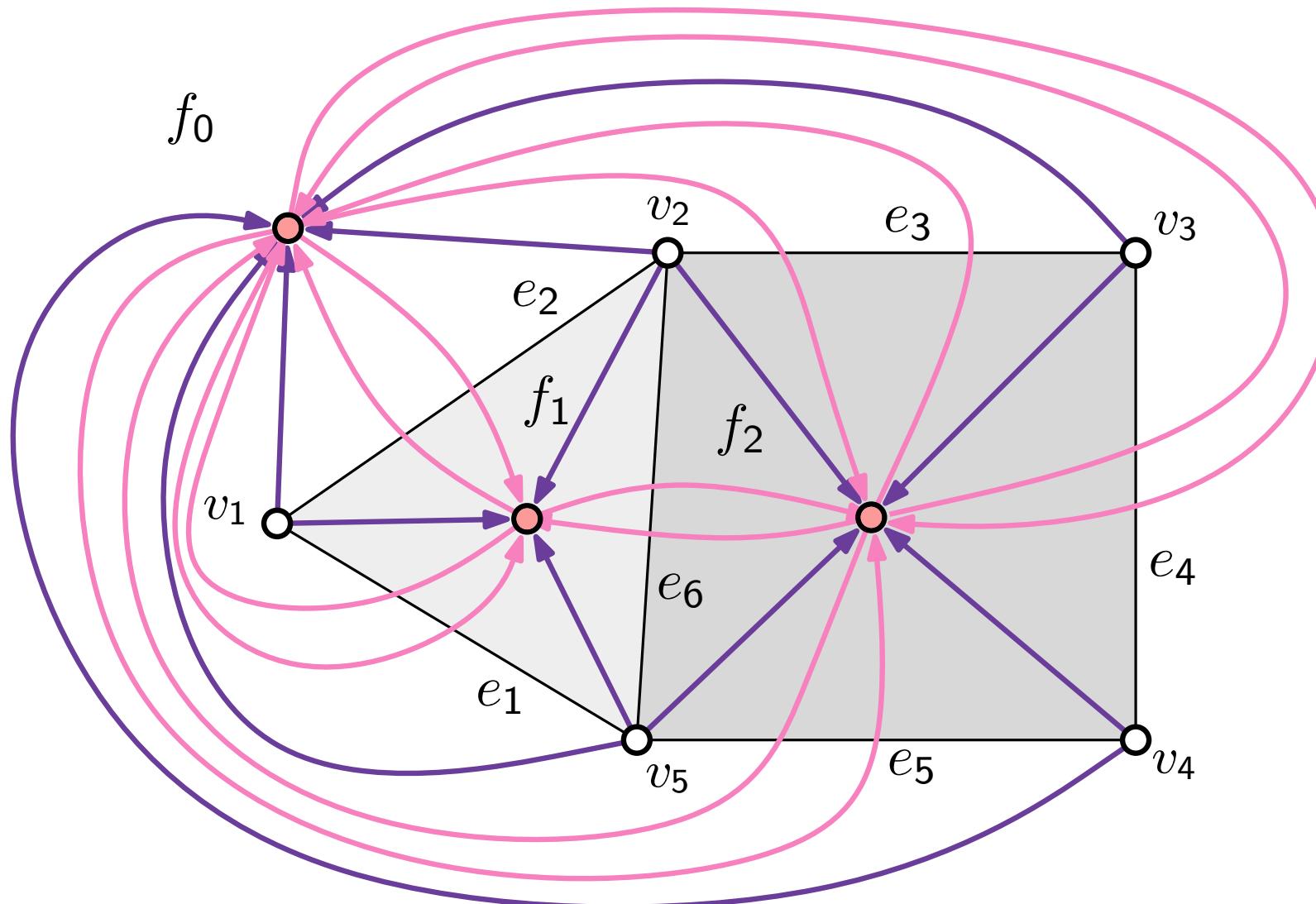
$\ell/u/\text{cost}$

$1/4/0$

$V \times F \supseteq$

$0/\infty/1$

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

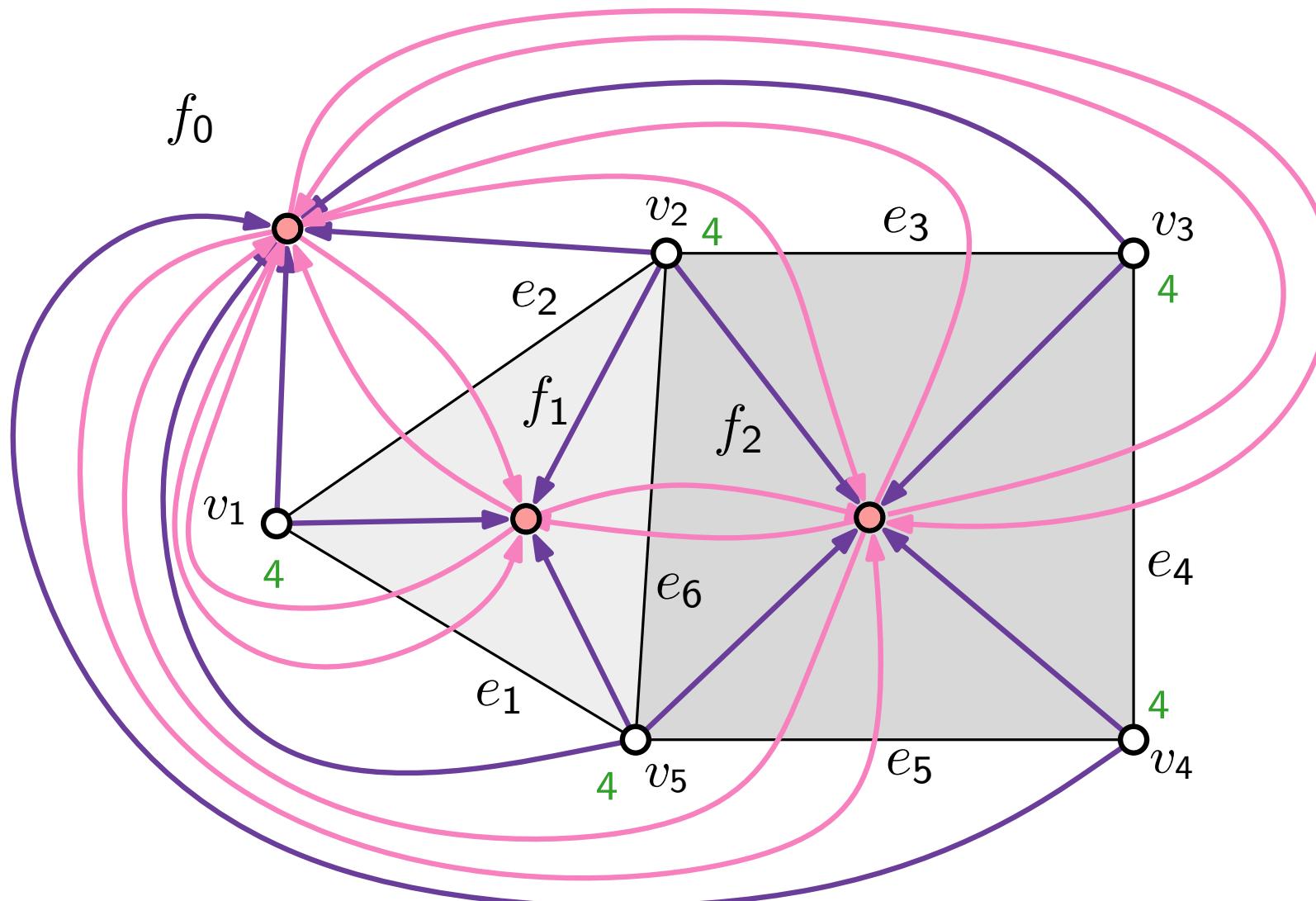
$1/4/0$

$V \times F \supseteq$

$0/\infty/1$

$F \times F \supseteq$

Flow Network Example



Legend

V

F

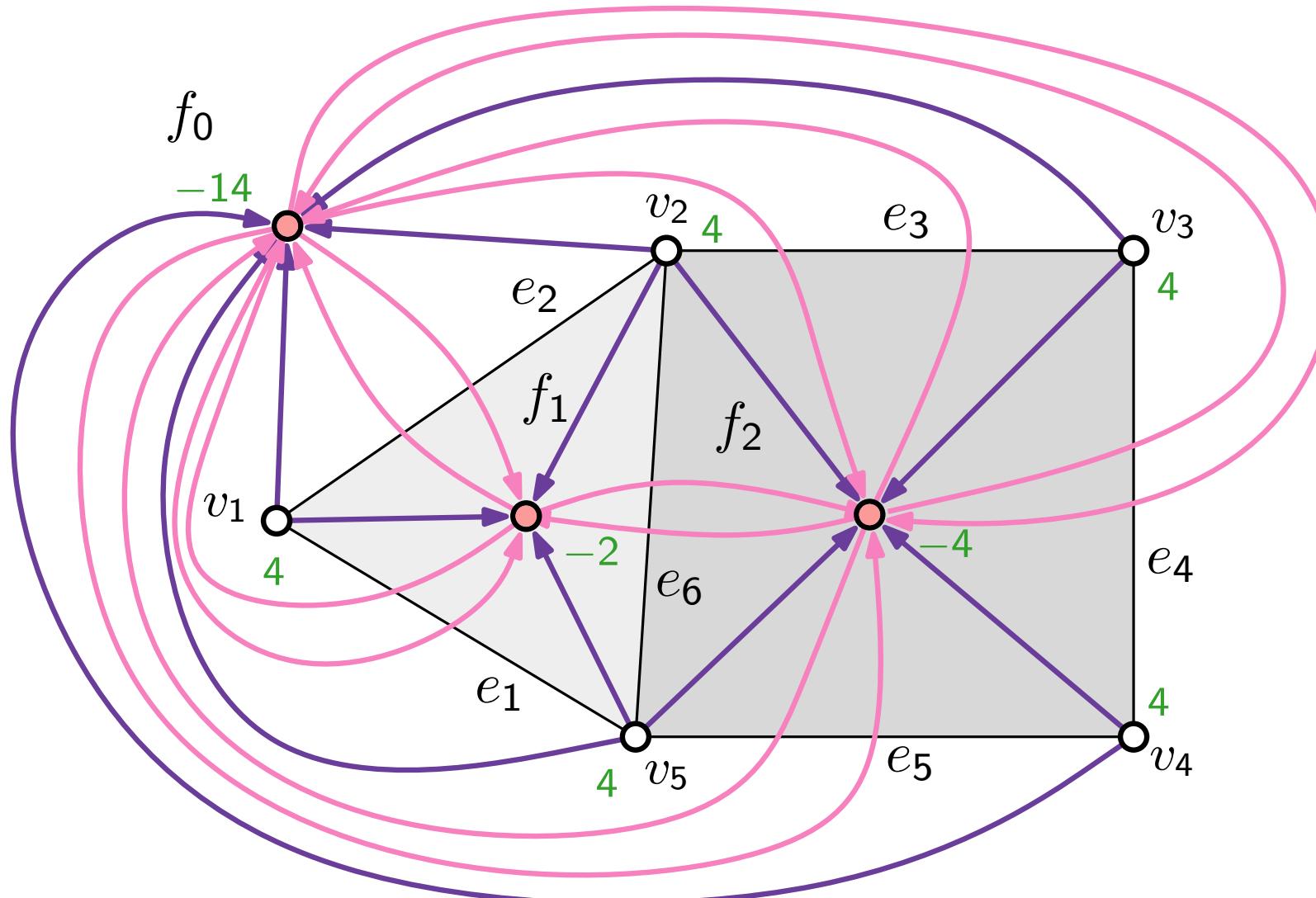
$\ell/u/\text{cost}$

1/4/0

0/ ∞ /1

4 = b -value

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

$1/4/0$

$0/\infty/1$

$4 = b$ -value

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

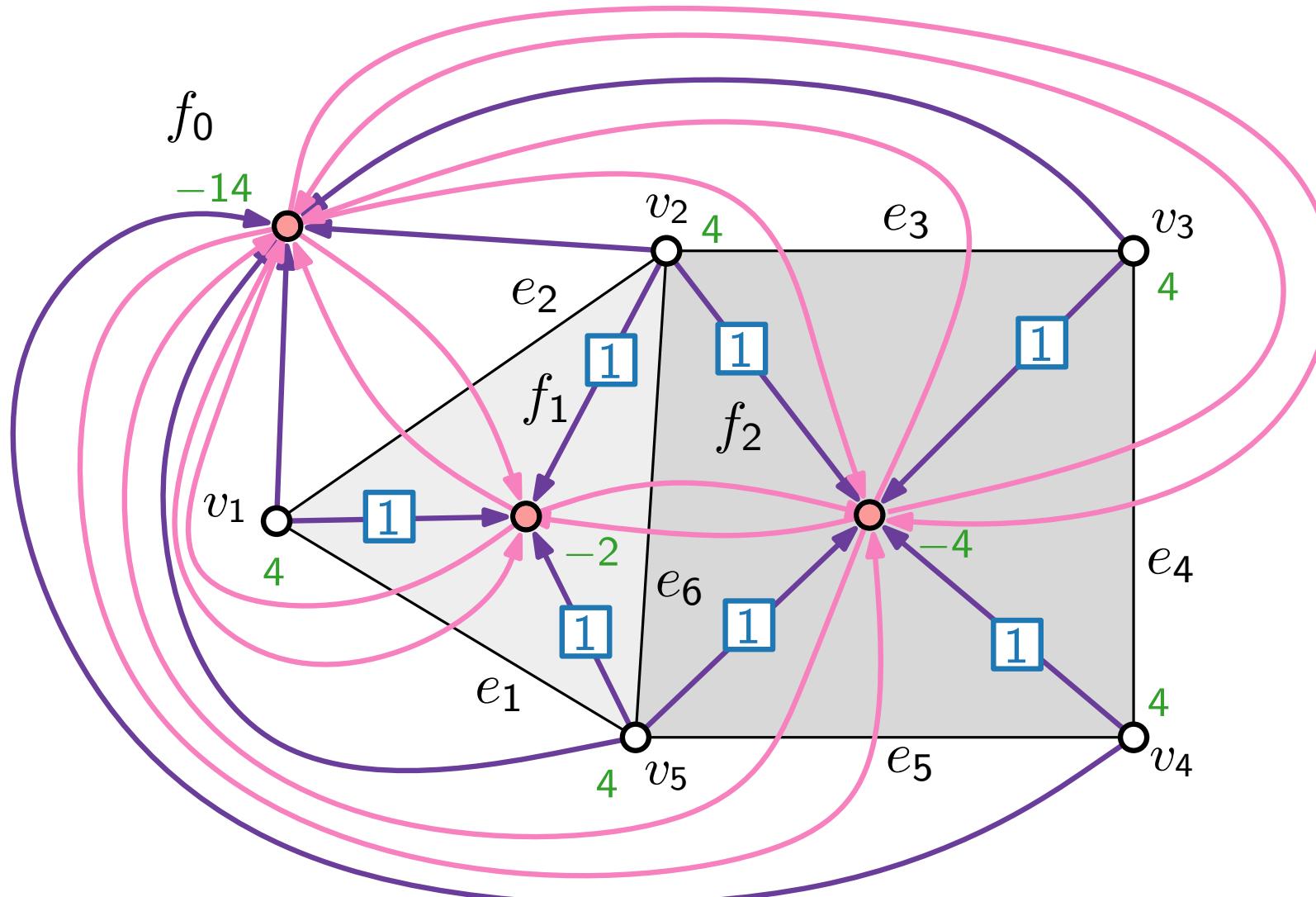
1/4/0

0/ ∞ /1

4 = b -value

3 flow

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

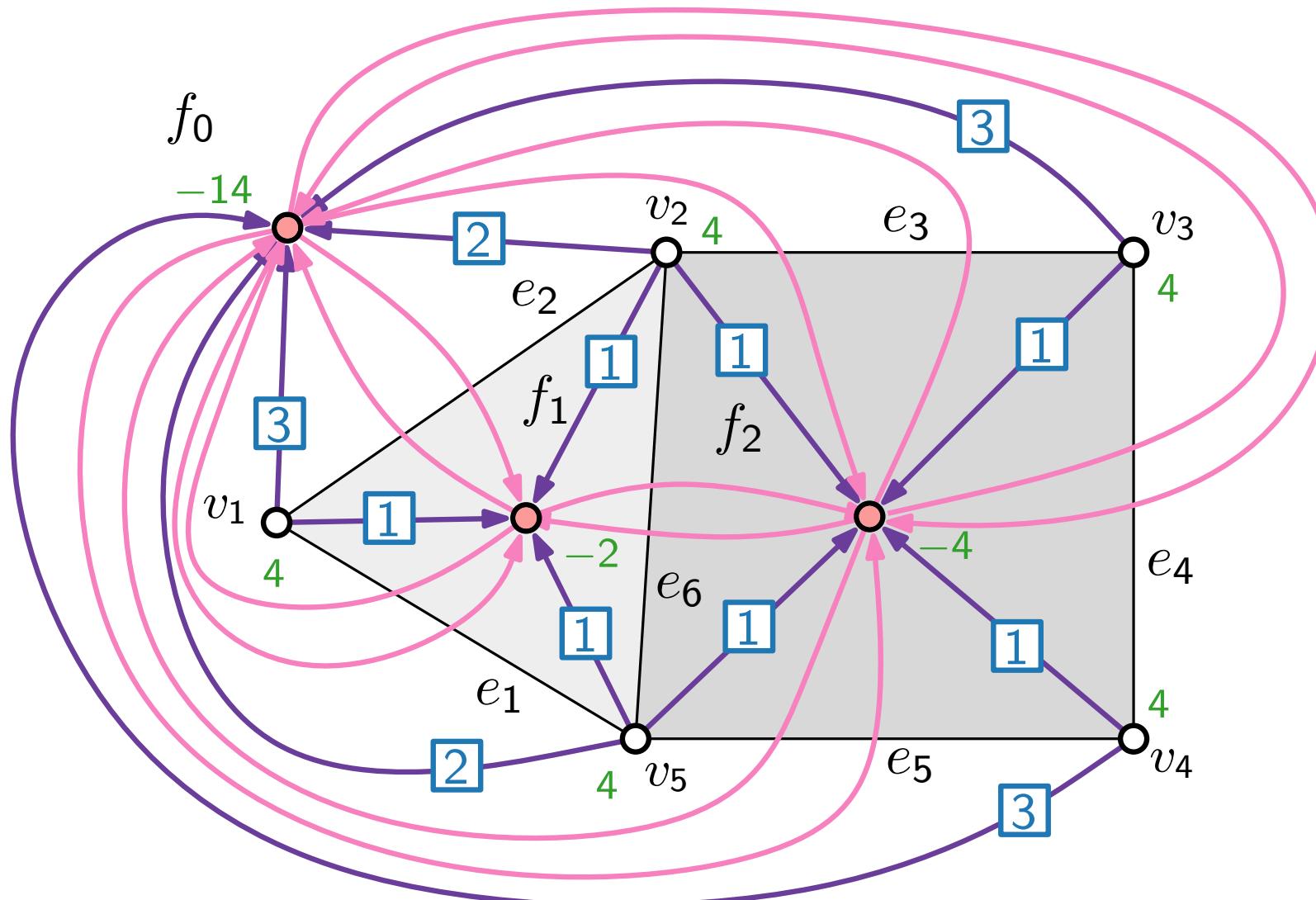
1/4/0

0/ ∞ /1

4 = b -value

3 flow

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

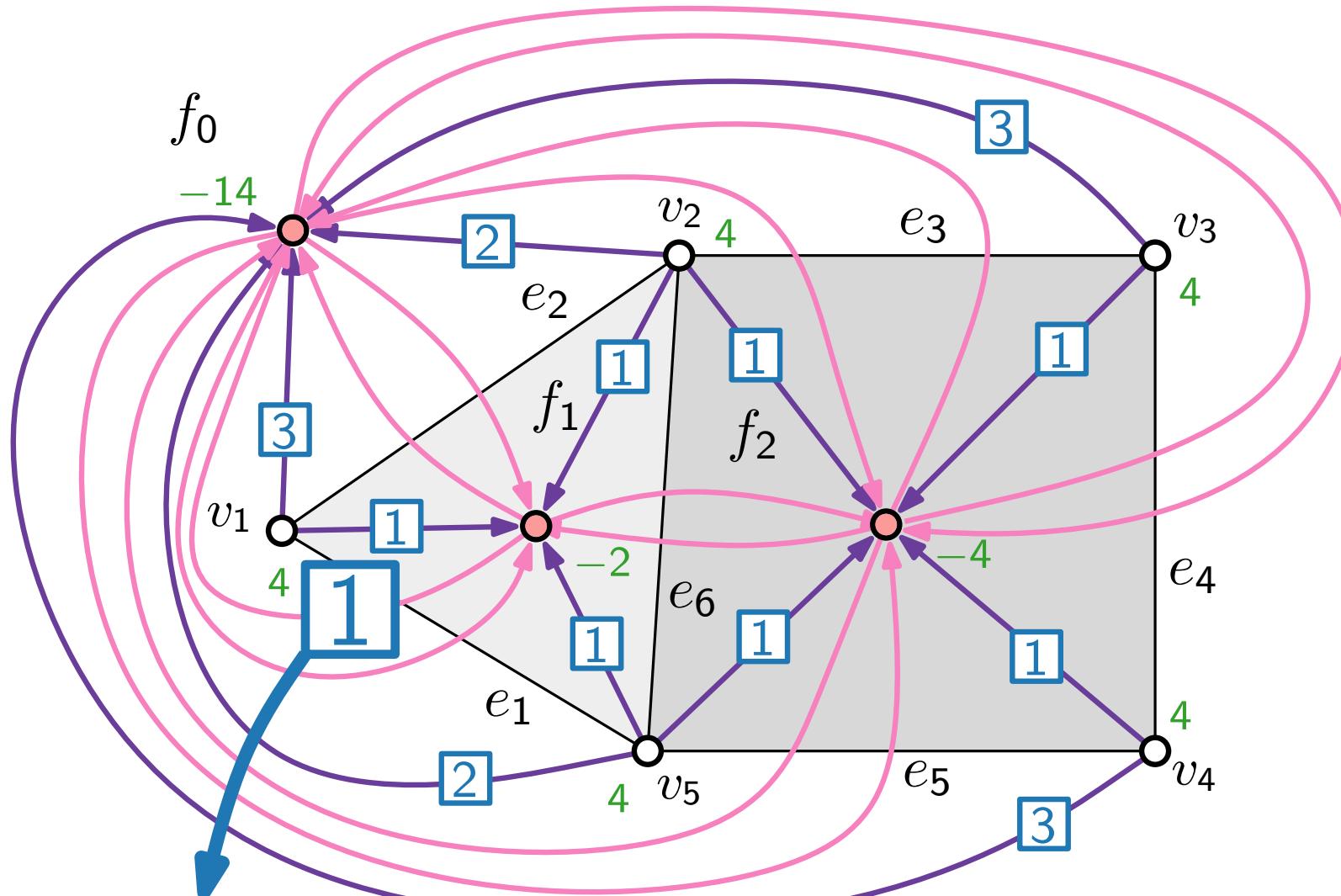
1/4/0

0/ ∞ /1

4 = b -value

flow

Flow Network Example



cost = 1
one bend
(outward)

Legend

V

F

$\ell/u/\text{cost}$

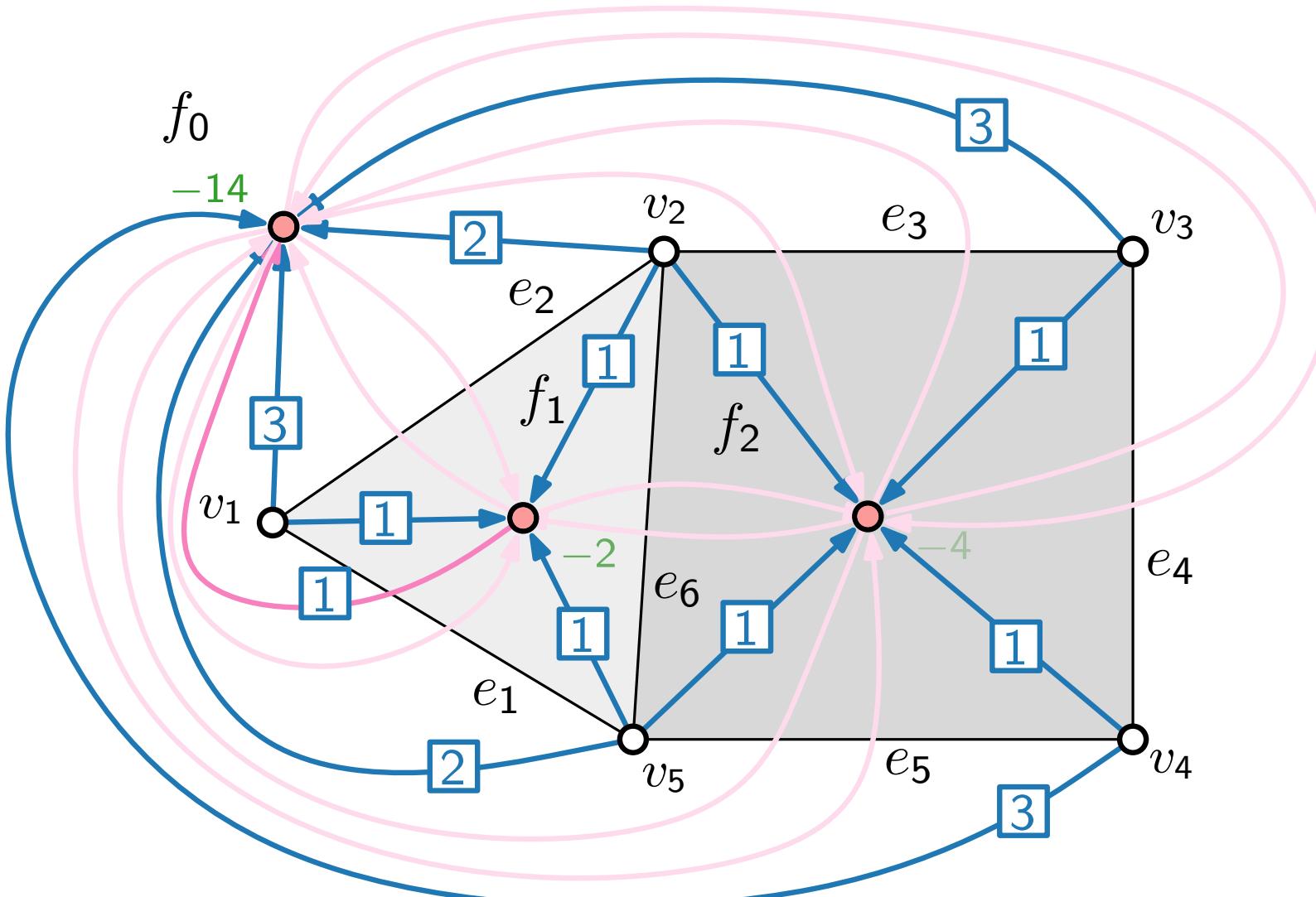
1/4/0

0/ ∞ /1

4 = b -value

flow

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

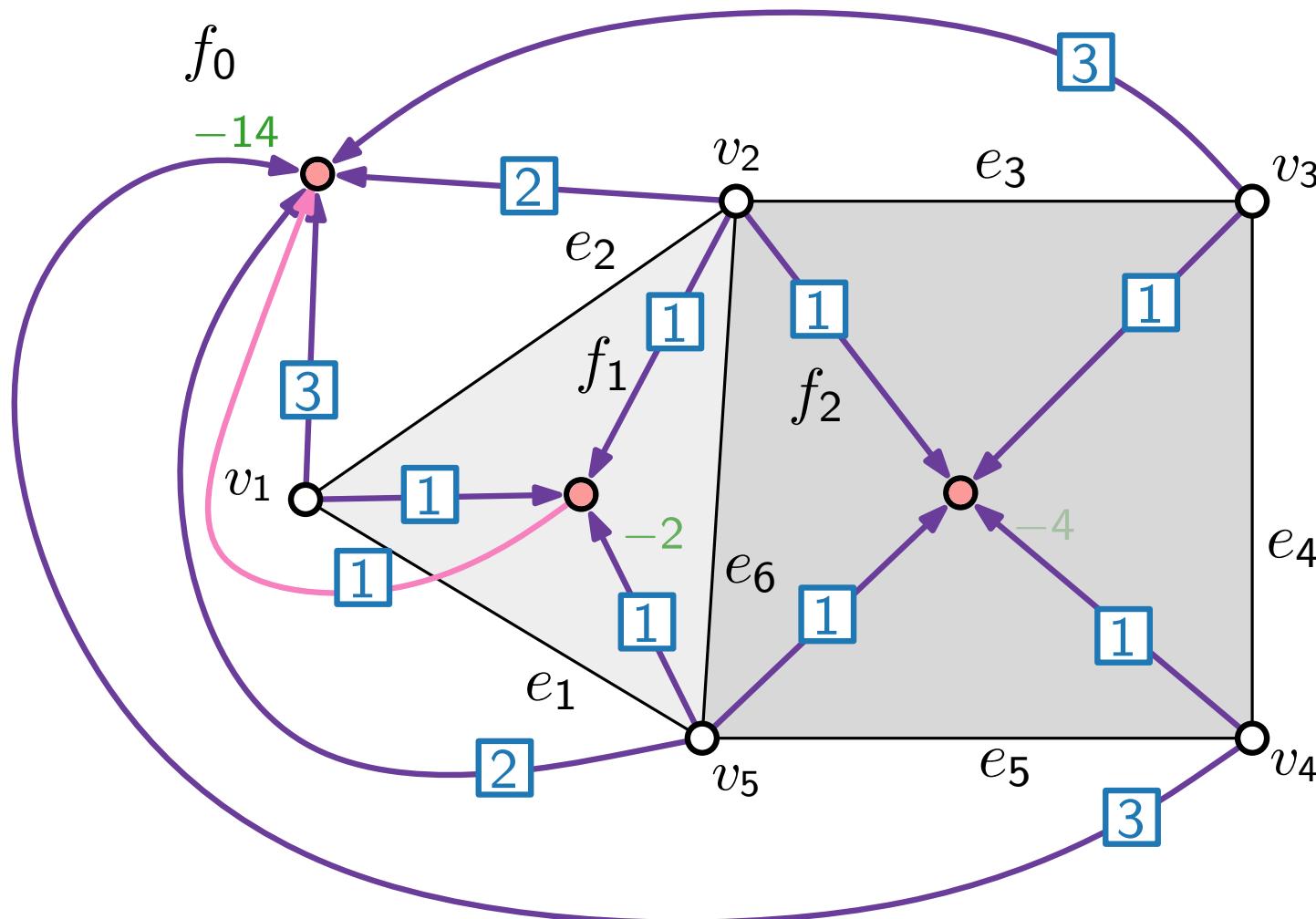
1/4/0

0/ ∞ /1

$4 = b$ -value

flow

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

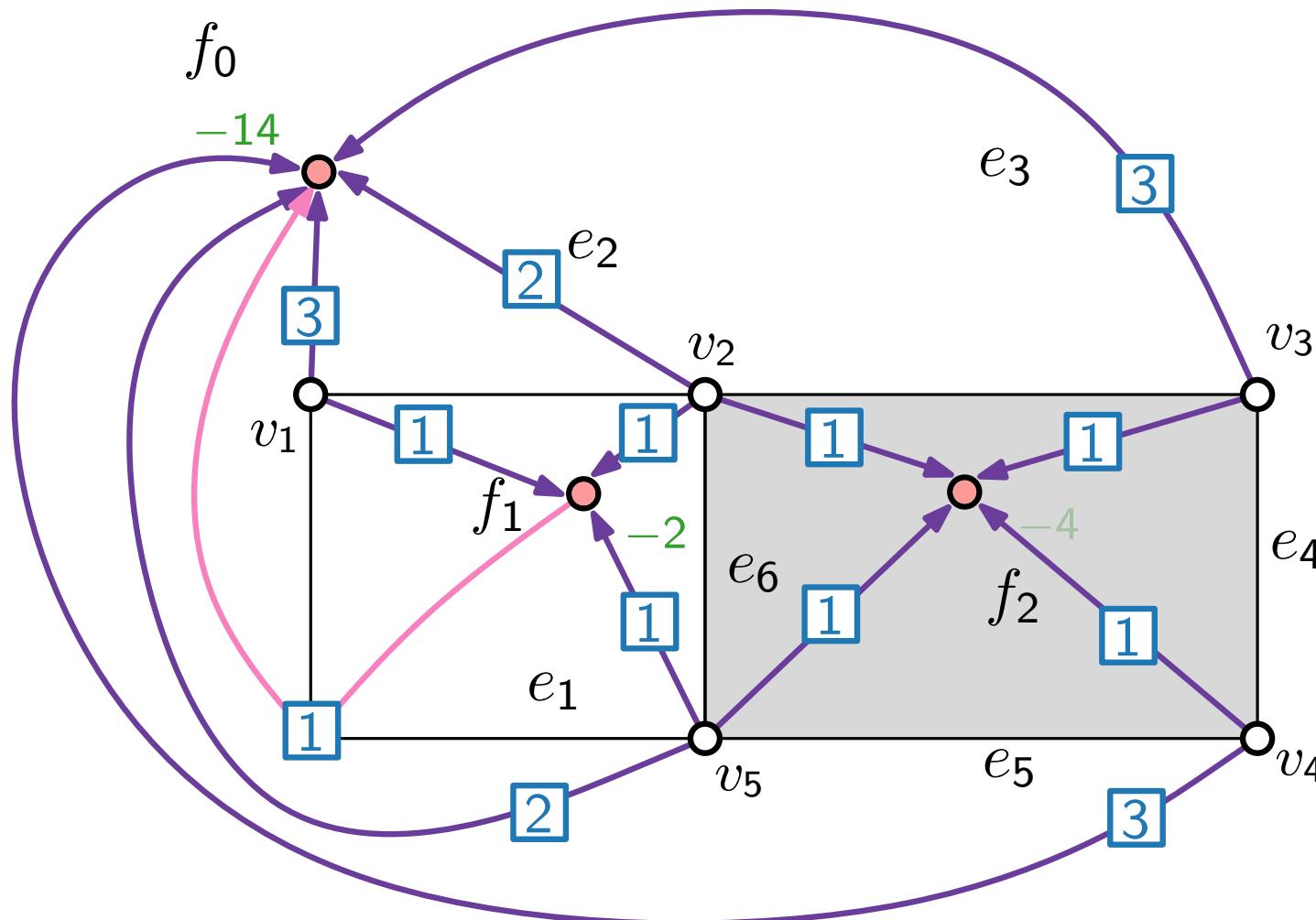
$1/4/0$

$0/\infty/1$

$4 = b$ -value

flow

Flow Network Example



Legend

V

F

$\ell/u/\text{cost}$

1/4/0

0/ ∞ /1

4 = b -value

flow

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Leftarrow Given valid flow X in $N(G)$ with cost k .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Leftarrow Given valid flow X in $N(G)$ with cost k .

Construct orthogonal representation $H(G)$ with k bends.

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

- \Leftarrow Given valid flow X in $N(G)$ with cost k .
Construct orthogonal representation $H(G)$ with k bends.
- Transform from flow to orthogonal description.

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
 The flow network $N(G)$ has a valid flow X with cost k .

Proof.

- \Leftarrow Given valid flow X in $N(G)$ with cost k .
 Construct orthogonal representation $H(G)$ with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

- (H1) $H(G)$ corresponds to F , f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
 The flow network $N(G)$ has a valid flow X with cost k .

Proof.

- \Leftarrow Given valid flow X in $N(G)$ with cost k .
 Construct orthogonal representation $H(G)$ with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1) $H(G)$ matches F, f_0

- (H1) $H(G)$ corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
 The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Leftarrow Given valid flow X in $N(G)$ with cost k .
 Construct orthogonal representation $H(G)$ with k bends.

- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1) $H(G)$ matches F, f_0

(H4) Total angle at each vertex $= 2\pi$

(H1) $H(G)$ corresponds to F, f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .

(H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
 The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Leftarrow Given valid flow X in $N(G)$ with cost k .
 Construct orthogonal representation $H(G)$ with k bends.

- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1) $H(G)$ matches F, f_0

(H2) Bend order inverted and reversed on opposite sides

(H4) Total angle at each vertex $= 2\pi$

(H1) $H(G)$ corresponds to F, f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .

(H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Leftarrow Given valid flow X in $N(G)$ with cost k .
Construct orthogonal representation $H(G)$ with k bends.

- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1) $H(G)$ matches F, f_0	✓
(H2) Bend order inverted and reversed on opposite sides	✓
(H3) Angle sum of $f = \pm 4$	✓
(H4) Total angle at each vertex $= 2\pi$	✓

(H1) $H(G)$ corresponds to F, f_0 .

(H2) For each **edge** $\{u, v\}$ shared by faces f and g , sequence δ_1 is reversed and inverted δ_2 .

(H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Exercise.

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.
Construct valid flow X in $N(G)$ with cost k .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.
Construct valid flow X in $N(G)$ with cost k .

- Define flow $X: E \rightarrow \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow \mathbf{X} with cost k .

- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
- $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
- $\text{cost}(v, f) = 0$
- $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
- $\text{cost}(f, g) = 1$

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.

Construct valid flow \mathbf{X} in $N(G)$ with cost k .

- Define flow $\mathbf{X} : E \rightarrow \mathbb{R}_0^+$.
- Show that \mathbf{X} is a valid flow and has cost k .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
- $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
- $\text{cost}(v, f) = 0$
- $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
- $\text{cost}(f, g) = 1$

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.

Construct valid flow X in $N(G)$ with cost k .

- Define flow $X: E \rightarrow \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k .

(N1) $X(vf) = 1/2/3/4$

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow \mathbf{X} with cost k .

- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
- $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
- $\text{cost}(v, f) = 0$
- $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
- $\text{cost}(f, g) = 1$

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.

Construct valid flow \mathbf{X} in $N(G)$ with cost k .

- Define flow $\mathbf{X} : E \rightarrow \mathbb{R}_0^+$.
- Show that \mathbf{X} is a valid flow and has cost k .

(N1) $X(vf) = 1/2/3/4$ ✓

(N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f ✓

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow X with cost k .

- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
- $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
- $\text{cost}(v, f) = 0$
- $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
- $\text{cost}(f, g) = 1$

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.

Construct valid flow X in $N(G)$ with cost k .

- Define flow $X: E \rightarrow \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k .

(N1) $X(vf) = 1/2/3/4$ ✓

(N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f ✓

(N3) capacities, deficit/demand coverage ✓

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow

The flow network $N(G)$ has a valid flow \mathbf{X} with cost k .

- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
- $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
- $\text{cost}(v, f) = 0$
- $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
- $\text{cost}(f, g) = 1$

Proof.

\Rightarrow Given an orthogonal representation $H(G)$ with k bends.

Construct valid flow \mathbf{X} in $N(G)$ with cost k .

- Define flow $\mathbf{X} : E \rightarrow \mathbb{R}_0^+$.
- Show that \mathbf{X} is a valid flow and has cost k .

(N1) $X(vf) = 1/2/3/4$ ✓

(N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f ✓

(N3) capacities, deficit/demand coverage ✓

(N4) $\text{cost} = k$ ✓

Bend Minimization – Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Bend Minimization – Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The minimum cost flow problem can be solved in
 $O(|X^*|^{3/4}m\sqrt{\log n})$ time.

Bend Minimization – Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Bend Minimization – Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The min-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

Bend Minimization – Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

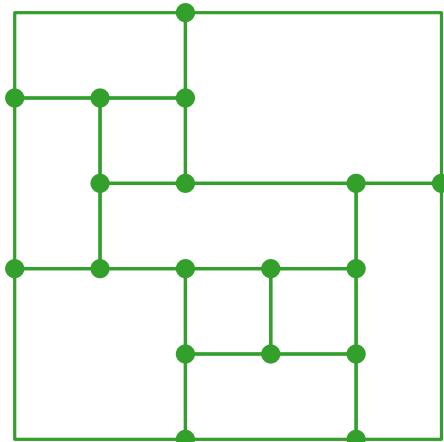
The min-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

Theorem.

[Garg & Tamassia 2001]

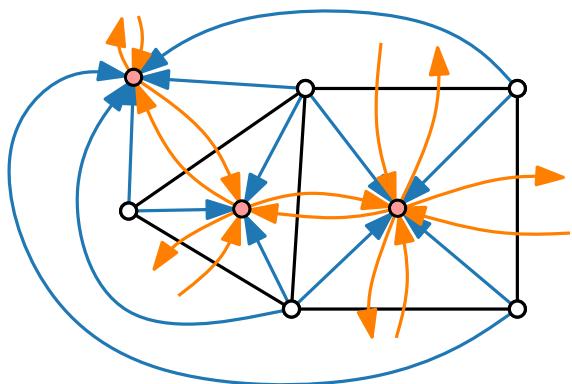
Bend minimization without given combinatorial embedding is NP-hard.

Visualization of Graphs

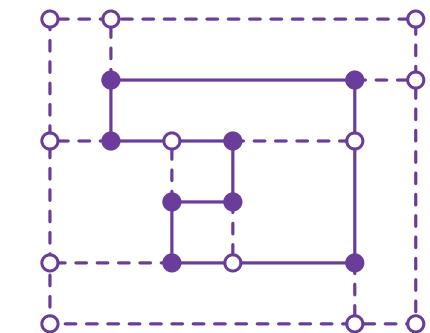


Lecture 5: Orthogonal Layouts

Part IV: Area Minimization



Alexander Wolff



Topology – Shape – Metrics

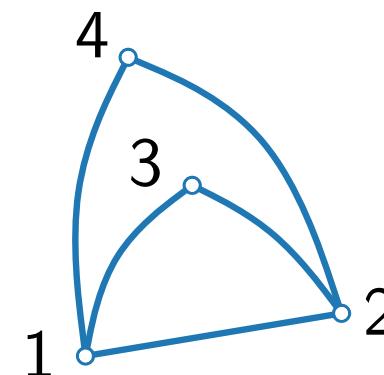
Three-step approach:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce
crossings

combinatorial
embedding/
planarization



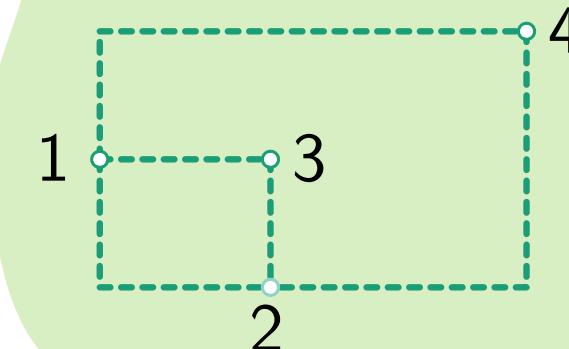
TOPOLOGY

SHAPE

[Tamassia 1987]

planar
orthogonal
drawing

area mini-
mization



bend minimization

orthogonal
representation

METRICS

Compaction

Compaction problem.

Given:

Find:

Compaction

Compaction problem.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

Find:

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find:

Compaction

Compaction problem.

Given: ■ Plane graph $G = (V, E)$ with maximum degree 4

■ Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length
- minimum area

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length
- minimum area

Properties.

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length
- minimum area

Properties.

- bends only on the outer face

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length
- minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Compaction

Compaction problem.

Given:

- Plane graph $G = (V, E)$ with maximum degree 4
- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.

→ Guarantees possible

- minimum total edge length
- minimum area

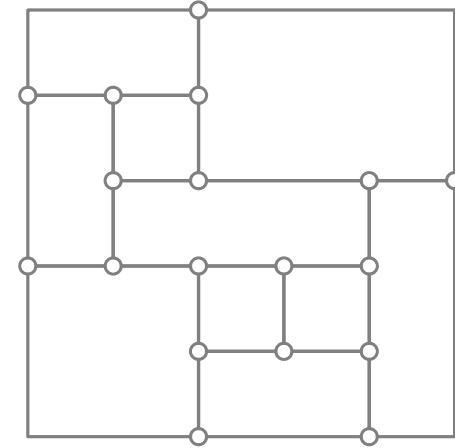
Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

- Formulate flow network for horizontal/vertical compaction

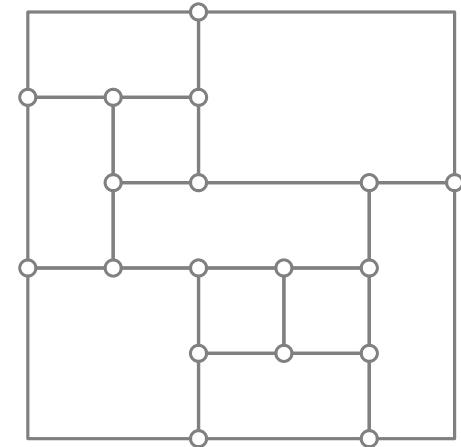
Flow Network for Edge Length Assignment



Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

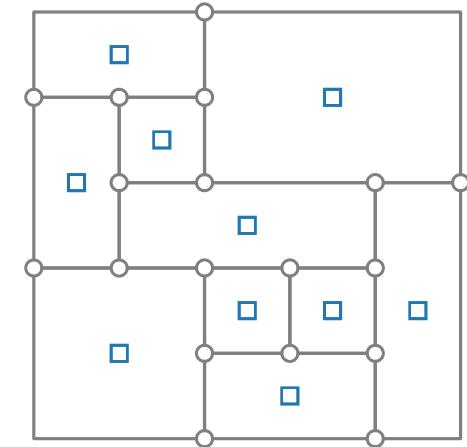


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\}$ □

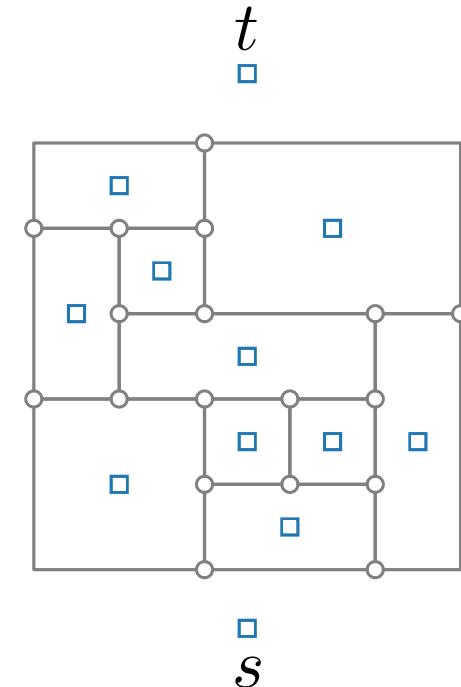


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □

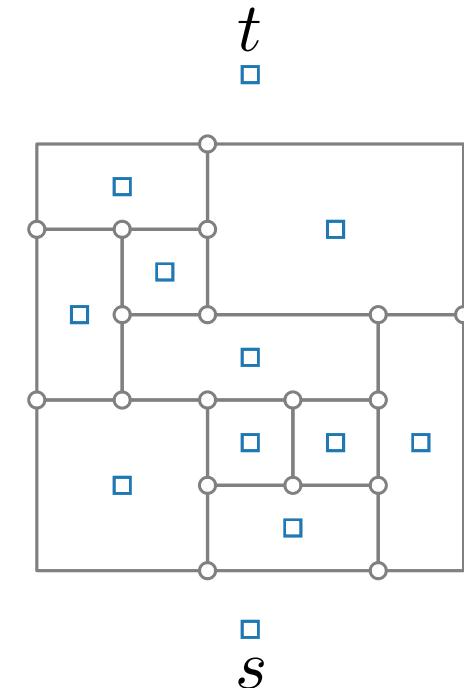


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

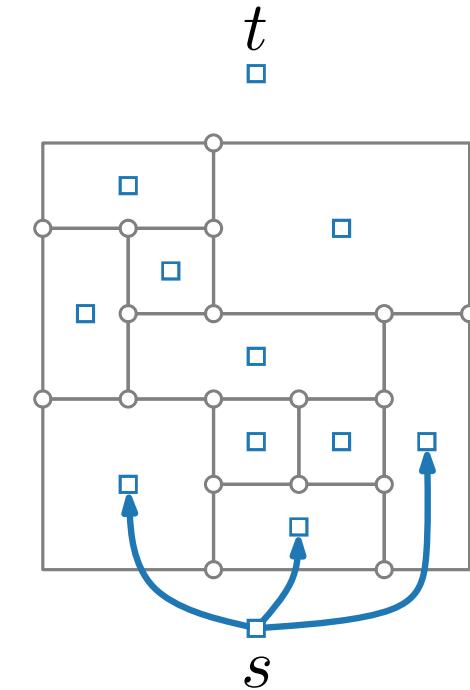


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

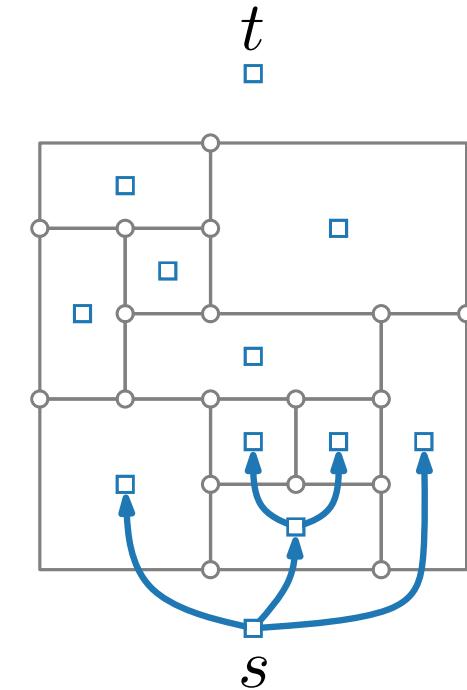


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); b; \ell; u; \text{cost})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

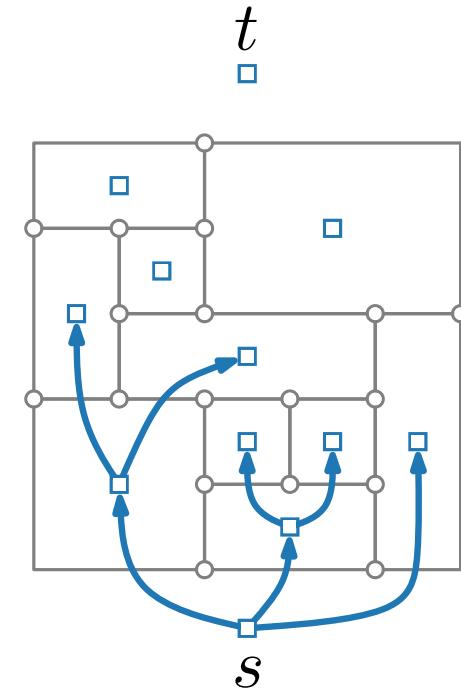


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{violet}{b}; \textcolor{blue}{\ell}; u; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

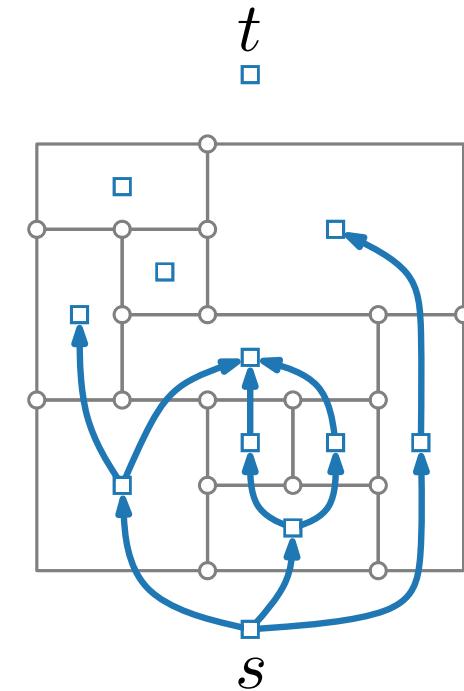


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

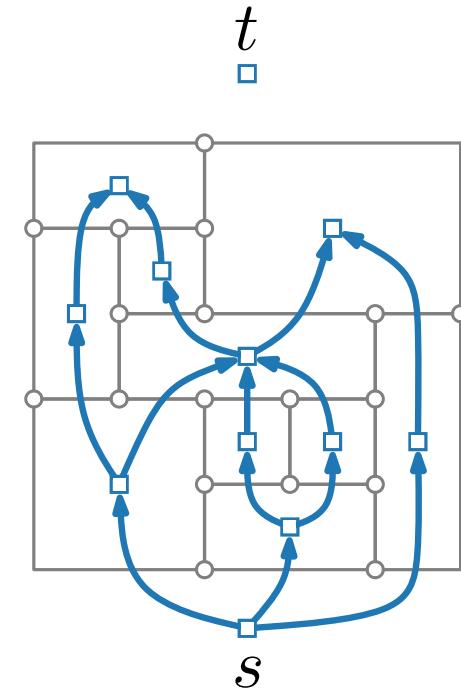


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

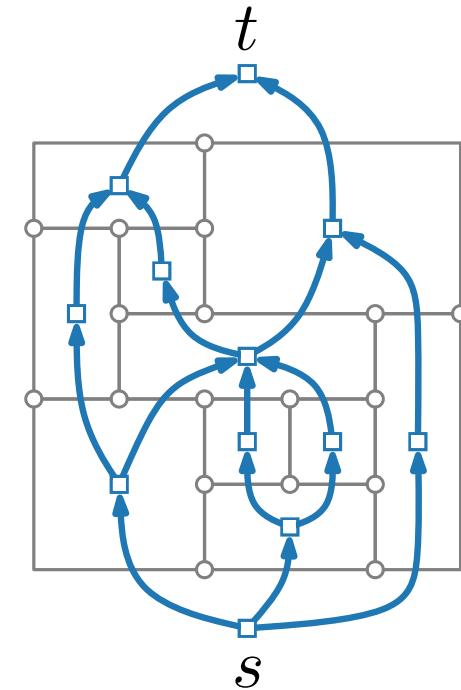


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\}$

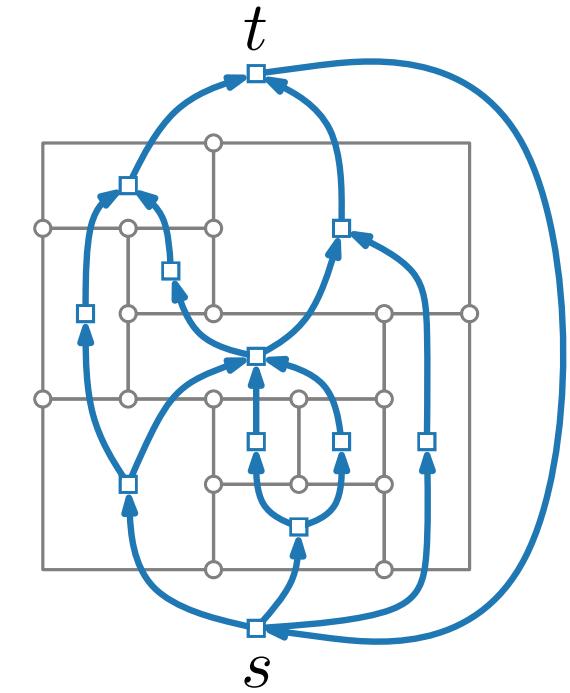


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{green}{b}; \textcolor{orange}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\} \cup \{(t, s)\}$

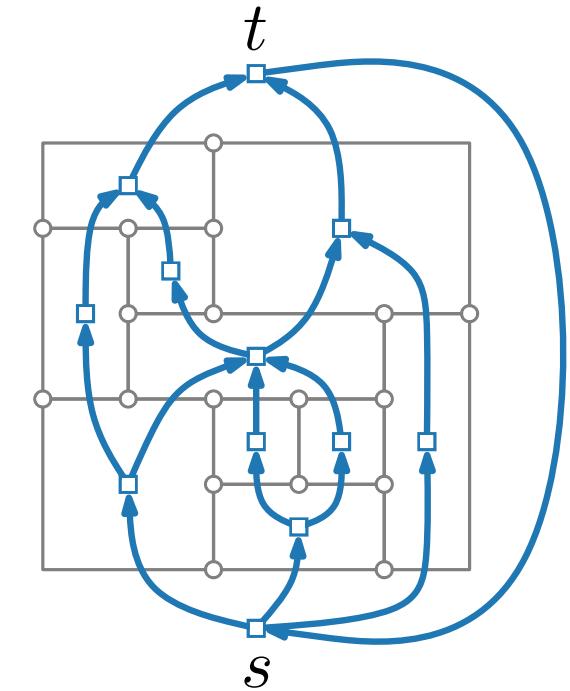


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); \textcolor{violet}{b}; \textcolor{blue}{\ell}; \textcolor{brown}{u}; \textcolor{red}{\text{cost}})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in E_{\text{hor}}$

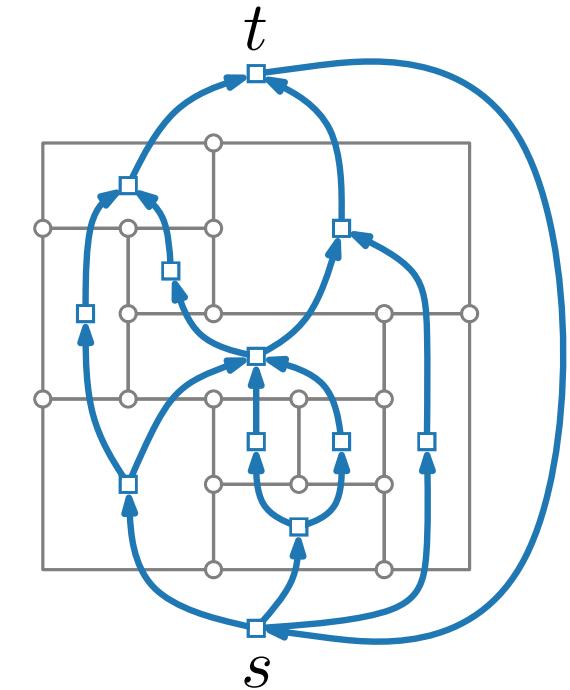


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); b; \ell; u; \text{cost})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in E_{\text{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\text{hor}}$

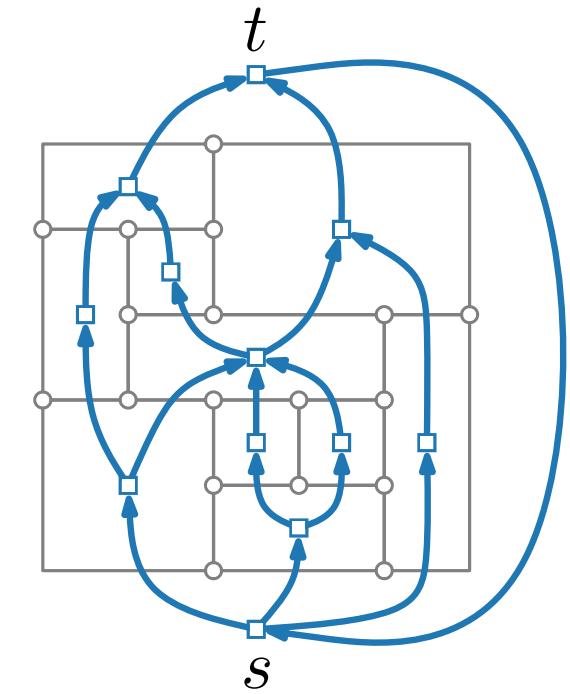


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); b; \ell; u; \text{cost})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in E_{\text{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\text{hor}}$
- $\text{cost}(a) = 1 \quad \forall a \in E_{\text{hor}}$

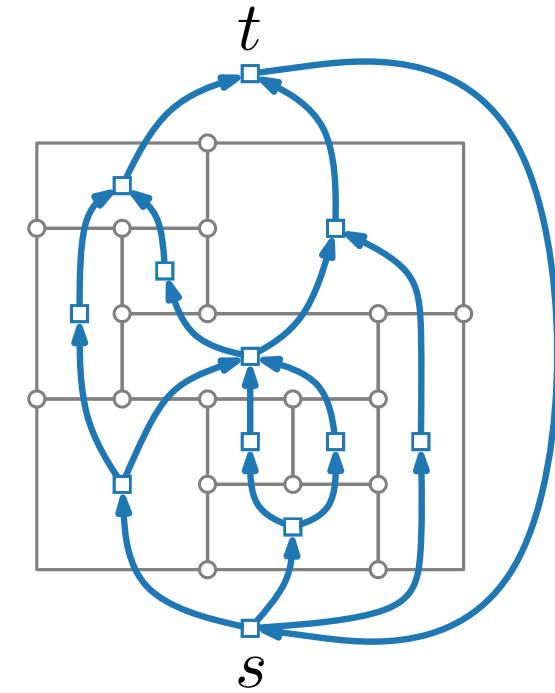


Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); b; \ell; u; \text{cost})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{hor}} = \{(f, g) \mid f, g \text{ share a } \textit{horizontal} \text{ segment and } f \text{ lies below } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in E_{\text{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\text{hor}}$
- $\text{cost}(a) = 1 \quad \forall a \in E_{\text{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\text{hor}}$

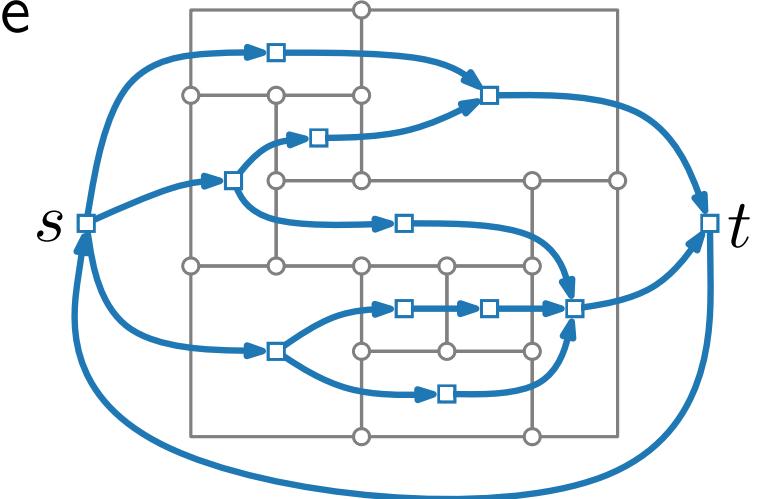


Flow Network for Edge Length Assignment

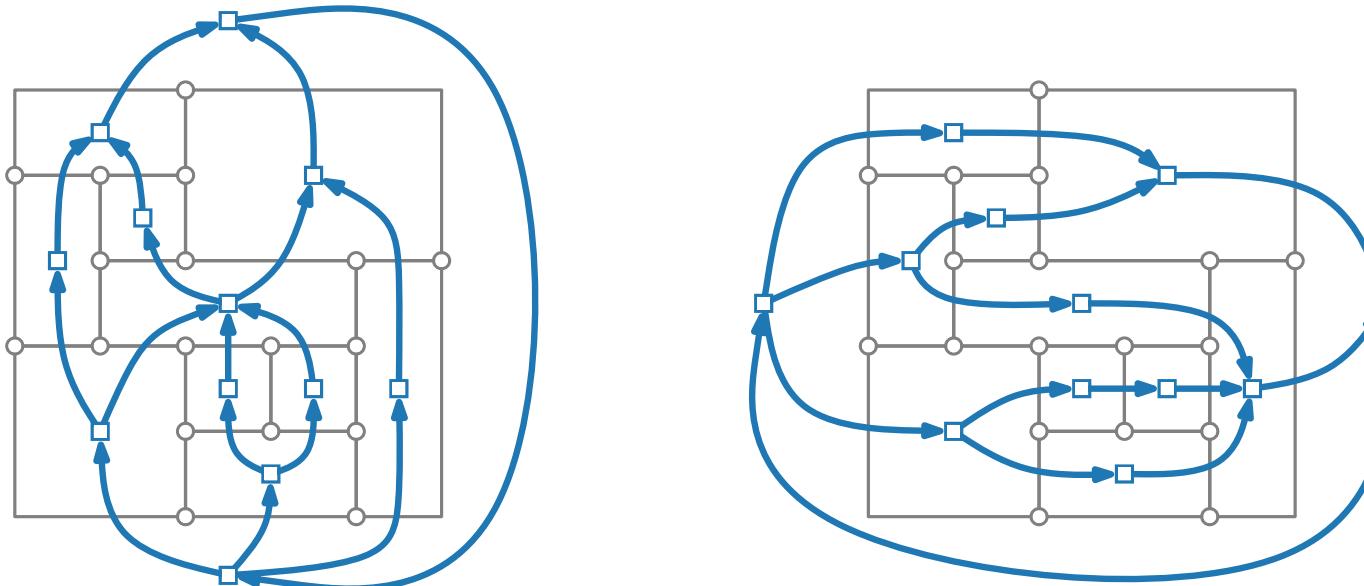
Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

- $W_{\text{ver}} = F \setminus \{f_0\} \cup \{s, t\}$ □
- $E_{\text{ver}} = \{(f, g) \mid f, g \text{ share a } \textcolor{red}{vertical} \text{ segment and } f \text{ lies to the } \textcolor{red}{left} \text{ of } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in E_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $\text{cost}(a) = 1 \quad \forall a \in E_{\text{ver}}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$



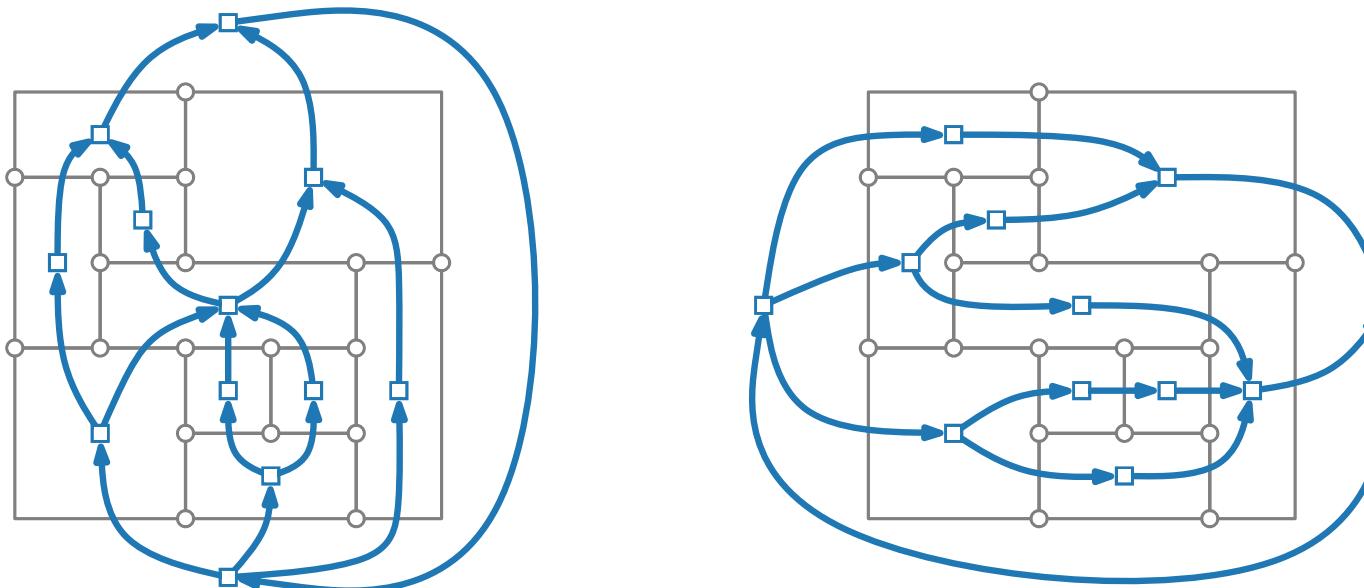
Compaction – Result



Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

Compaction – Result

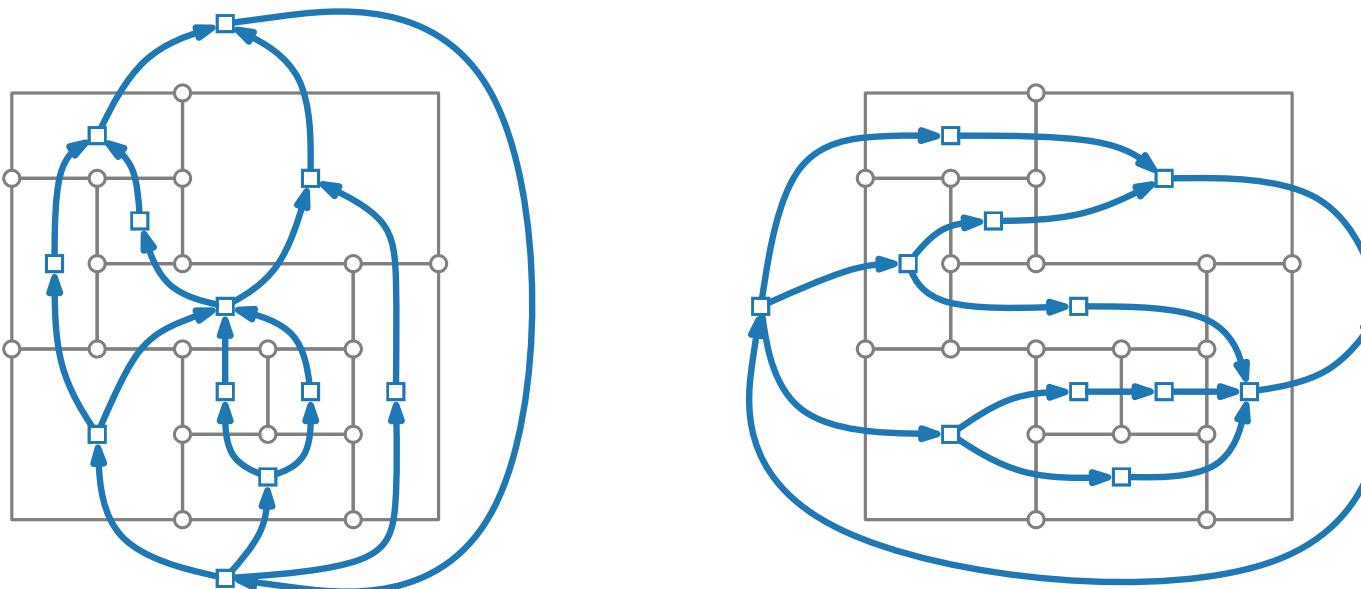


Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

Compaction – Result



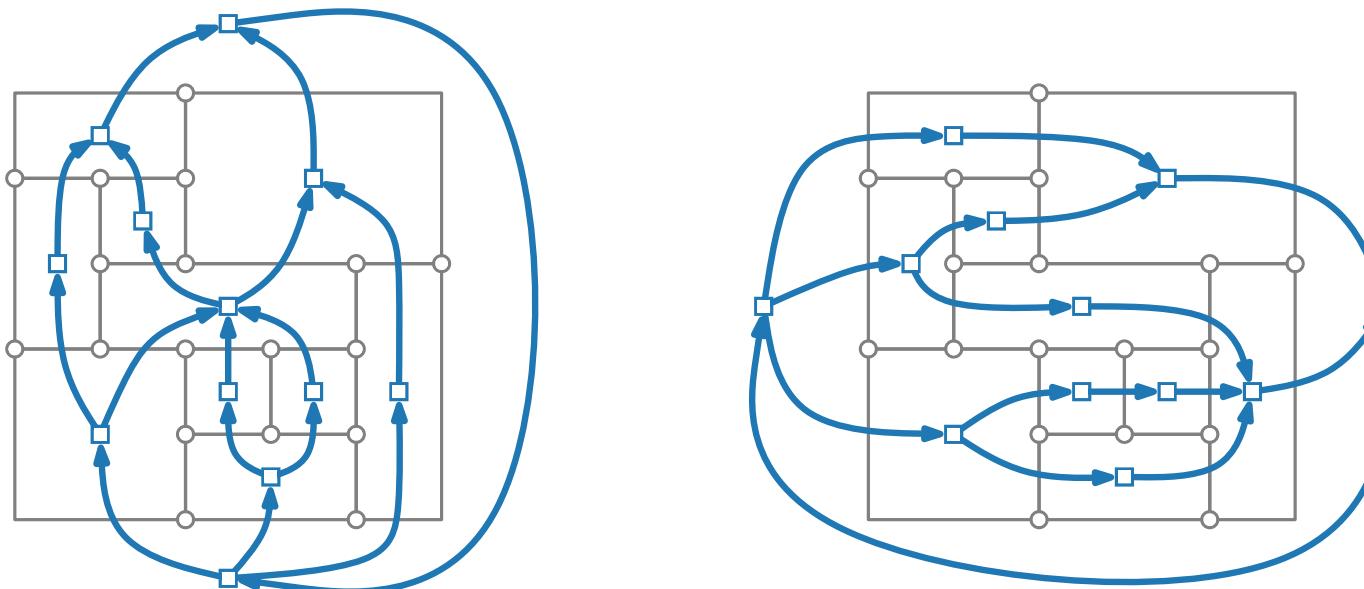
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $|X_{\text{hor}}(t, s)|$ and $|X_{\text{ver}}(t, s)|$?

Compaction – Result



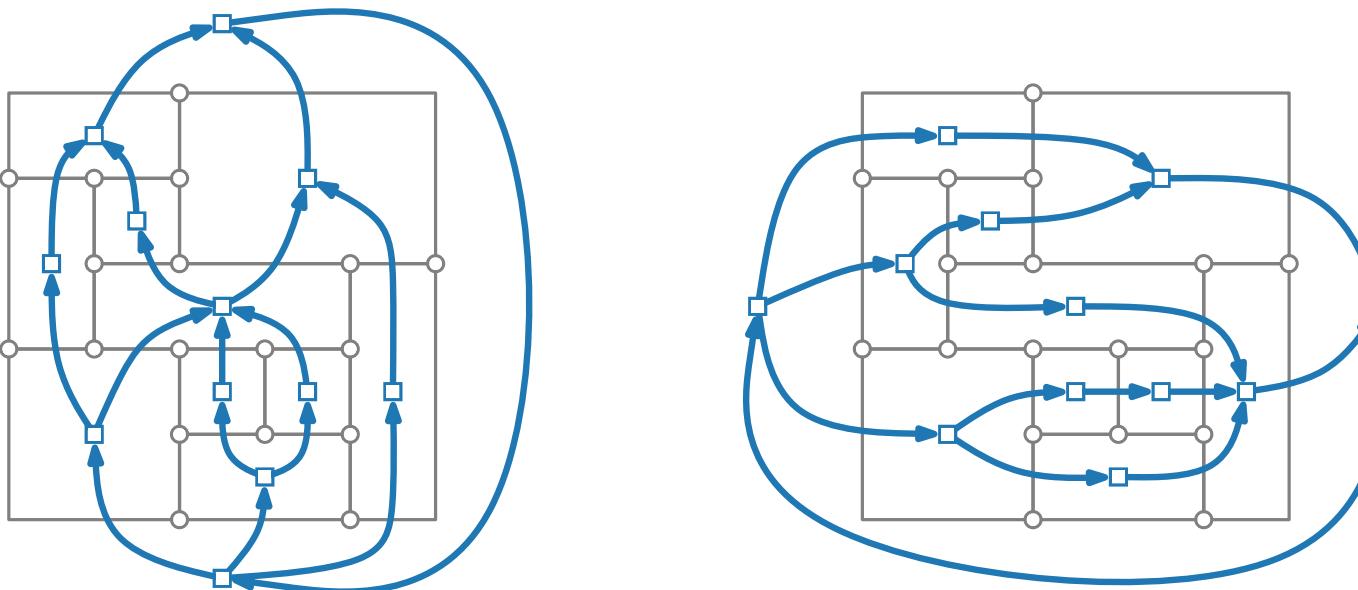
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $|X_{\text{hor}}(t, s)|$ and $|X_{\text{ver}}(t, s)|$? width and height of drawing

Compaction – Result



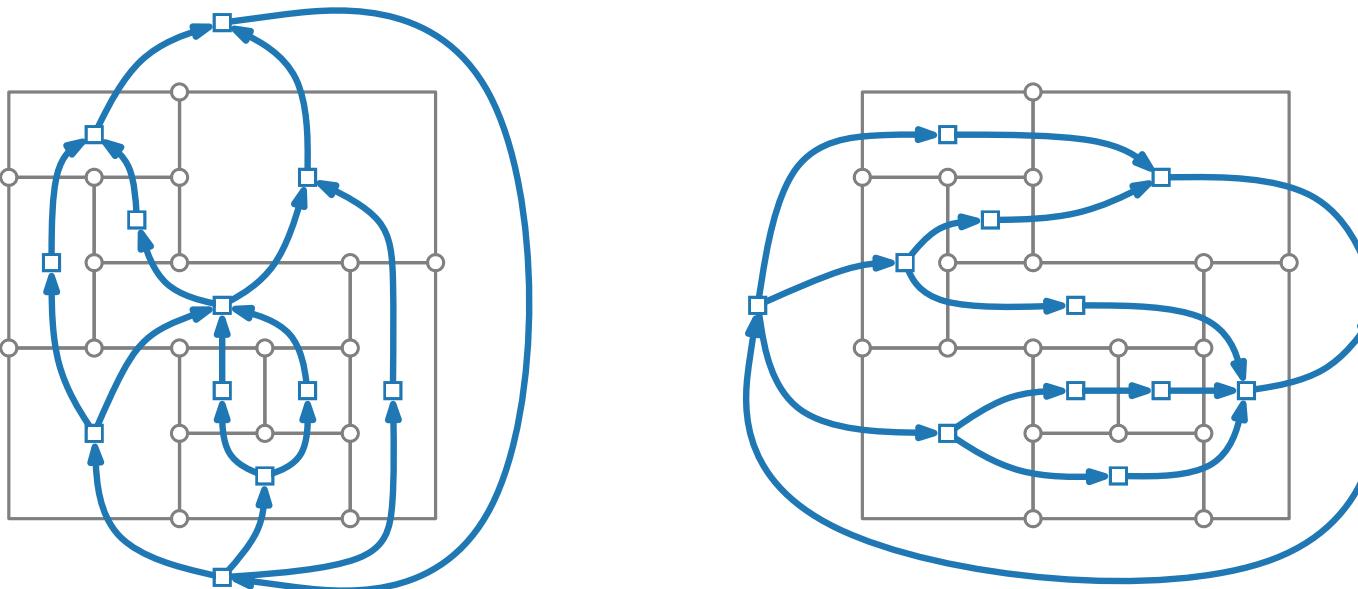
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $|X_{\text{hor}}(t, s)|$ and $|X_{\text{ver}}(t, s)|$? width and height of drawing
- $\sum_{e \in E_{\text{hor}}} X_{\text{hor}}(e) + \sum_{e \in E_{\text{ver}}} X_{\text{ver}}(e)$

Compaction – Result



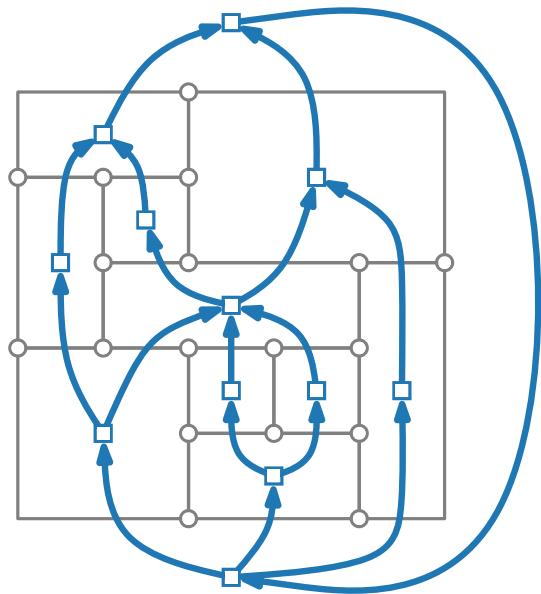
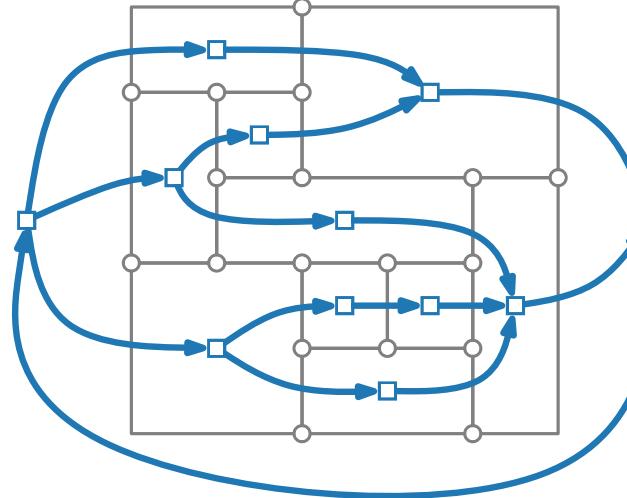
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $|X_{\text{hor}}(t, s)|$ and $|X_{\text{ver}}(t, s)|?$ width and height of drawing
- $\sum_{e \in E_{\text{hor}}} X_{\text{hor}}(e) + \sum_{e \in E_{\text{ver}}} X_{\text{ver}}(e)$ total edge length

Compaction – Result



What if not all faces
rectangular?

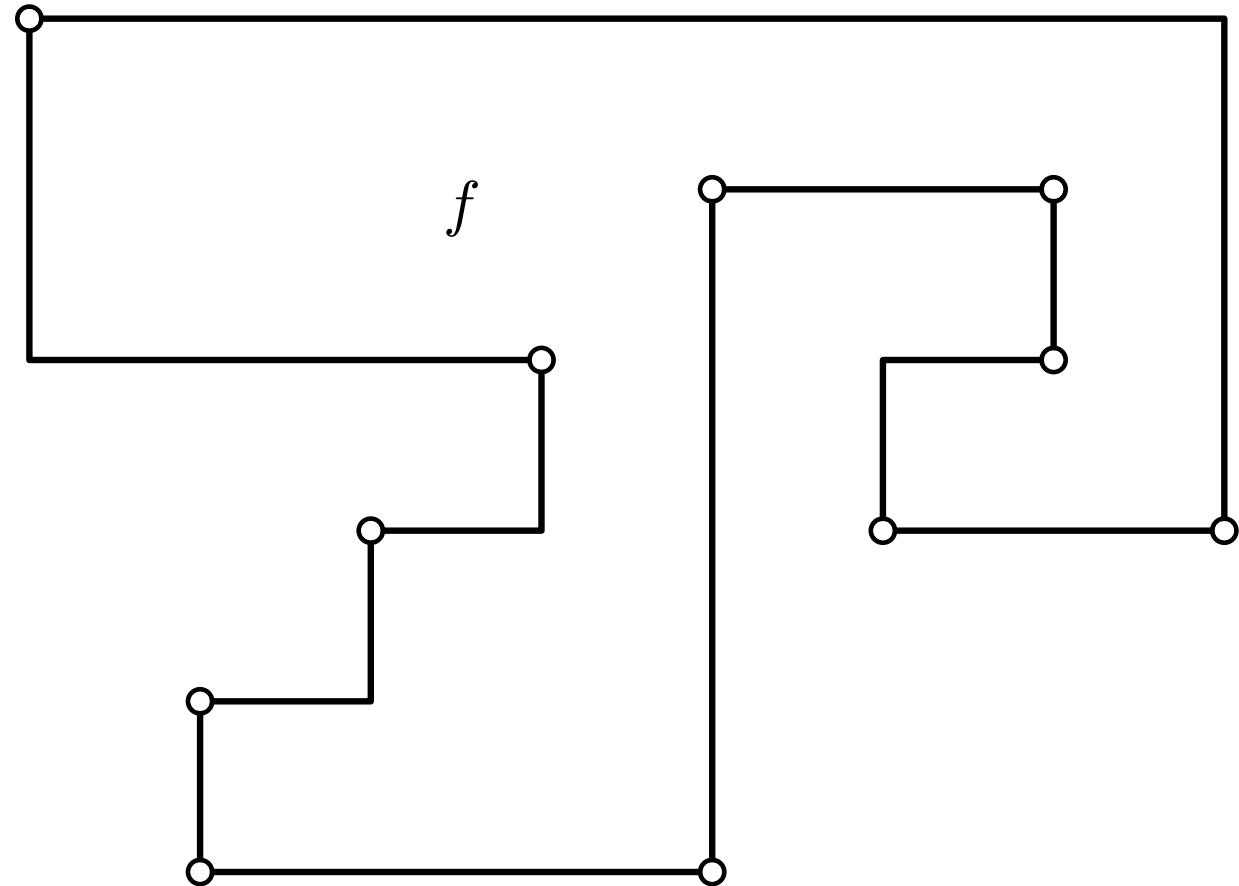
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow
corresponding edge lengths induce an orthogonal drawing.

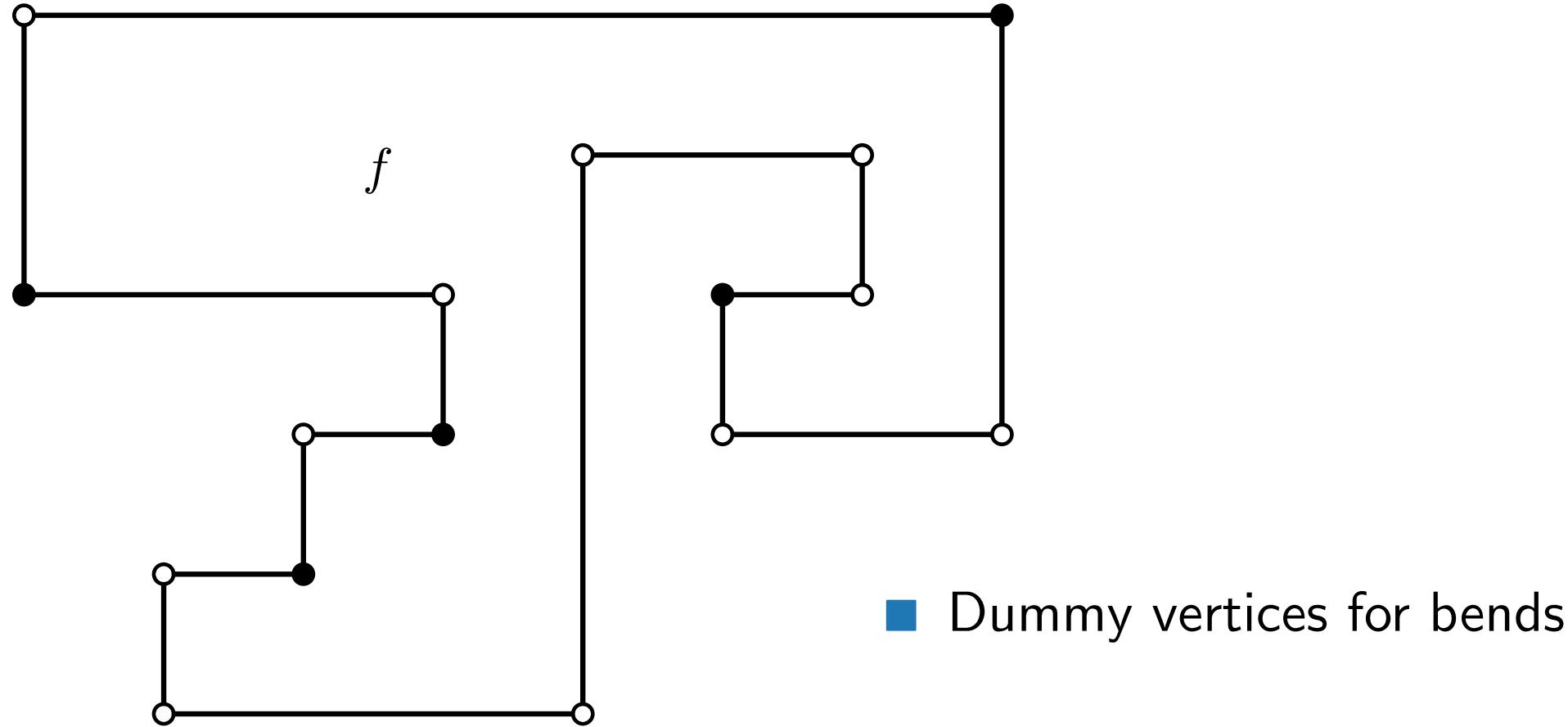
What values of the drawing do the following quantities represent?

- $|X_{\text{hor}}(t, s)|$ and $|X_{\text{ver}}(t, s)|?$ width and height of drawing
- $\sum_{e \in E_{\text{hor}}} X_{\text{hor}}(e) + \sum_{e \in E_{\text{ver}}} X_{\text{ver}}(e)$ total edge length

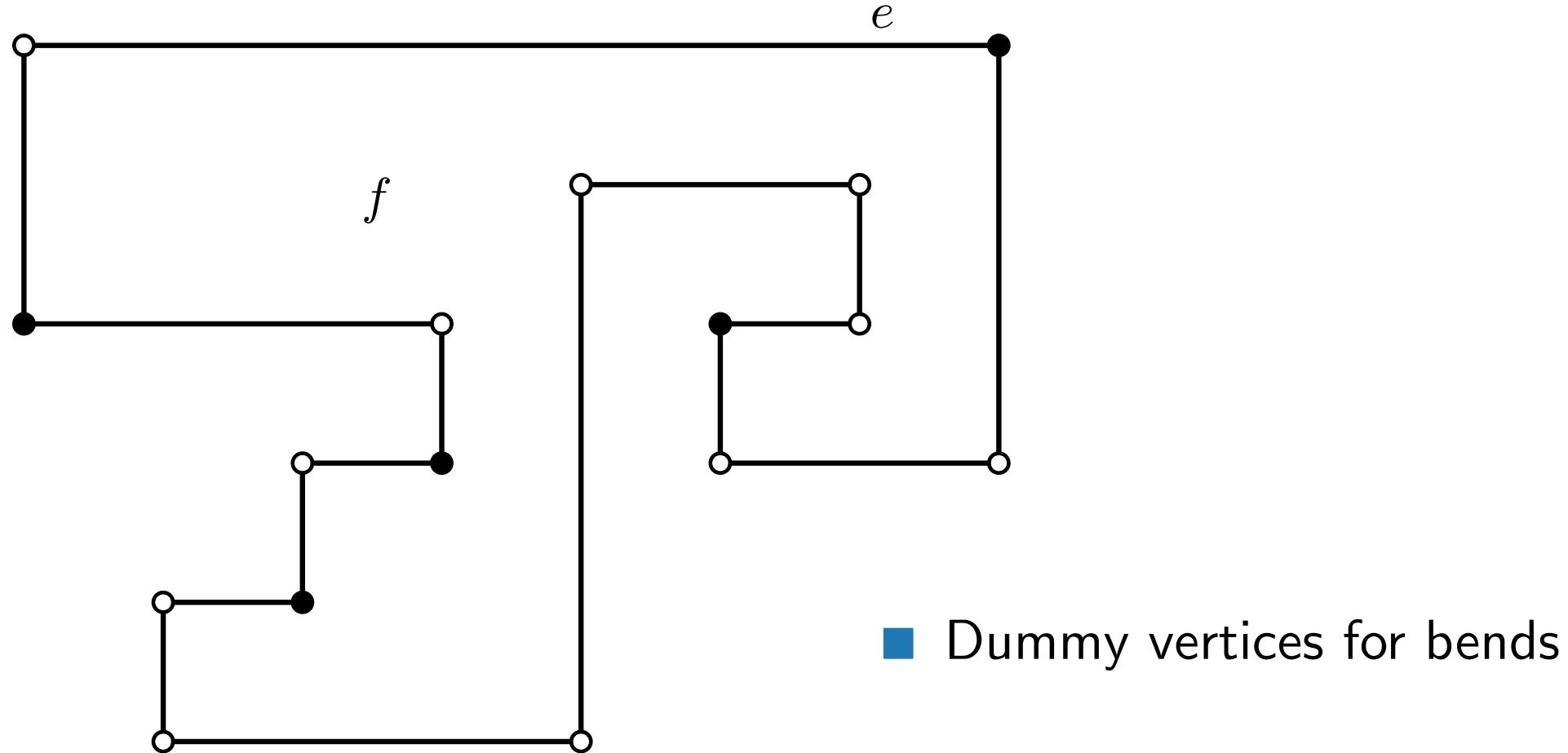
Refinement of (G, H) – Inner Face



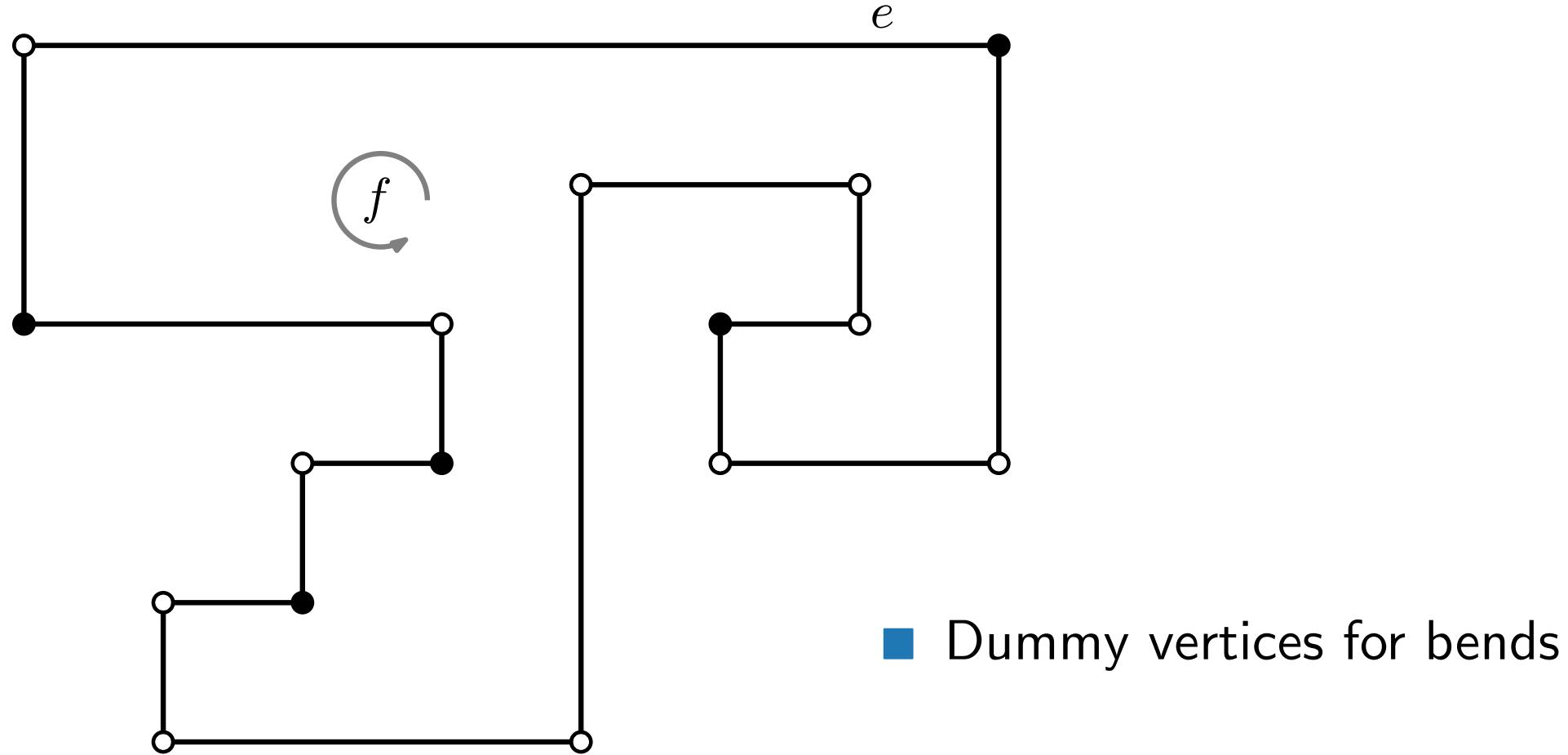
Refinement of (G, H) – Inner Face



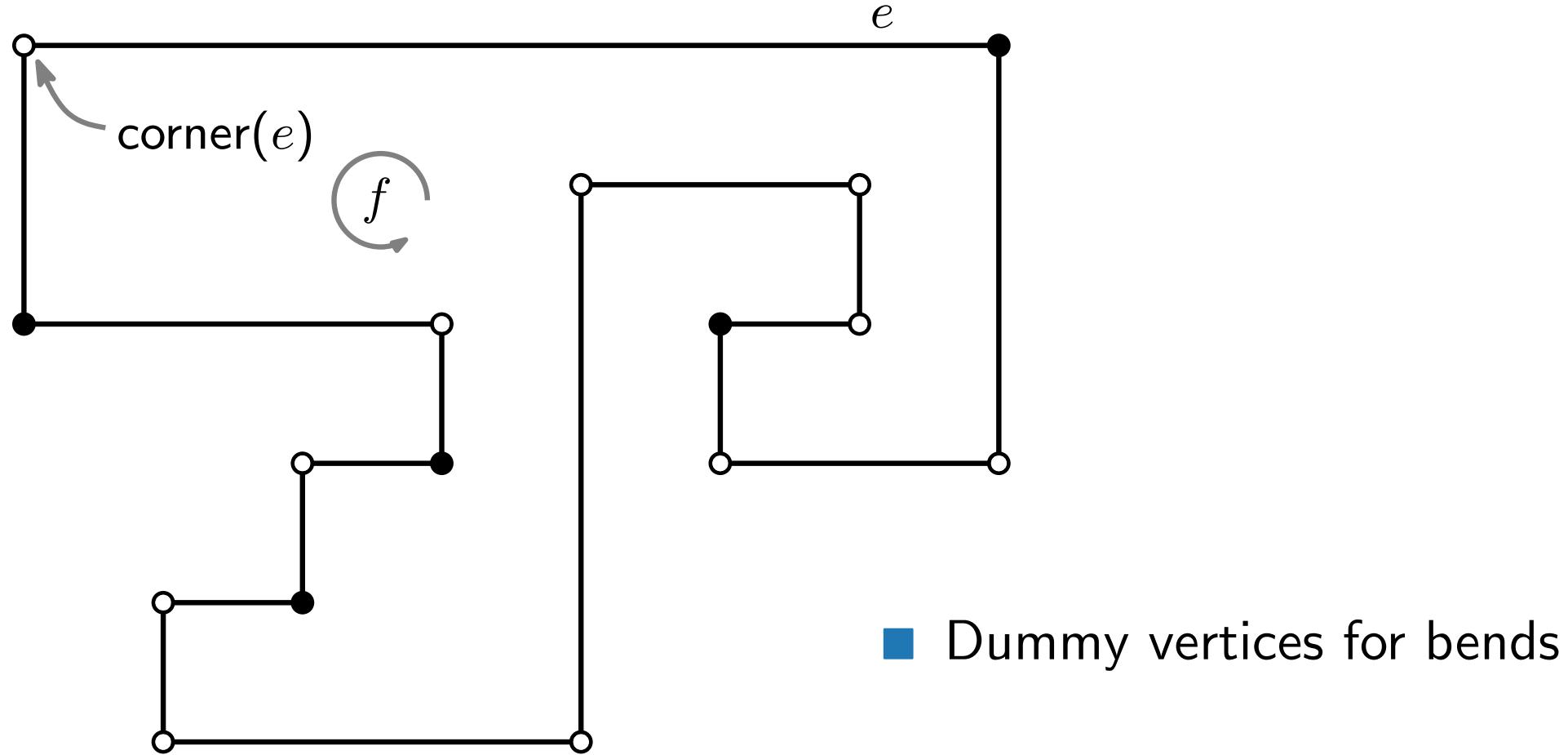
Refinement of (G, H) – Inner Face



Refinement of (G, H) – Inner Face



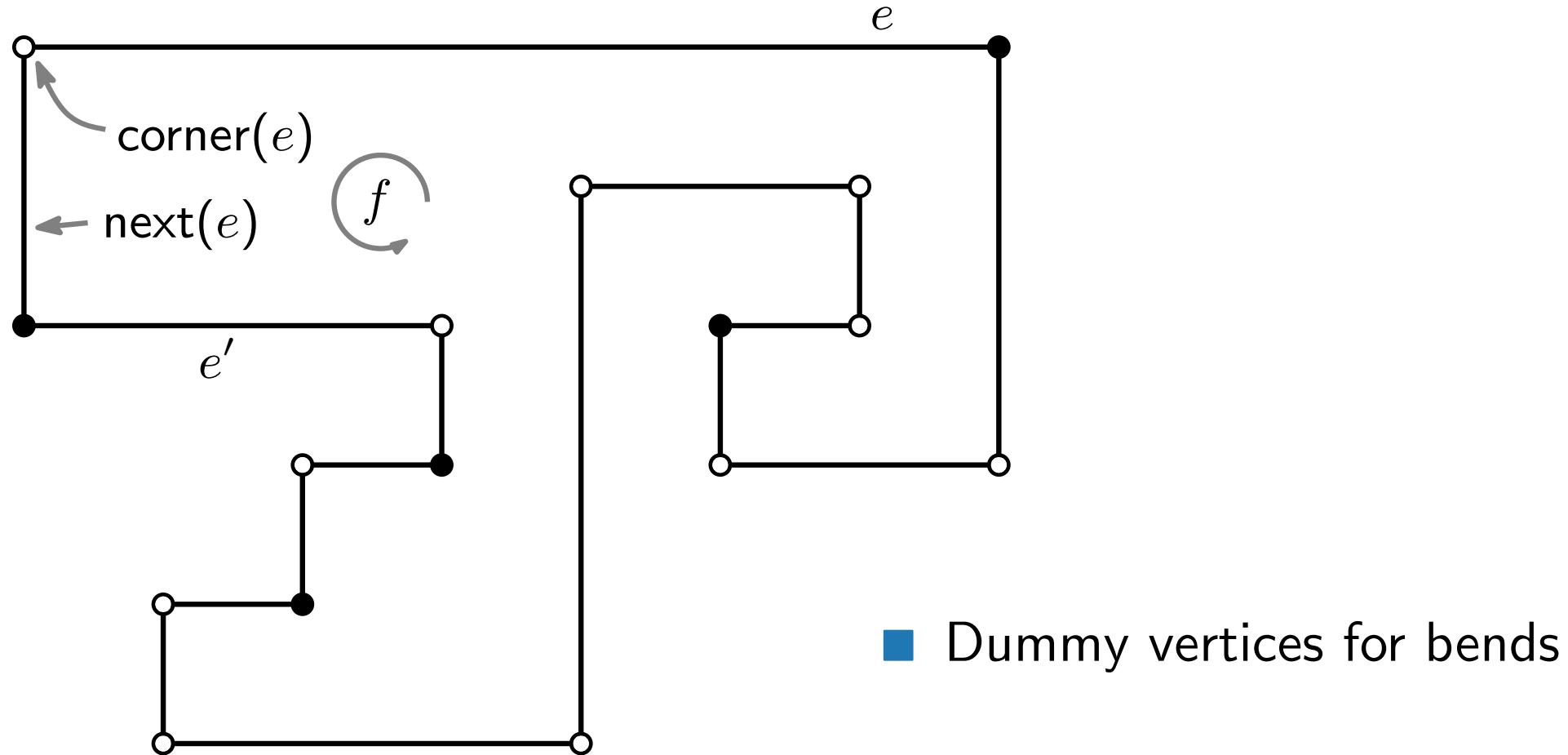
Refinement of (G, H) – Inner Face



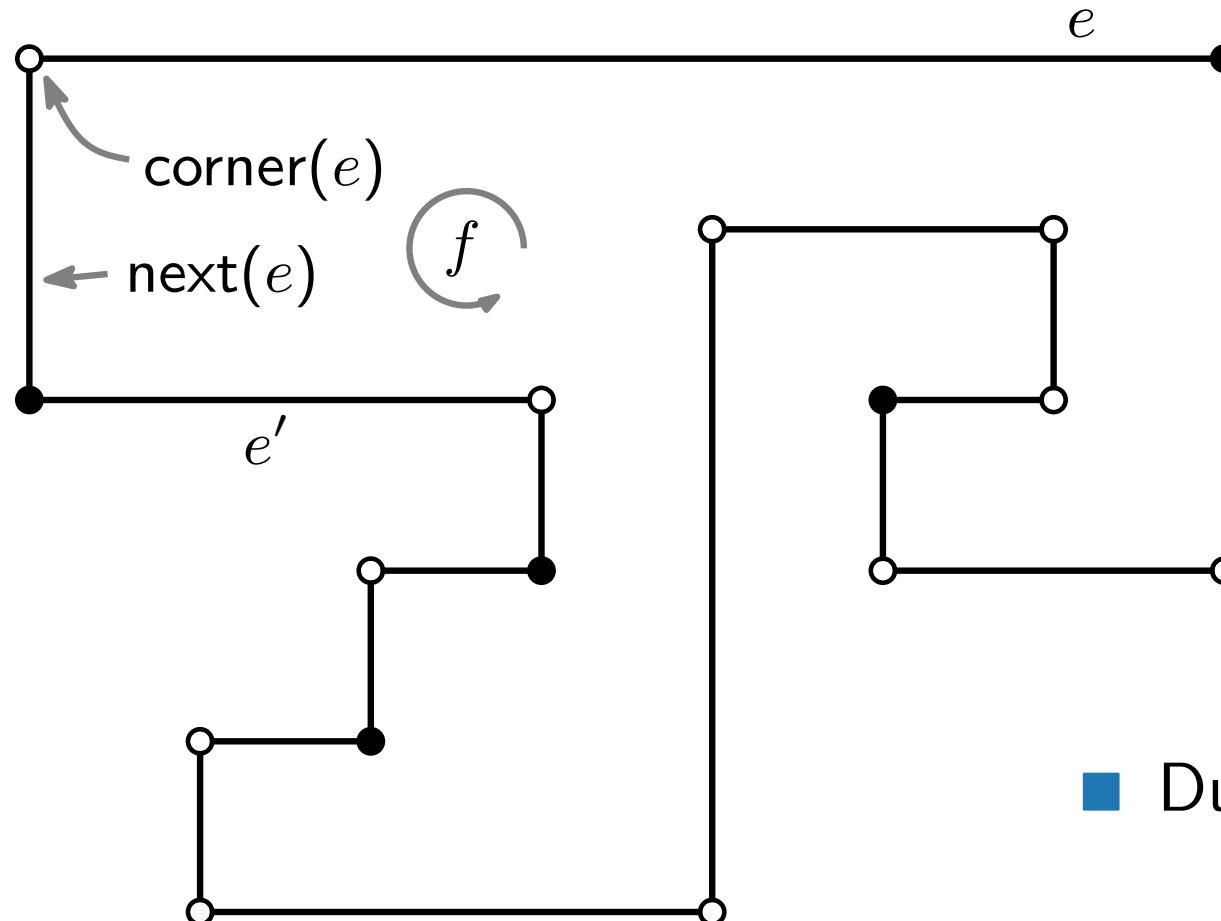
Refinement of (G, H) – Inner Face



Refinement of (G, H) – Inner Face

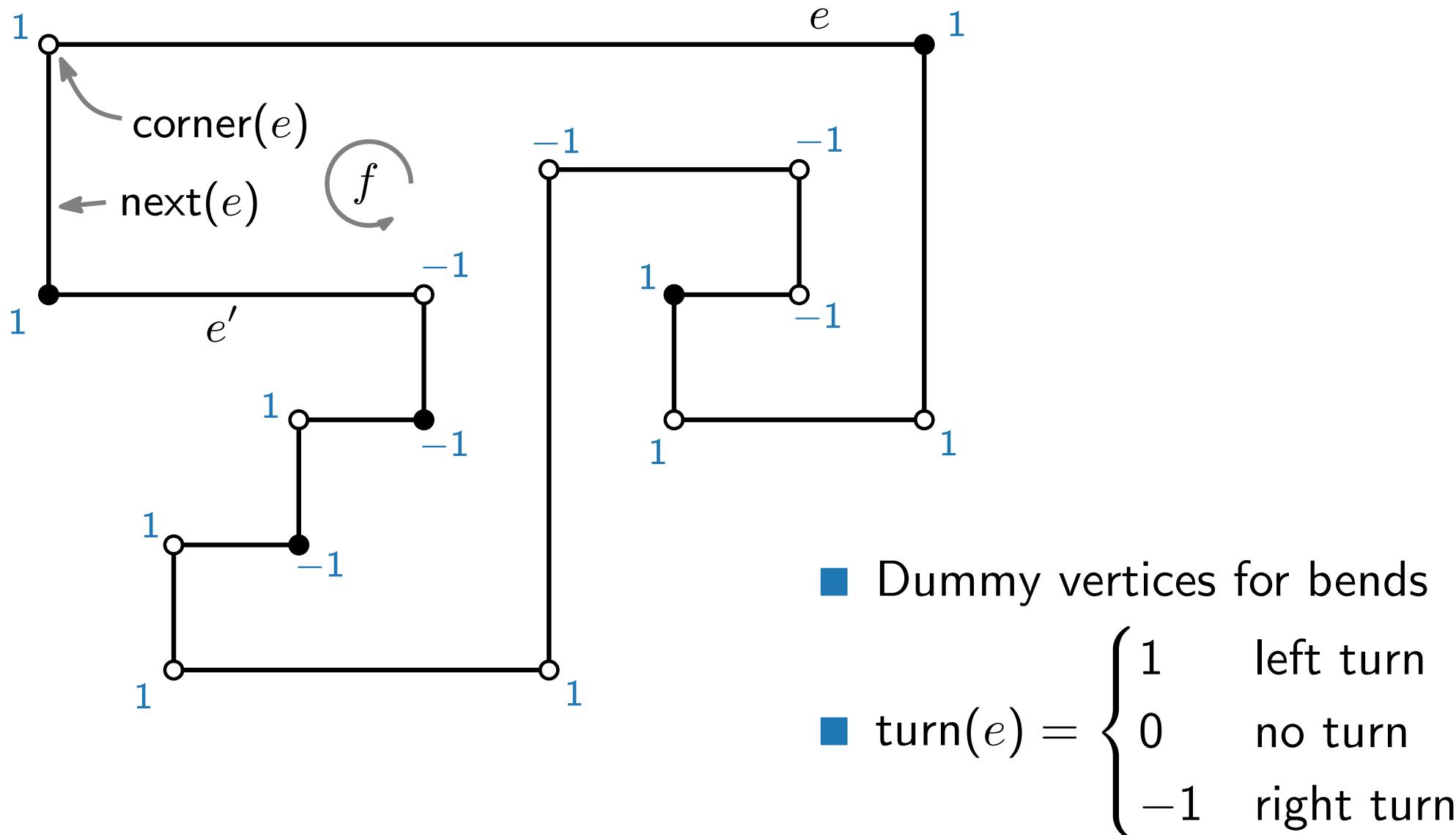


Refinement of (G, H) – Inner Face

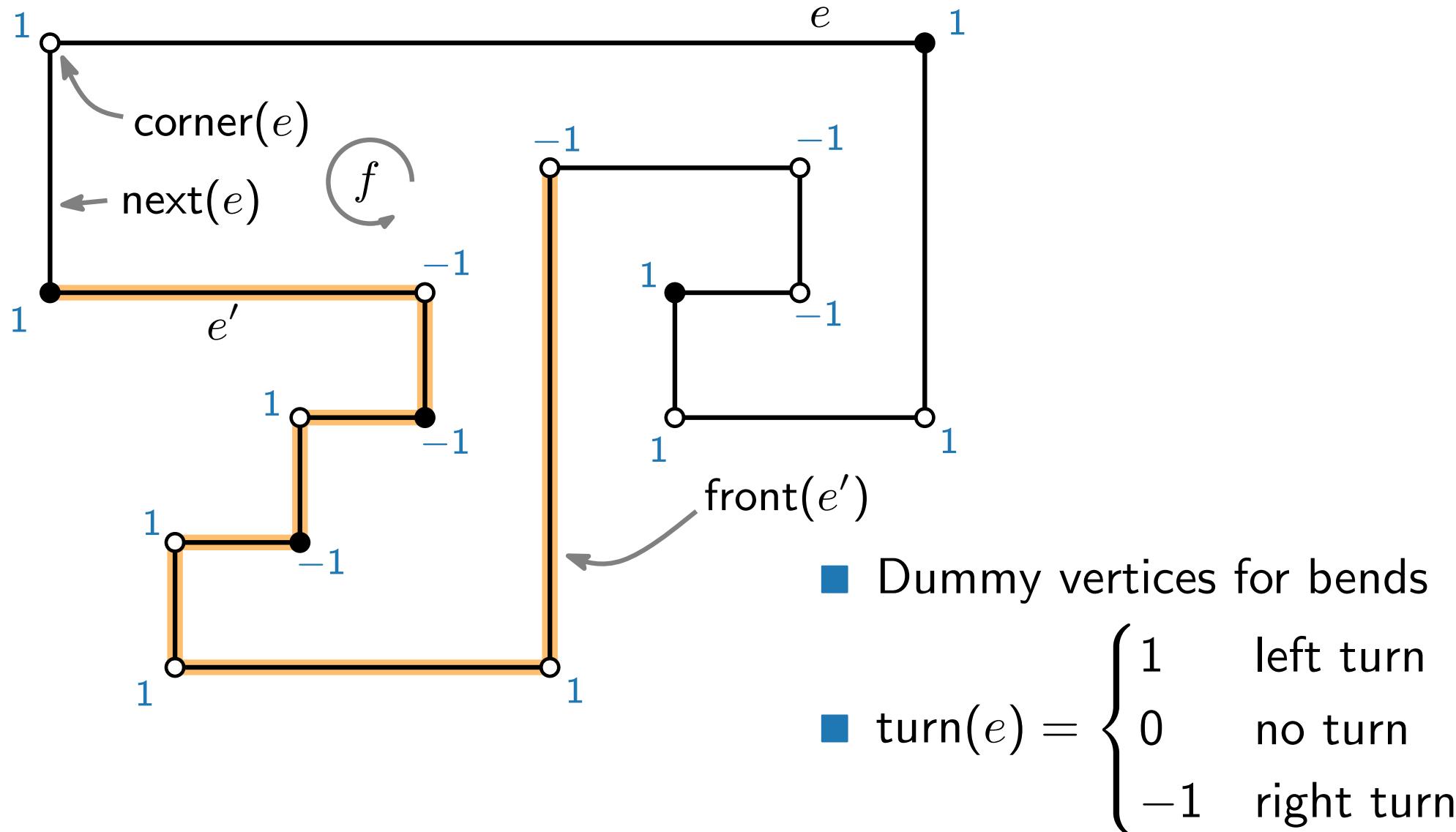


- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

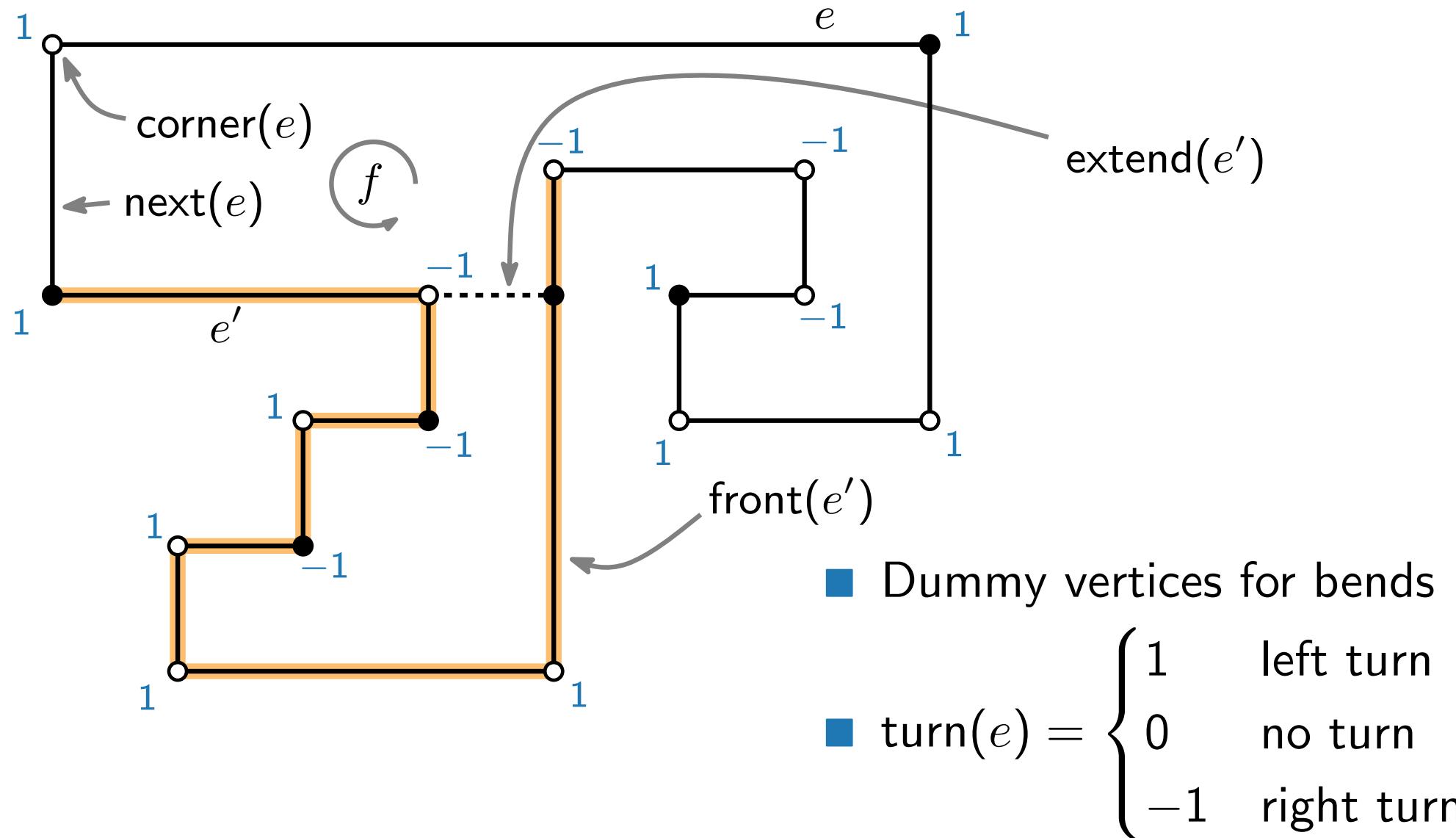
Refinement of (G, H) – Inner Face



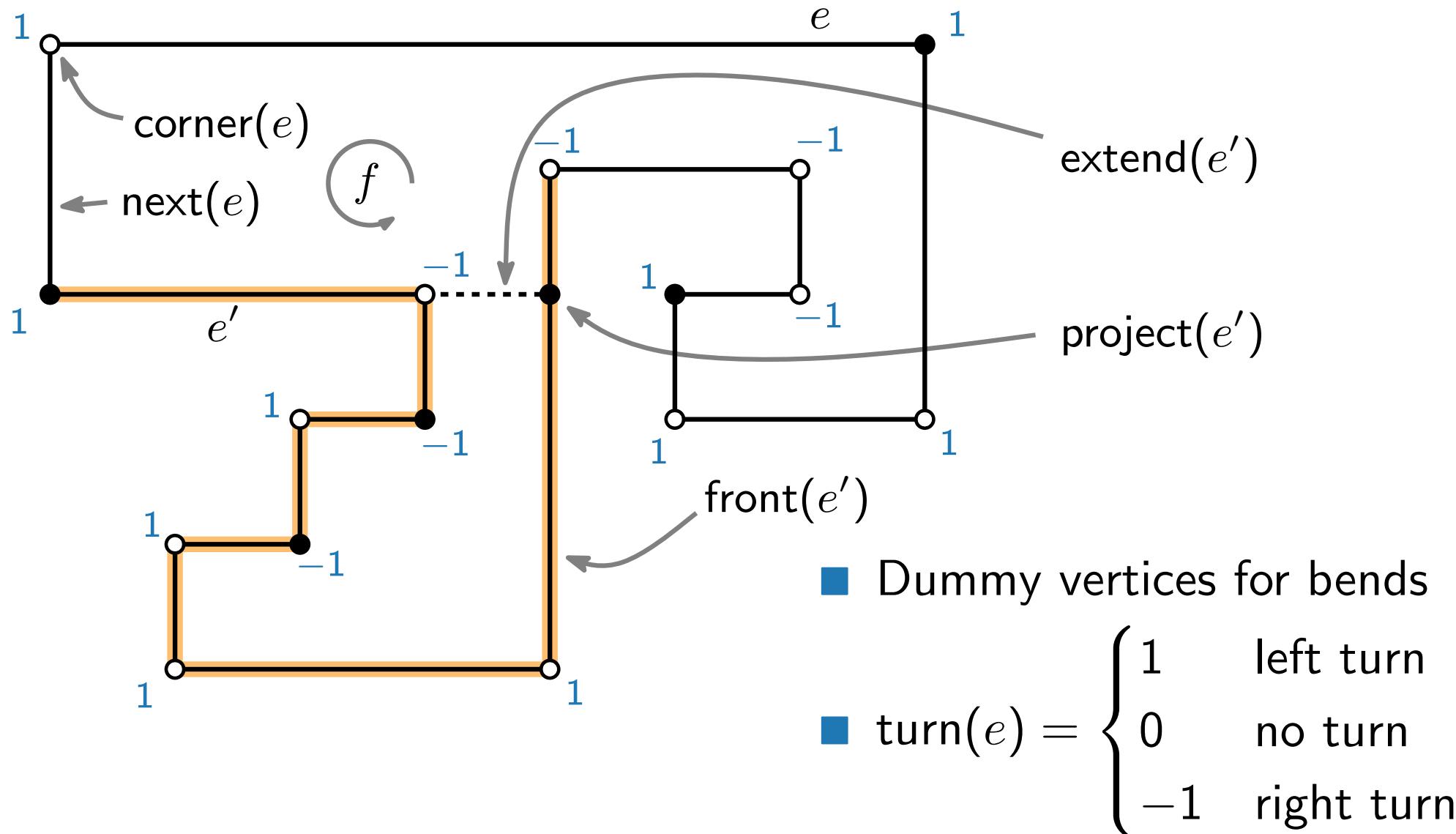
Refinement of (G, H) – Inner Face



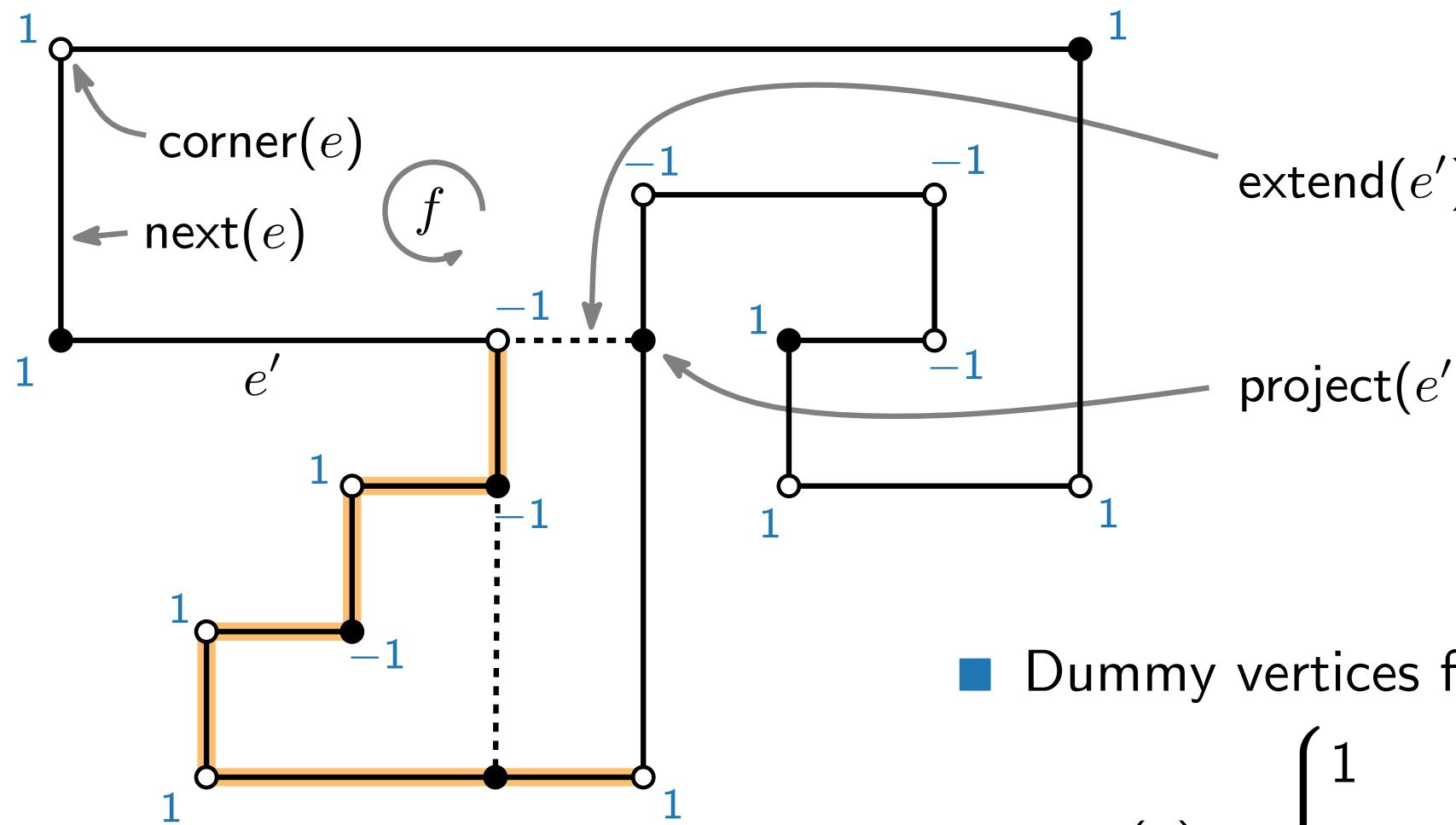
Refinement of (G, H) – Inner Face



Refinement of (G, H) – Inner Face



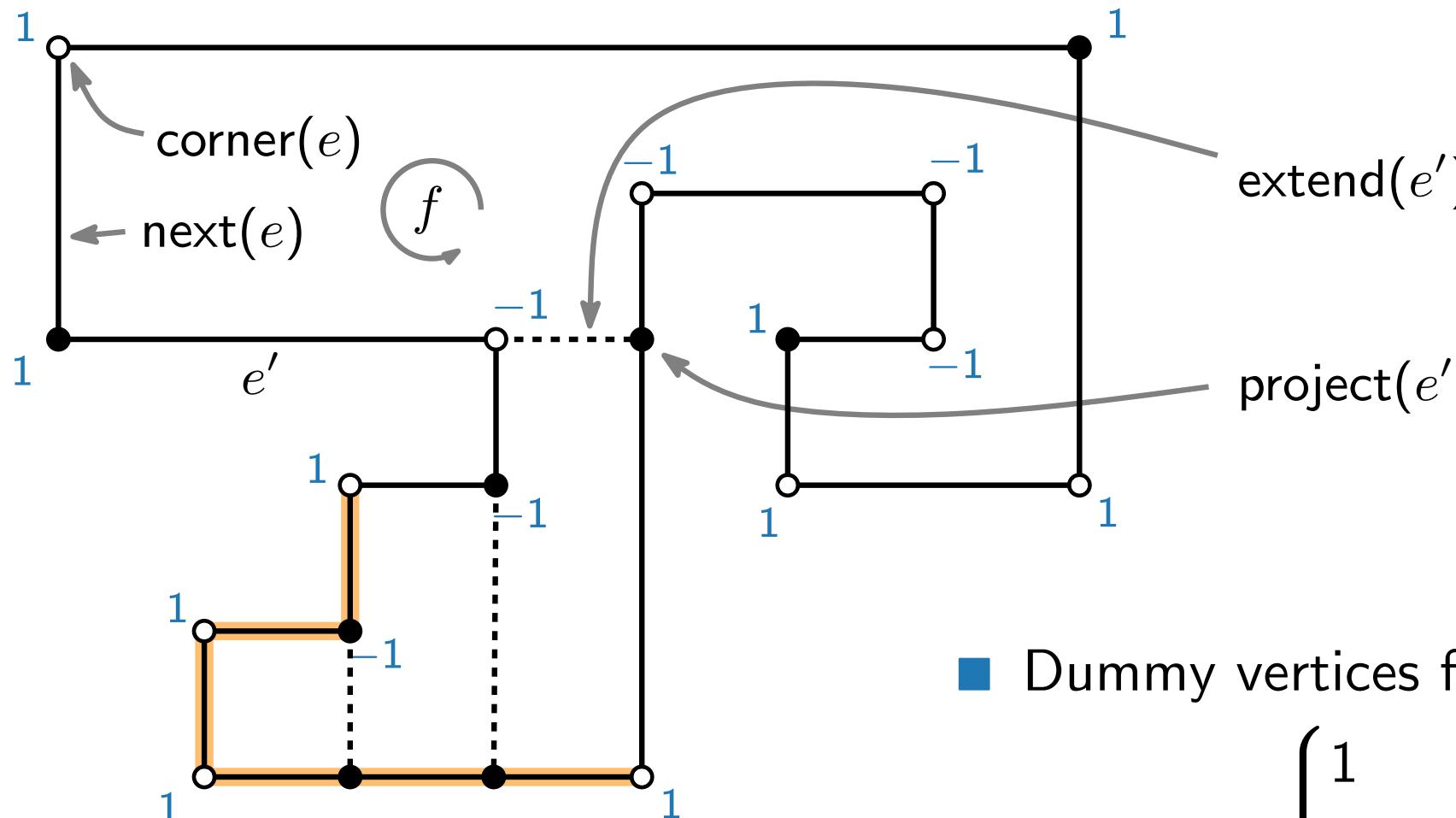
Refinement of (G, H) – Inner Face



■ Dummy vertices for bends

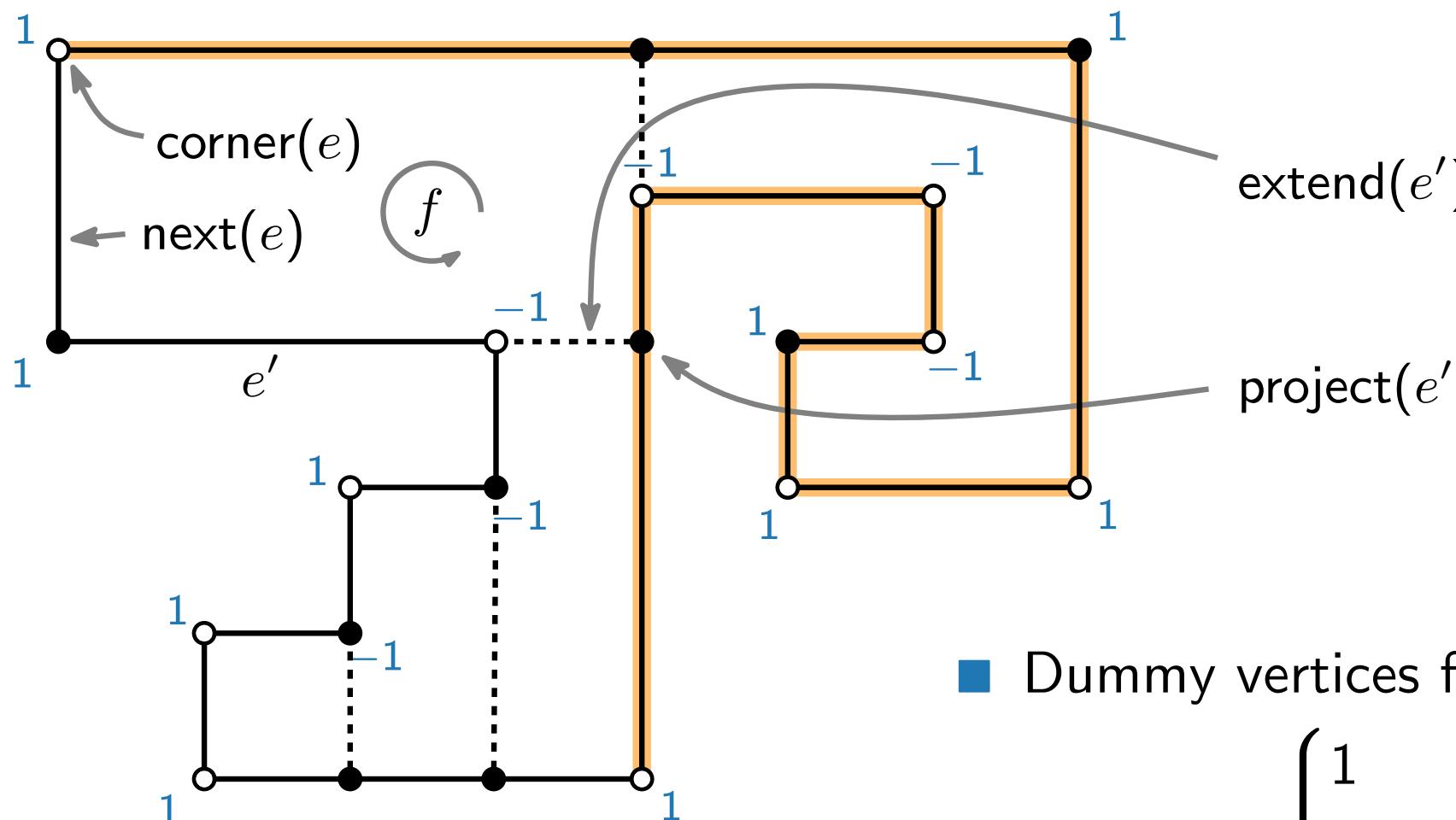
■ $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

Refinement of (G, H) – Inner Face



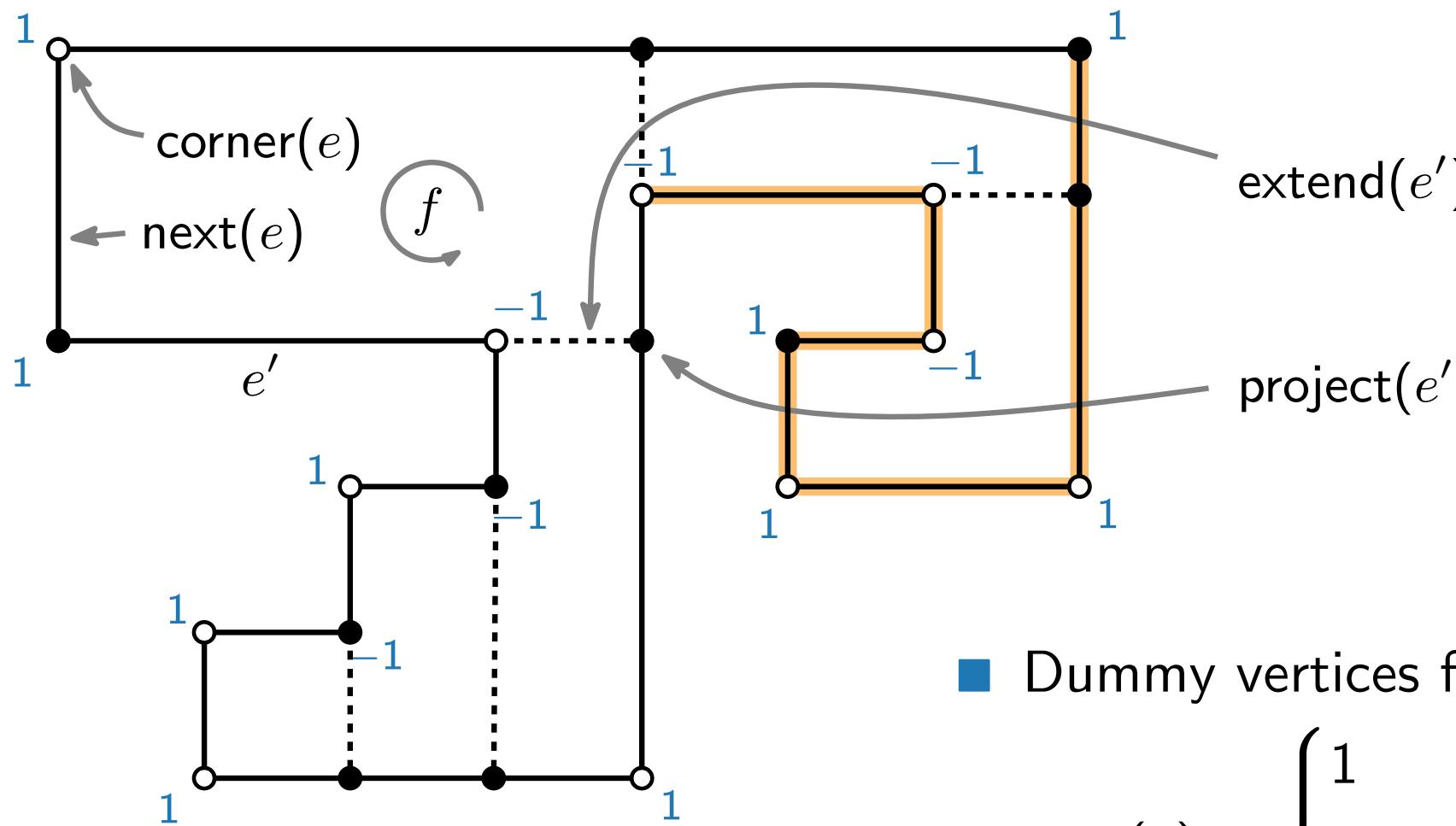
- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

Refinement of (G, H) – Inner Face



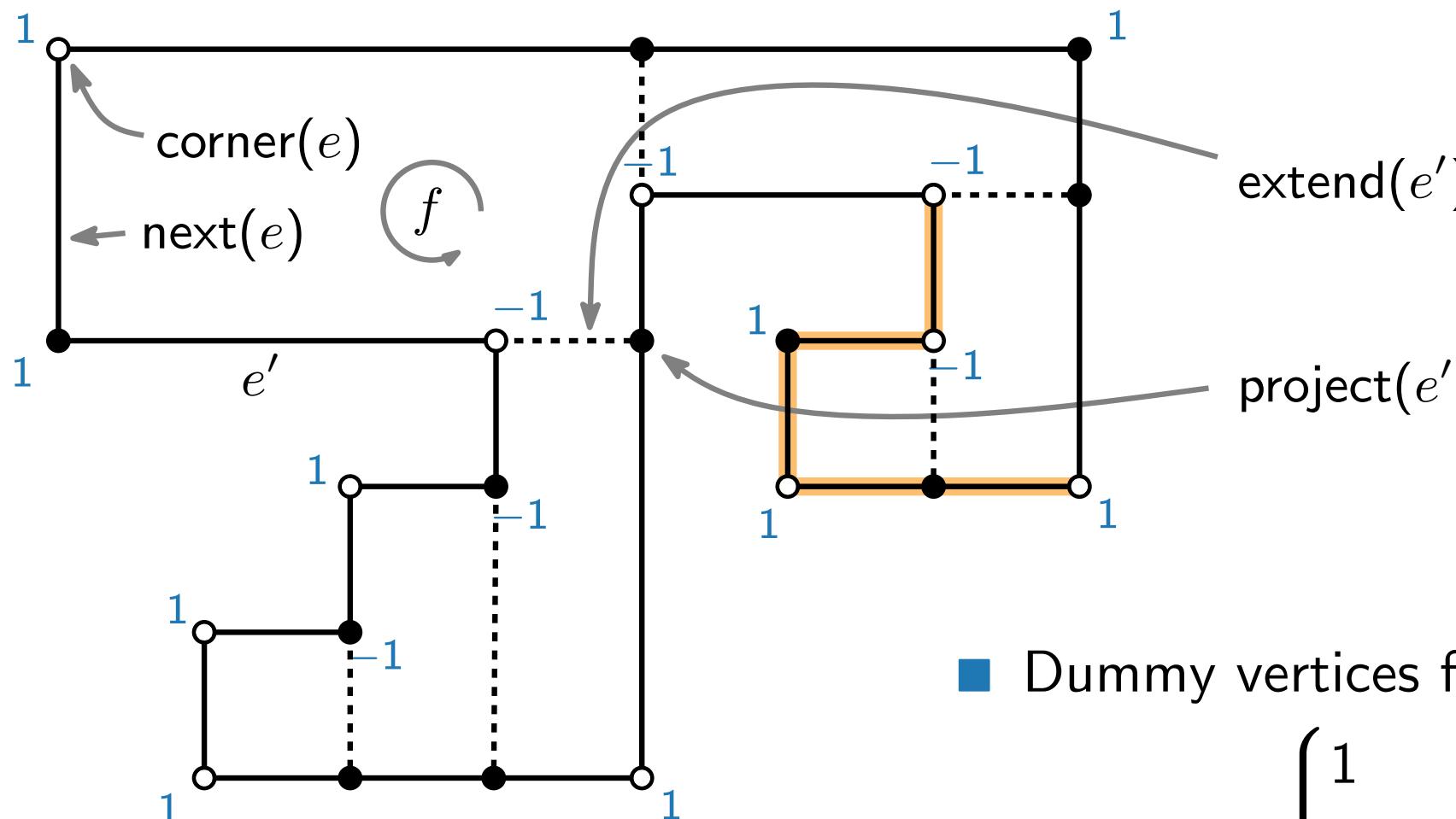
- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

Refinement of (G, H) – Inner Face



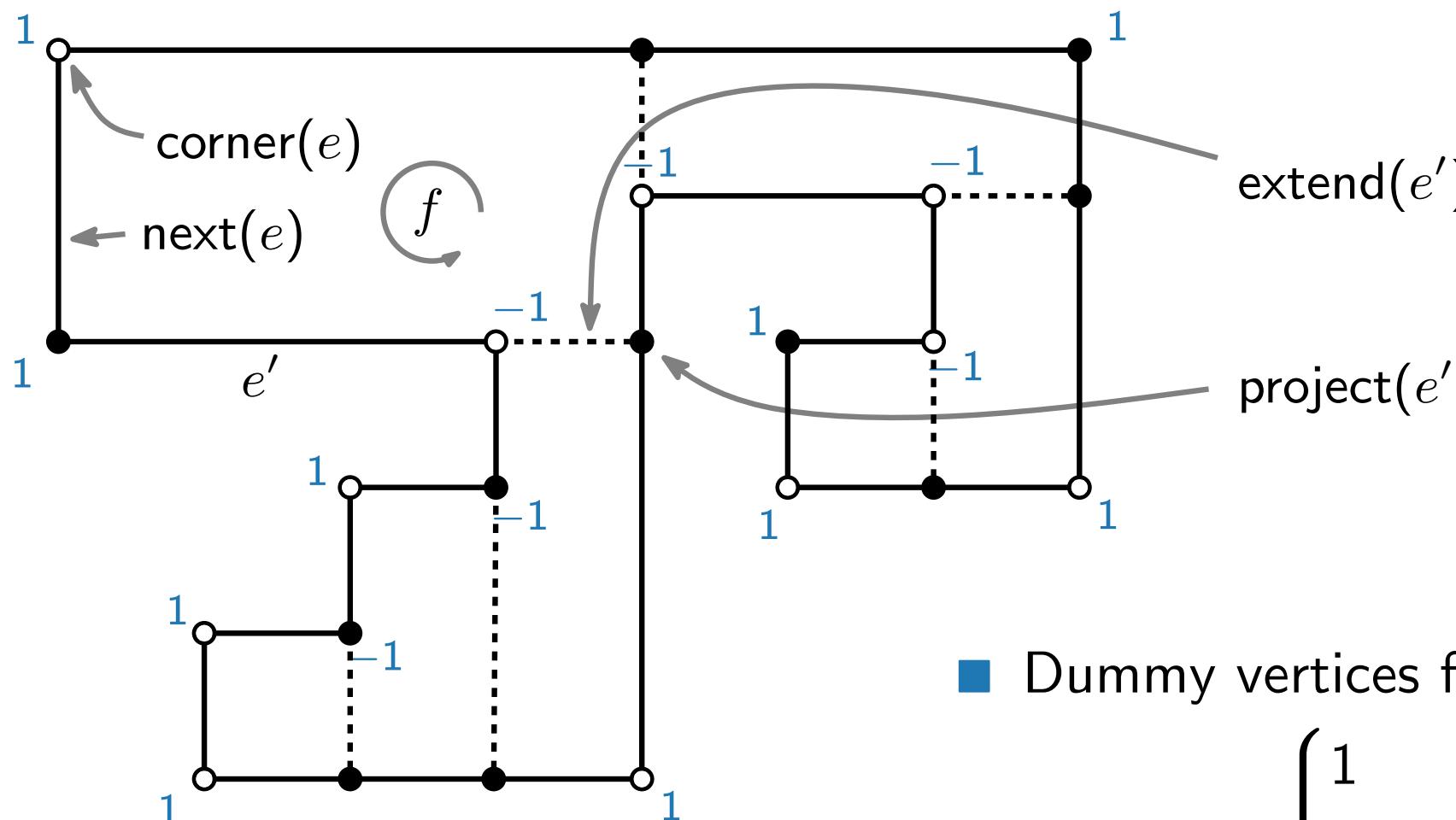
- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

Refinement of (G, H) – Inner Face



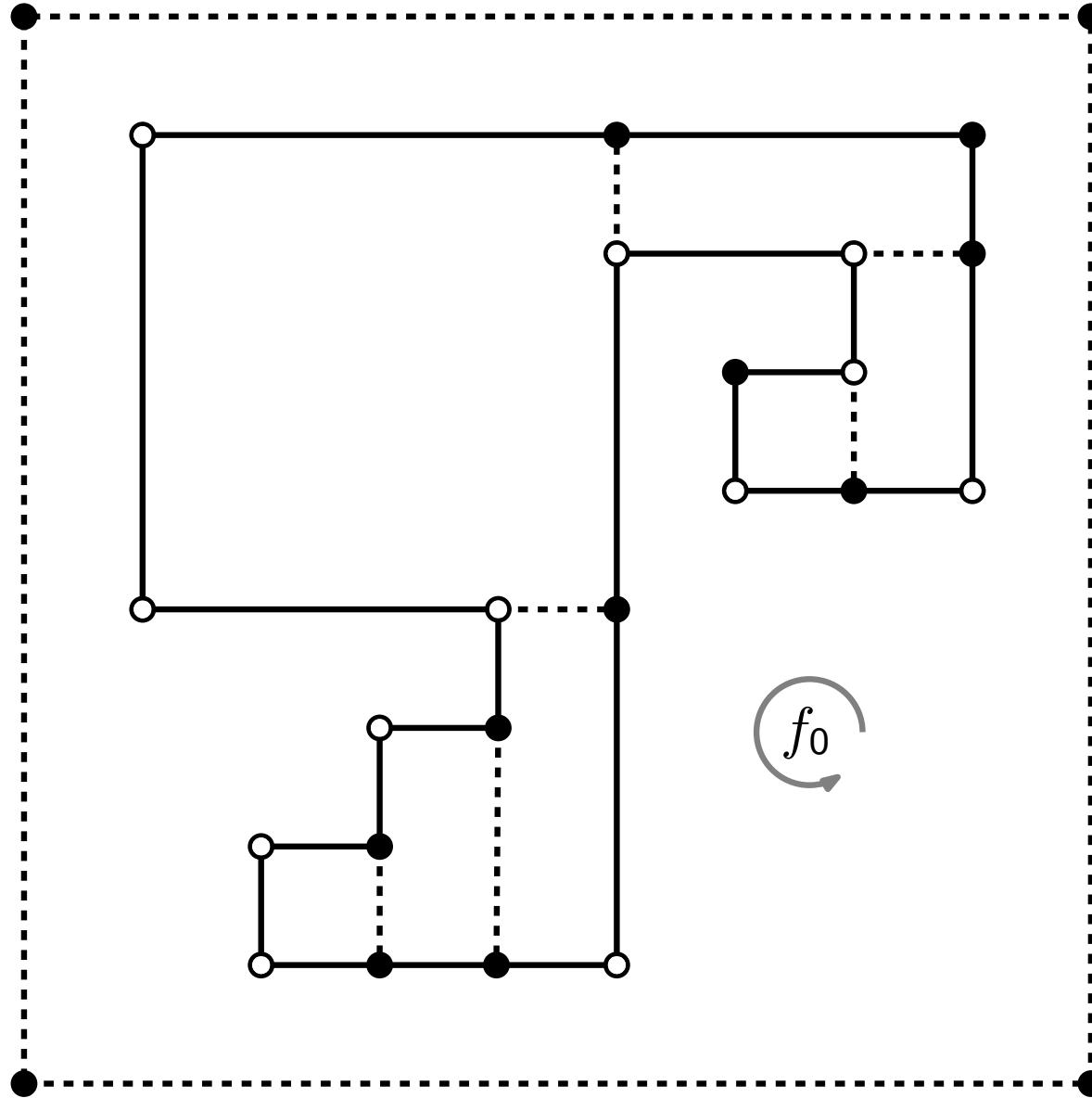
- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

Refinement of (G, H) – Inner Face

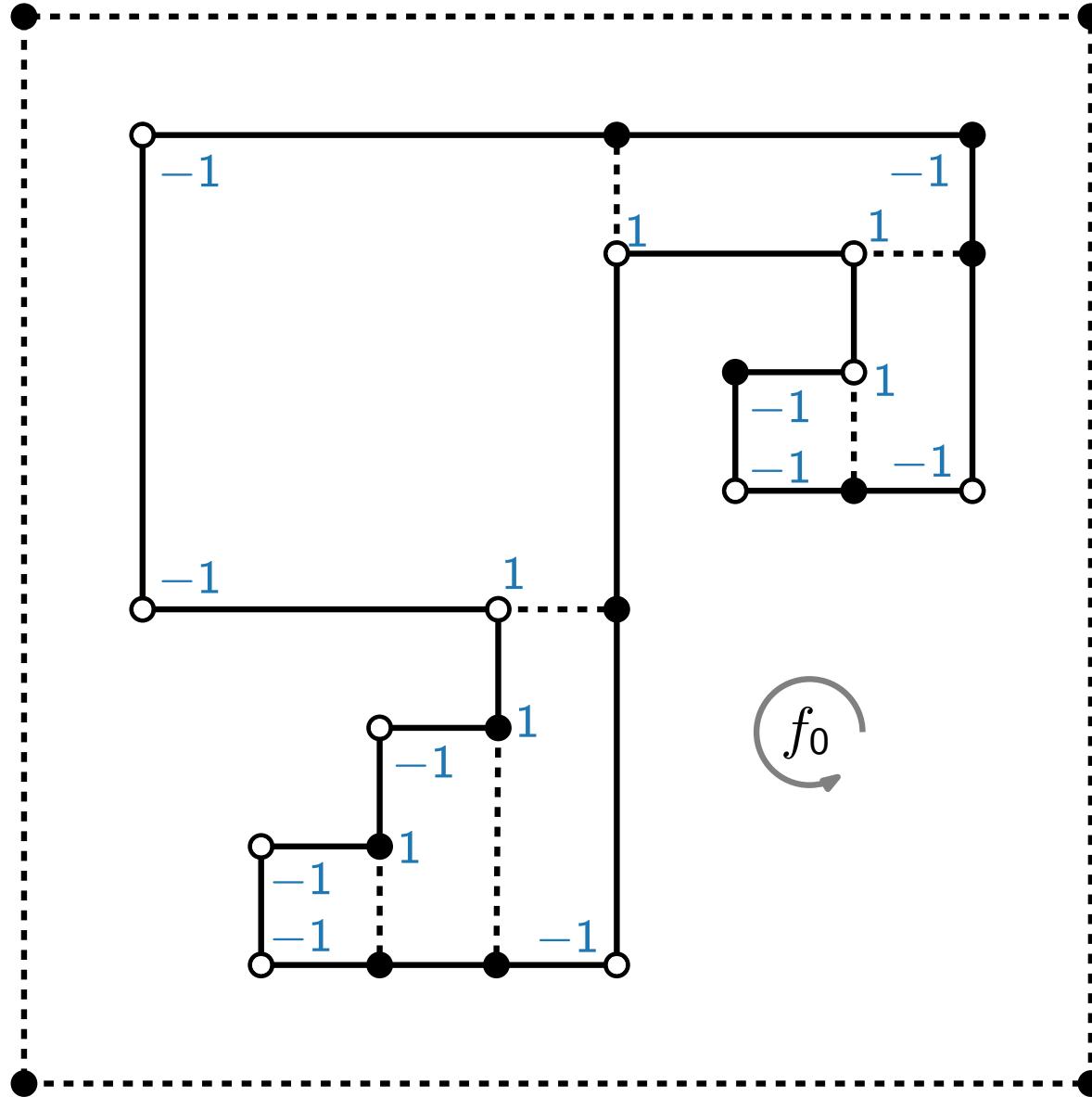


- Dummy vertices for bends
- $\text{turn}(e) = \begin{cases} 1 & \text{left turn} \\ 0 & \text{no turn} \\ -1 & \text{right turn} \end{cases}$

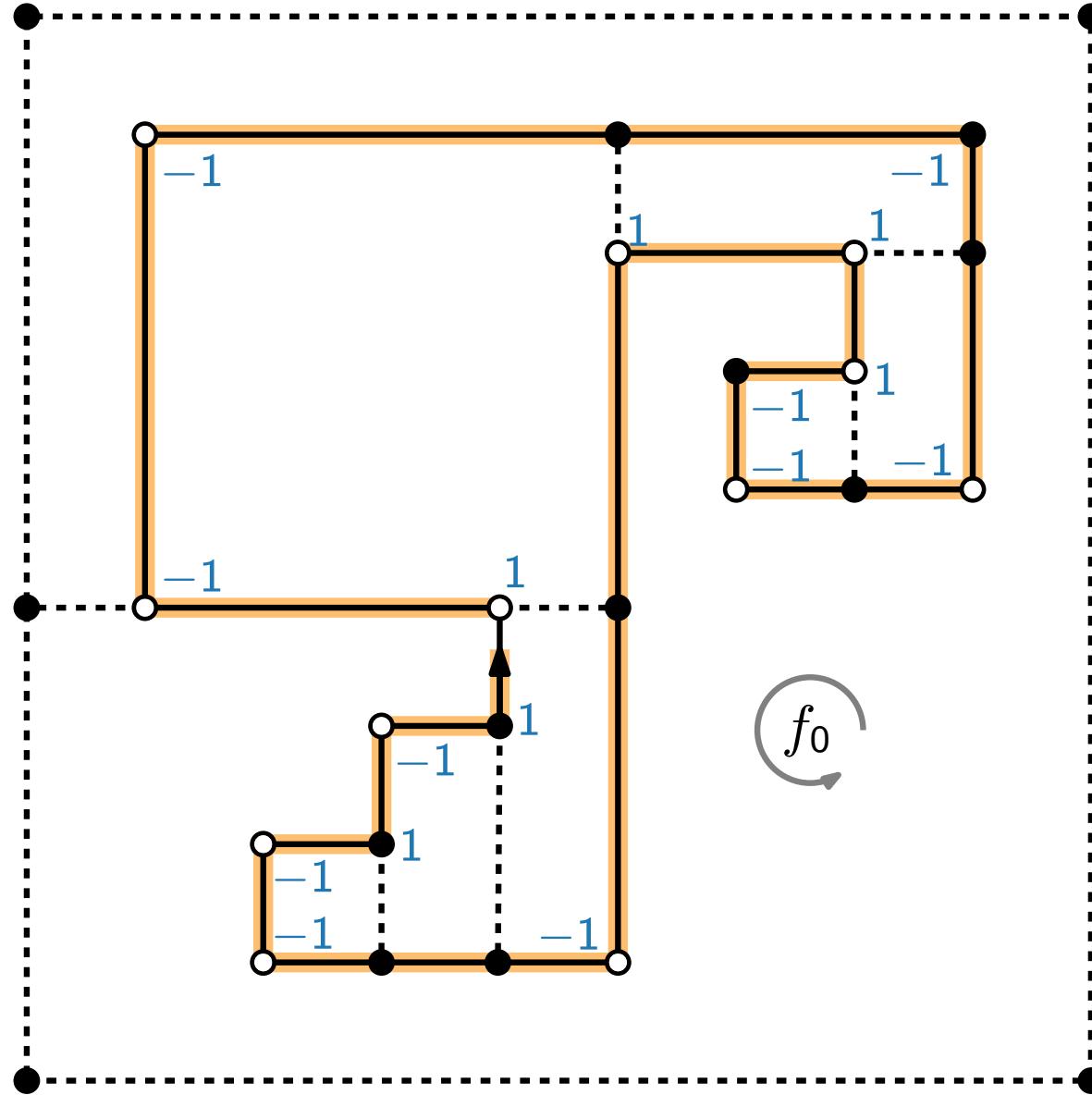
Refinement of (G, H) – Outer Face



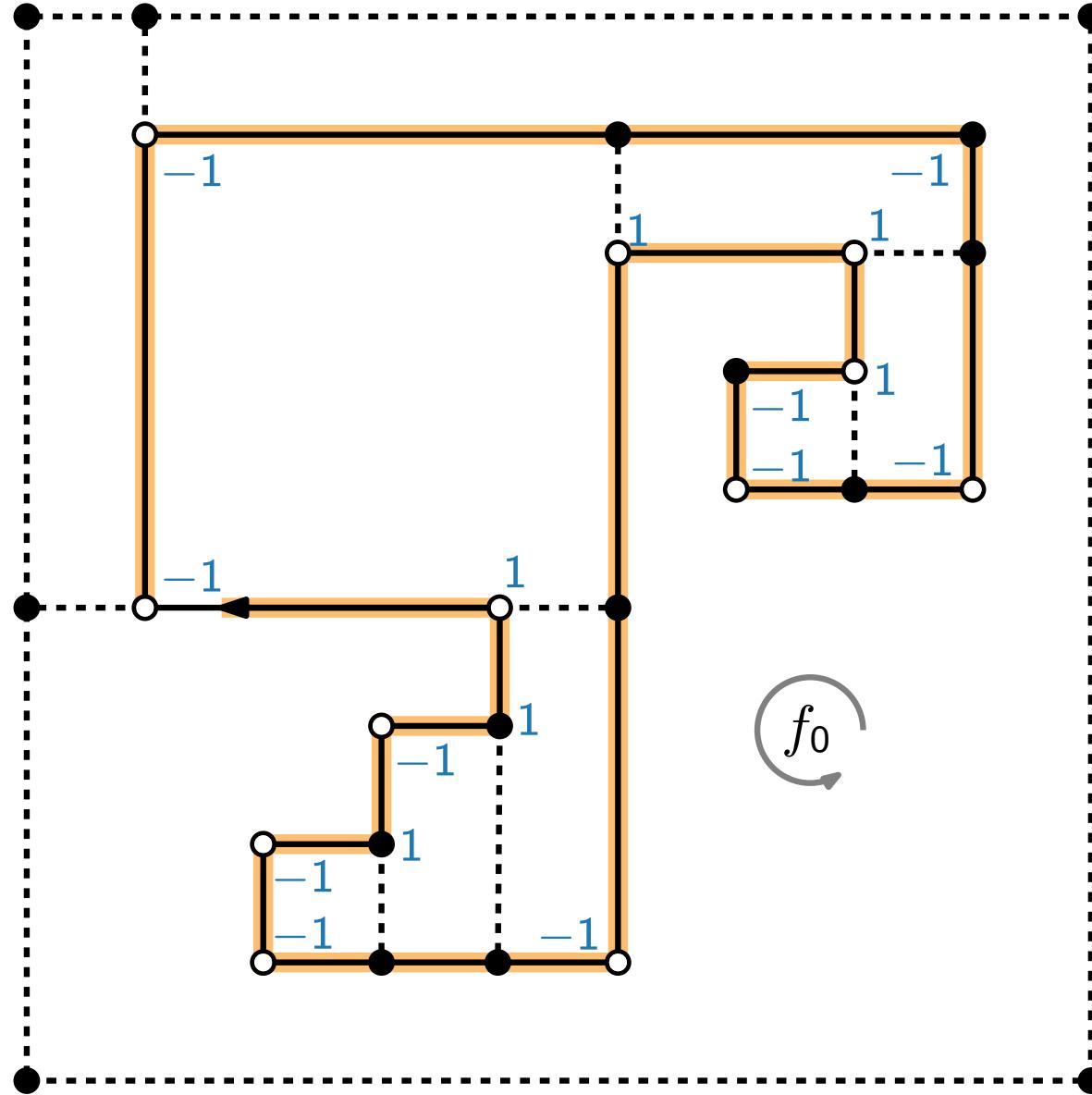
Refinement of (G, H) – Outer Face



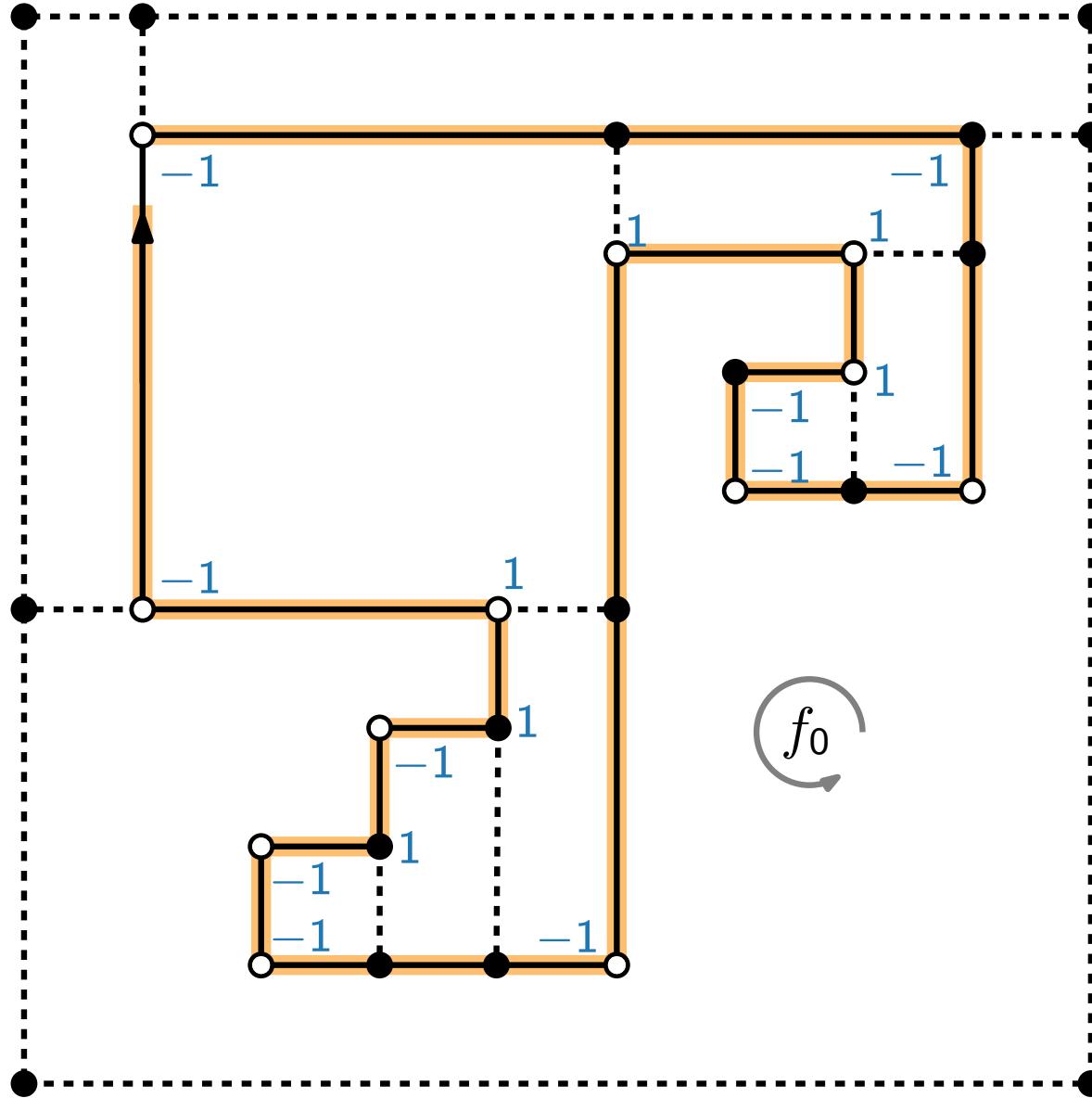
Refinement of (G, H) – Outer Face



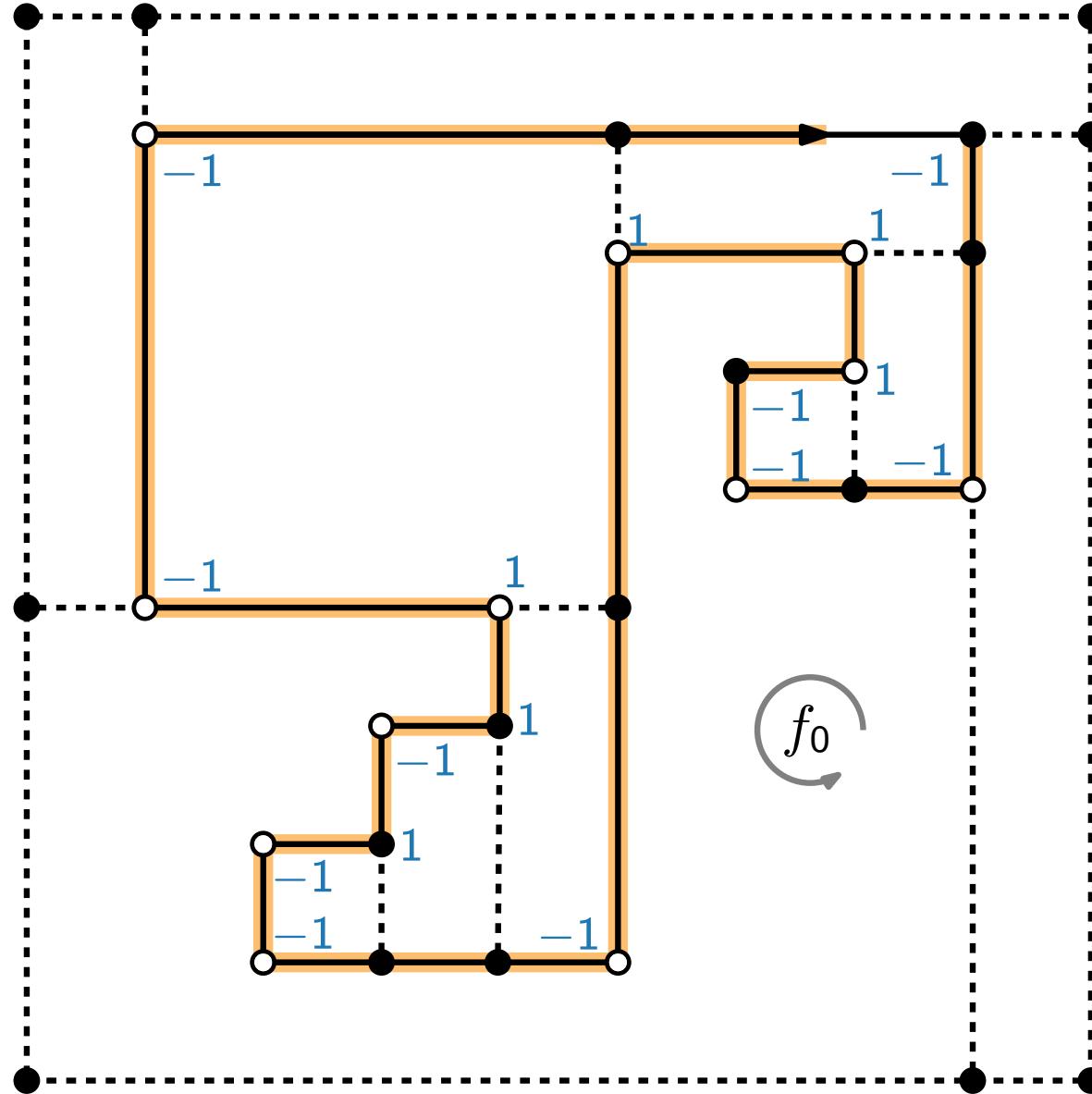
Refinement of (G, H) – Outer Face



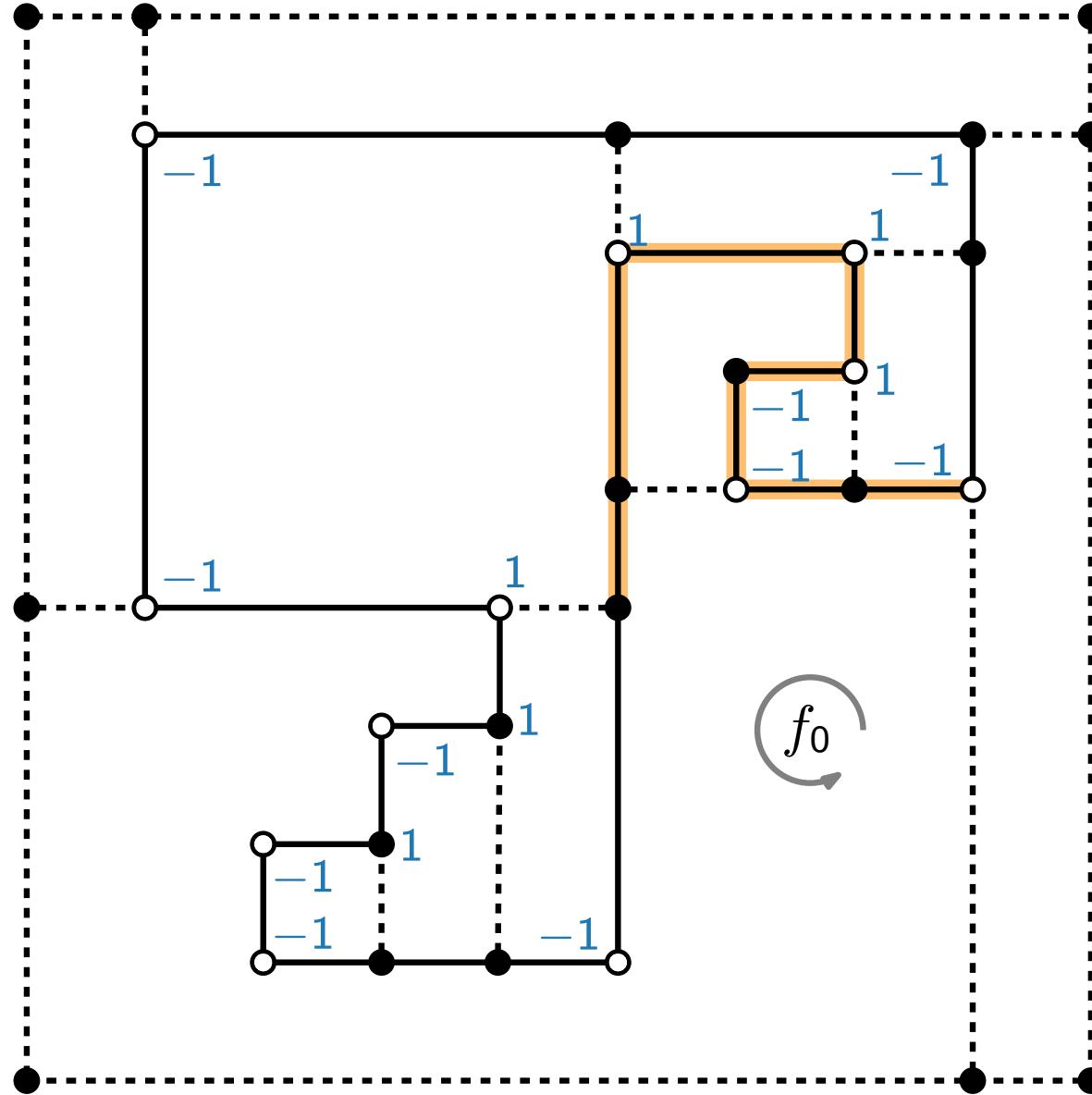
Refinement of (G, H) – Outer Face



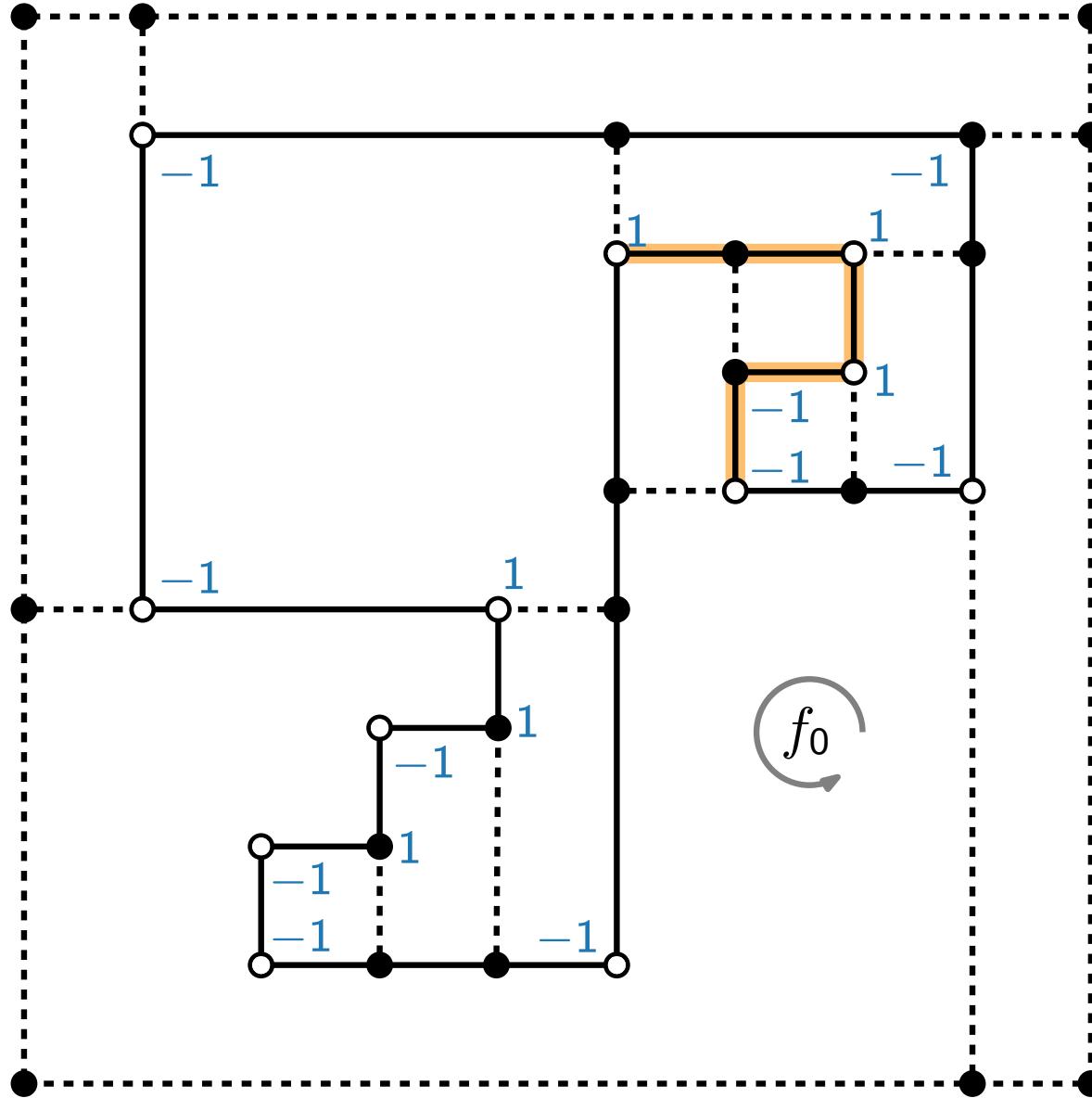
Refinement of (G, H) – Outer Face



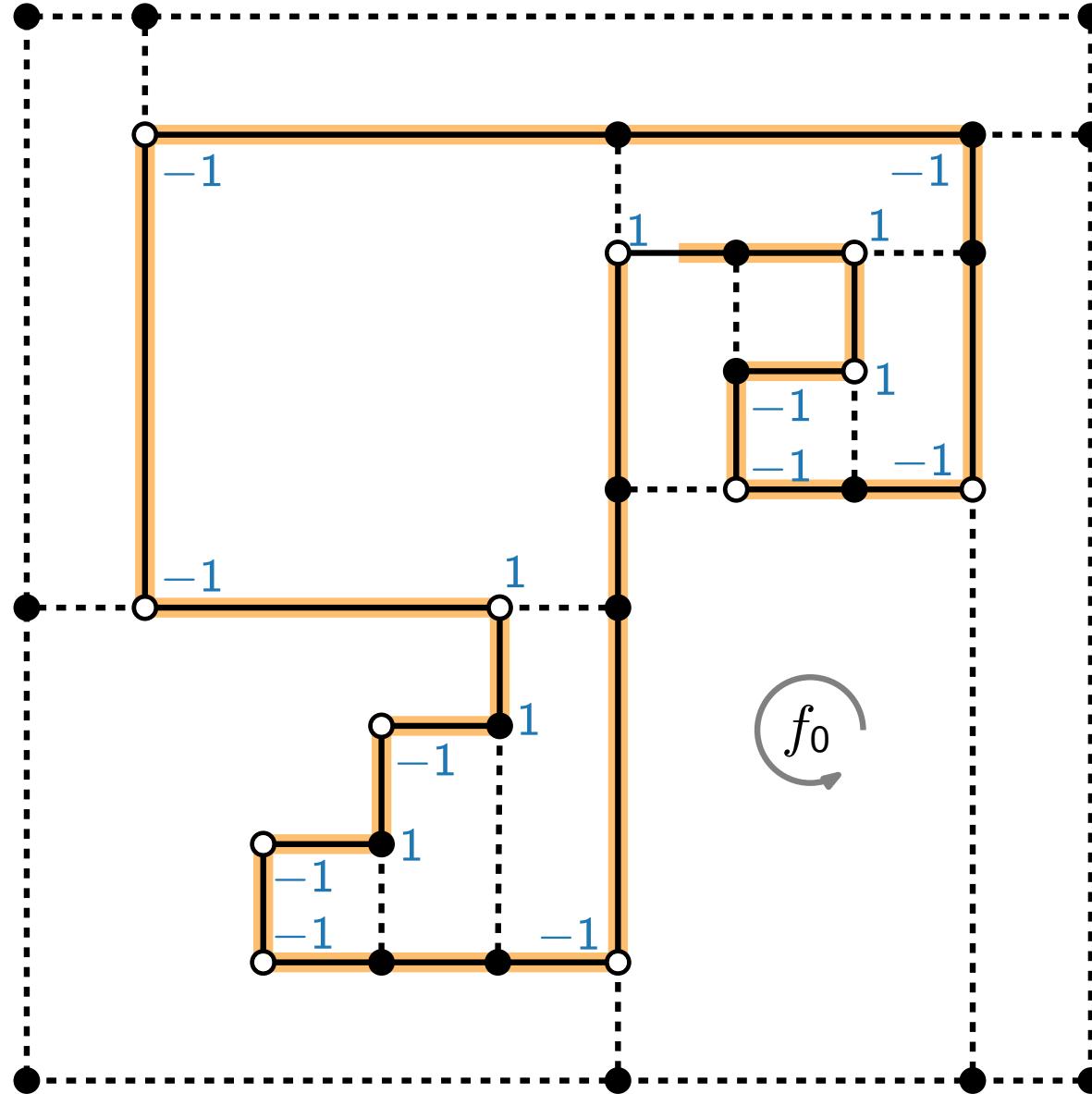
Refinement of (G, H) – Outer Face



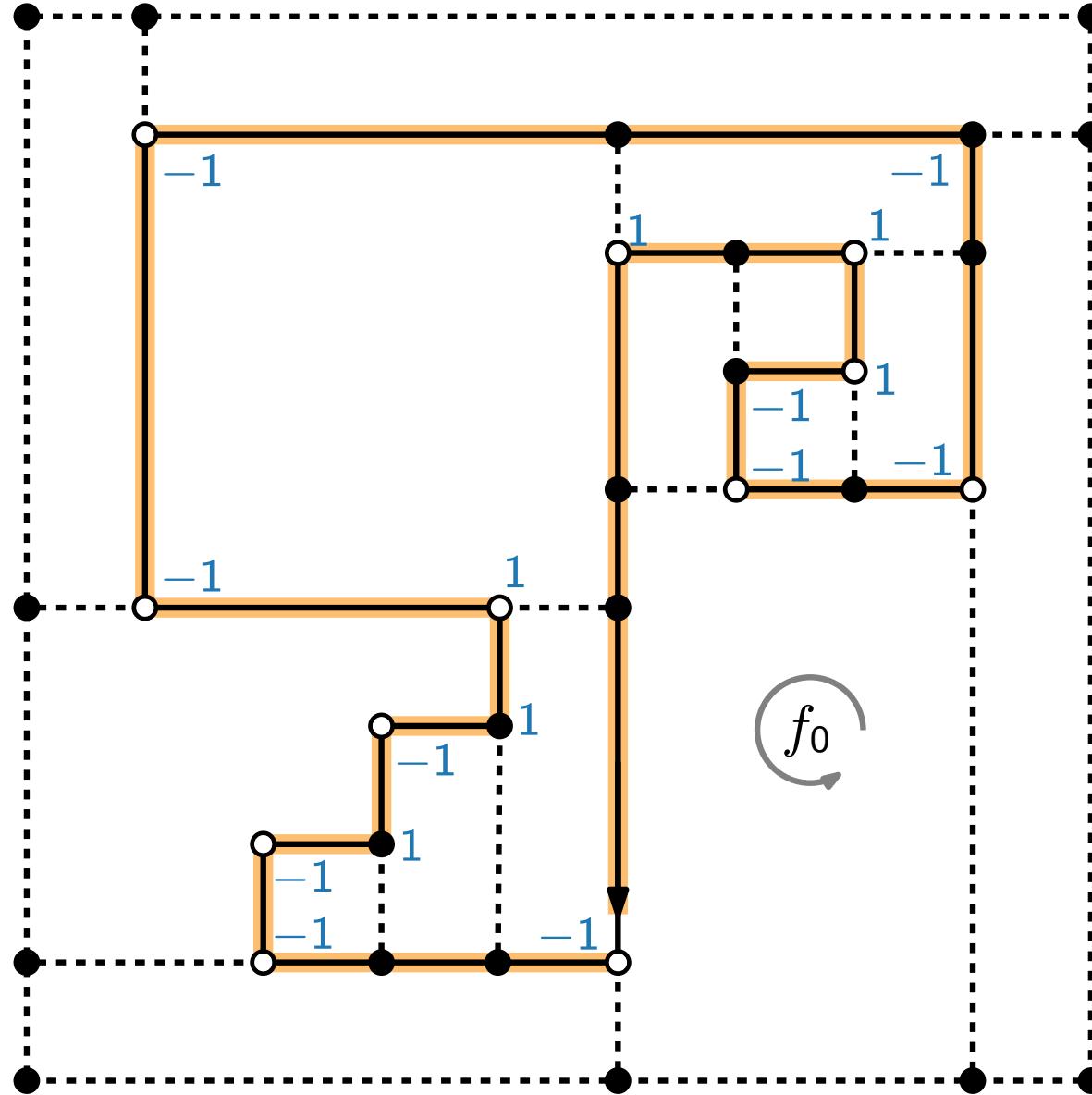
Refinement of (G, H) – Outer Face



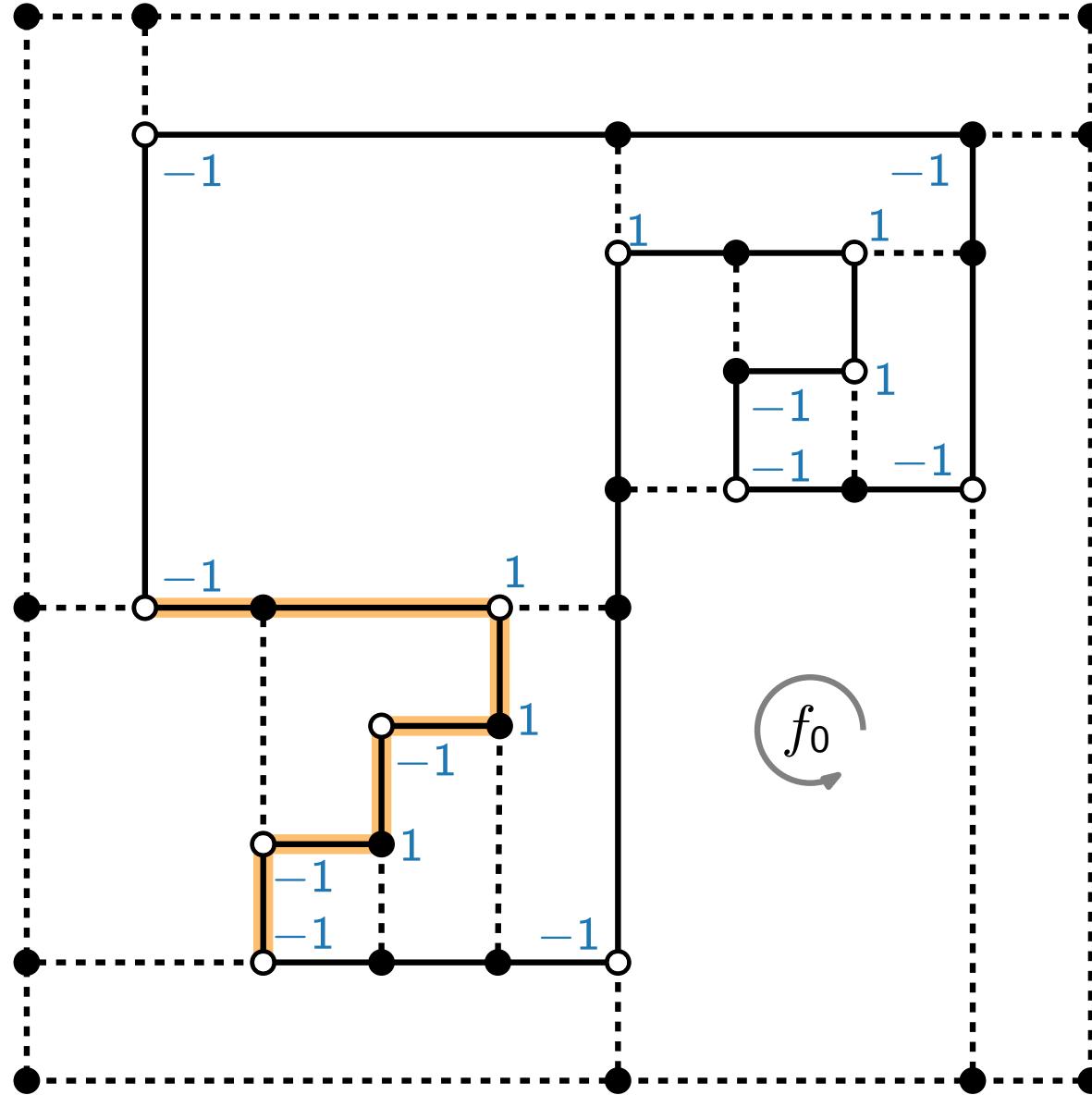
Refinement of (G, H) – Outer Face



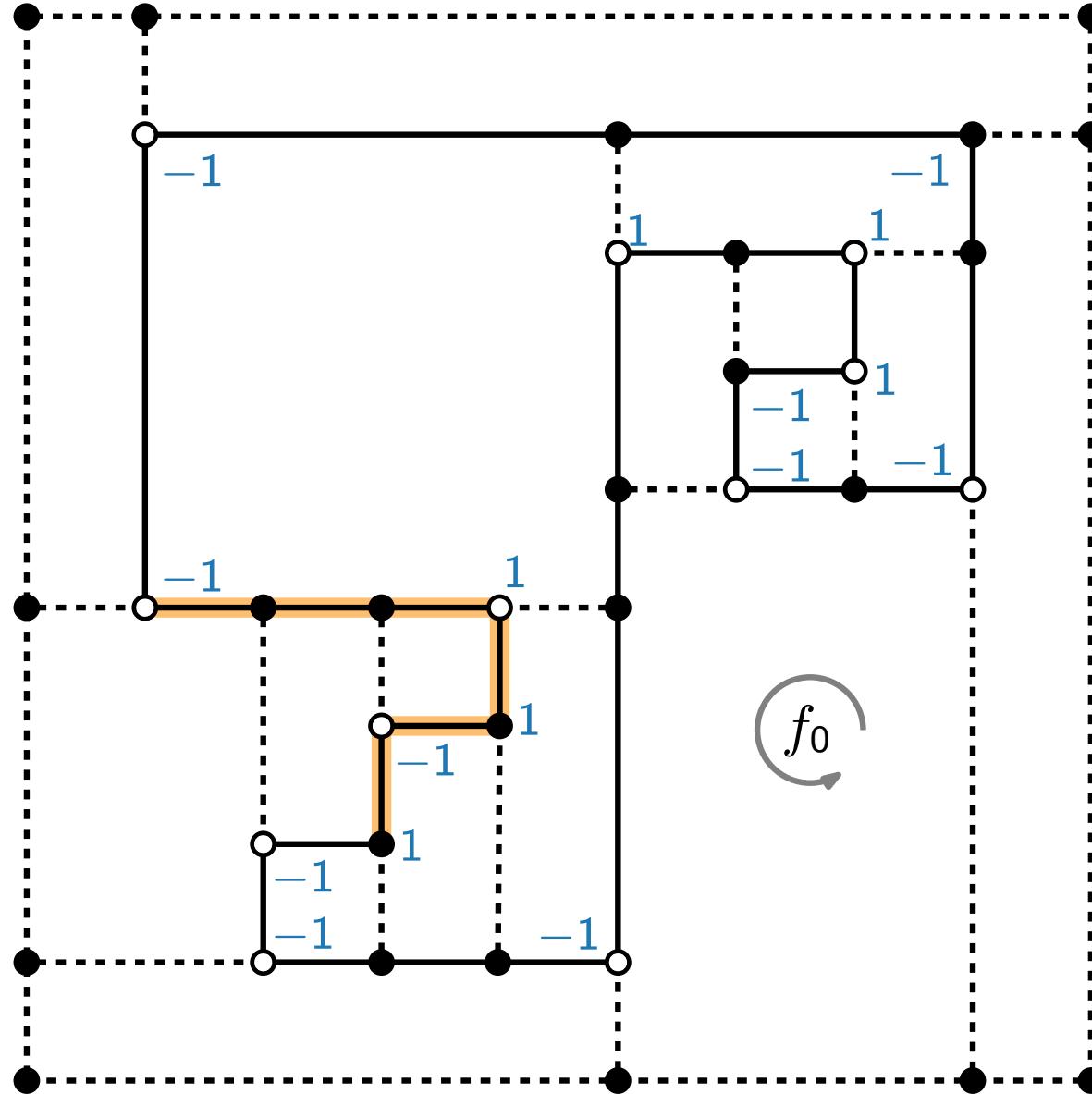
Refinement of (G, H) – Outer Face



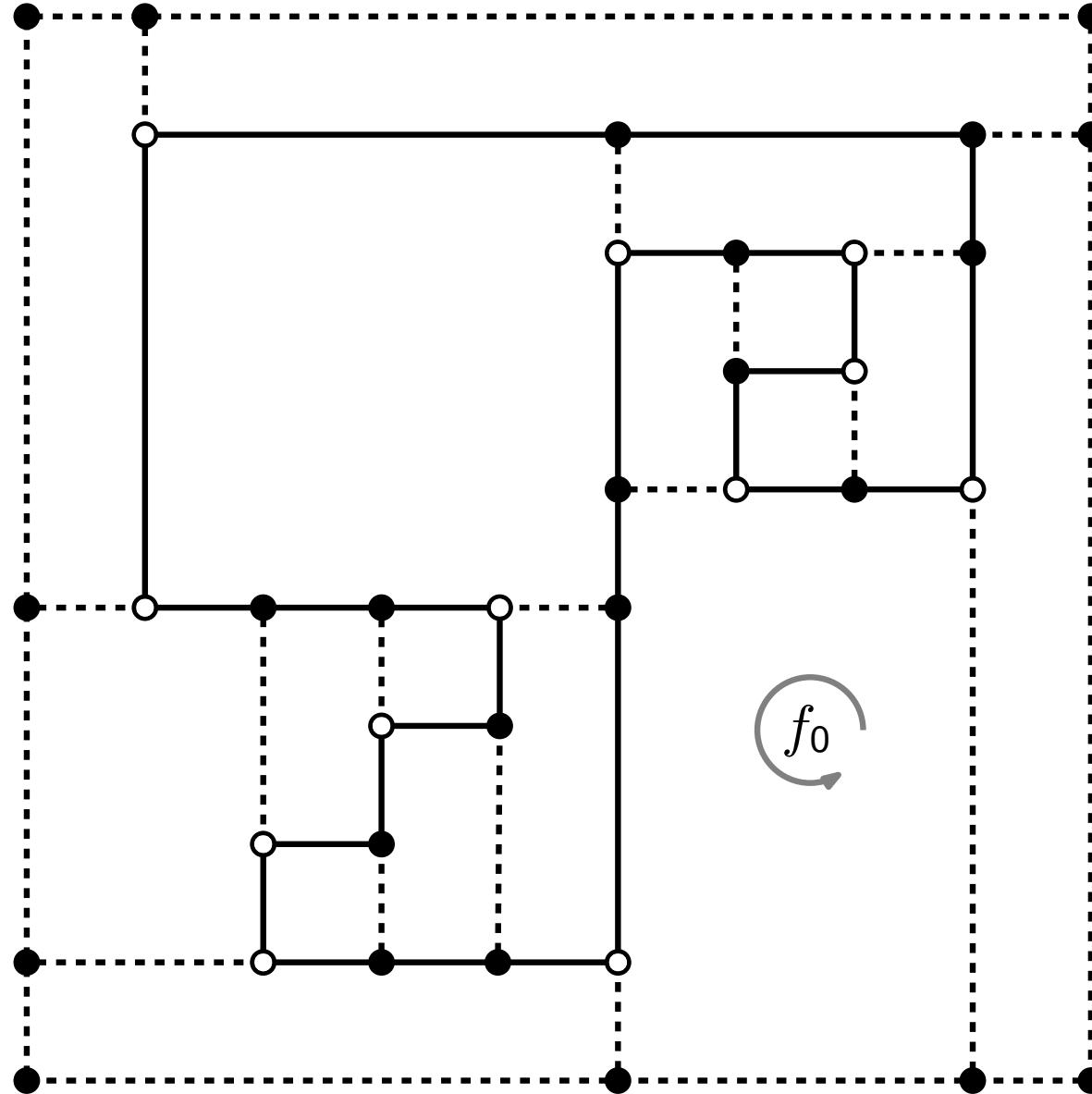
Refinement of (G, H) – Outer Face



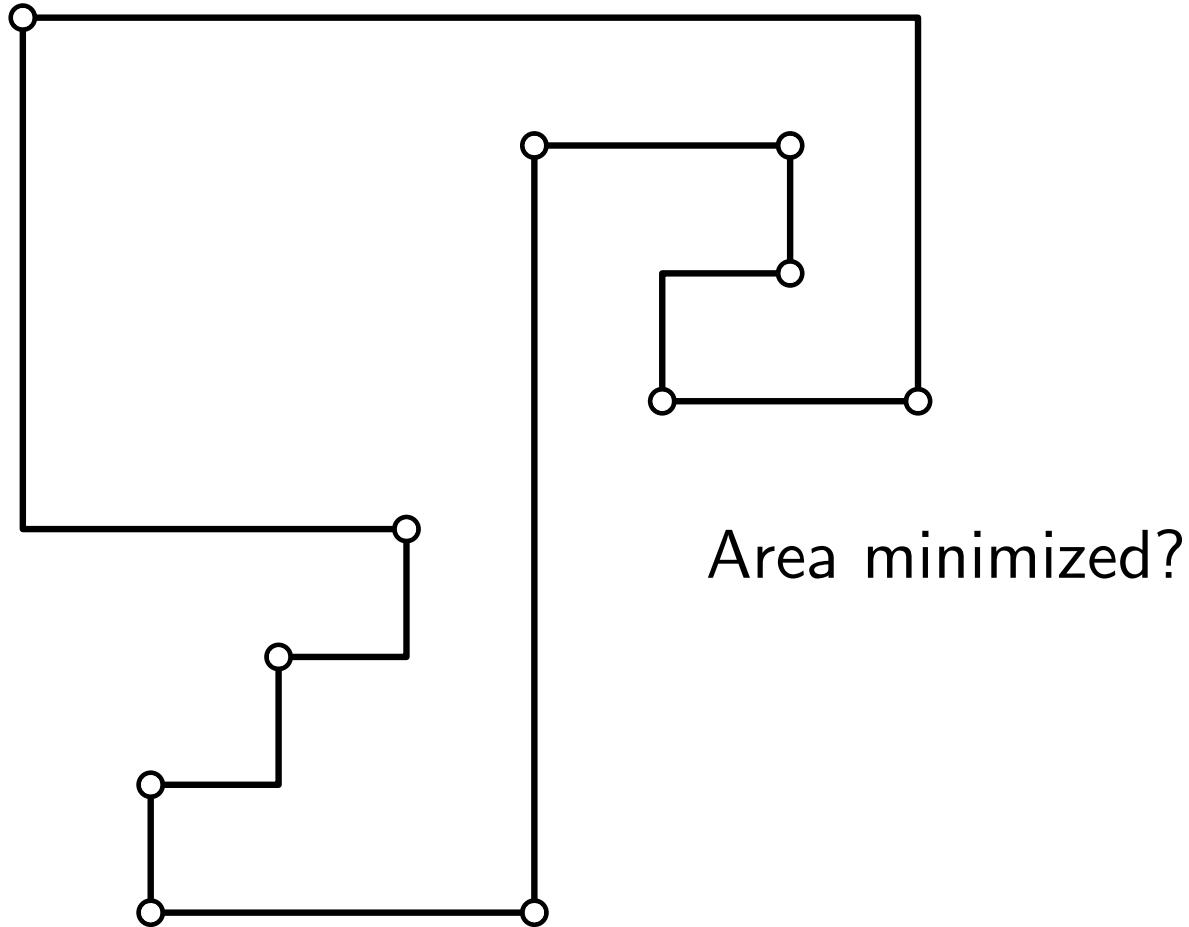
Refinement of (G, H) – Outer Face



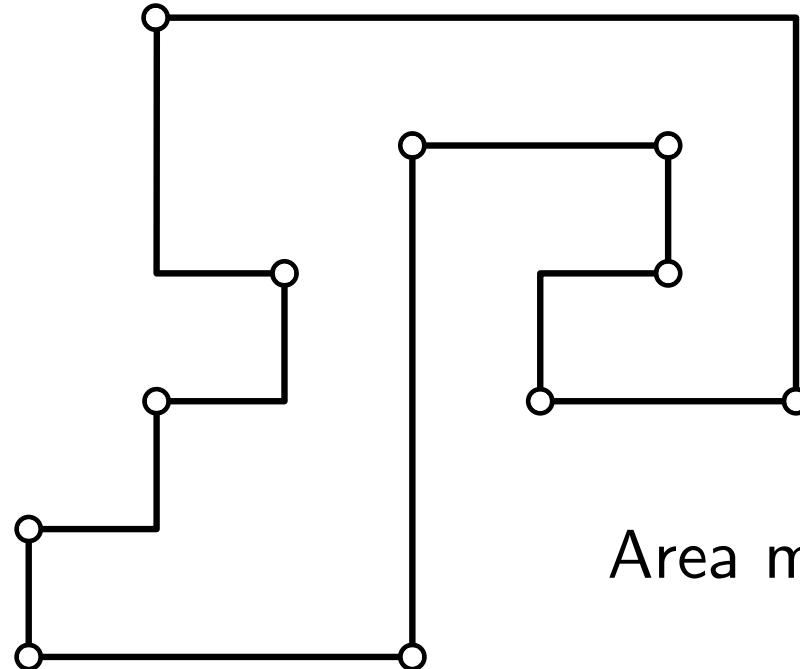
Refinement of (G, H) – Outer Face



Refinement of (G, H) – Outer Face

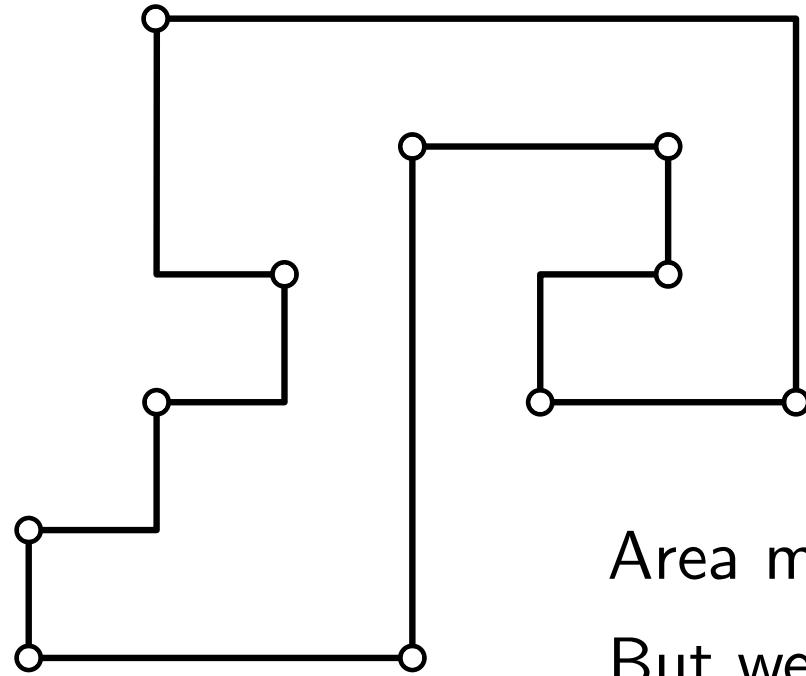


Refinement of (G, H) – Outer Face



Area minimized? No!

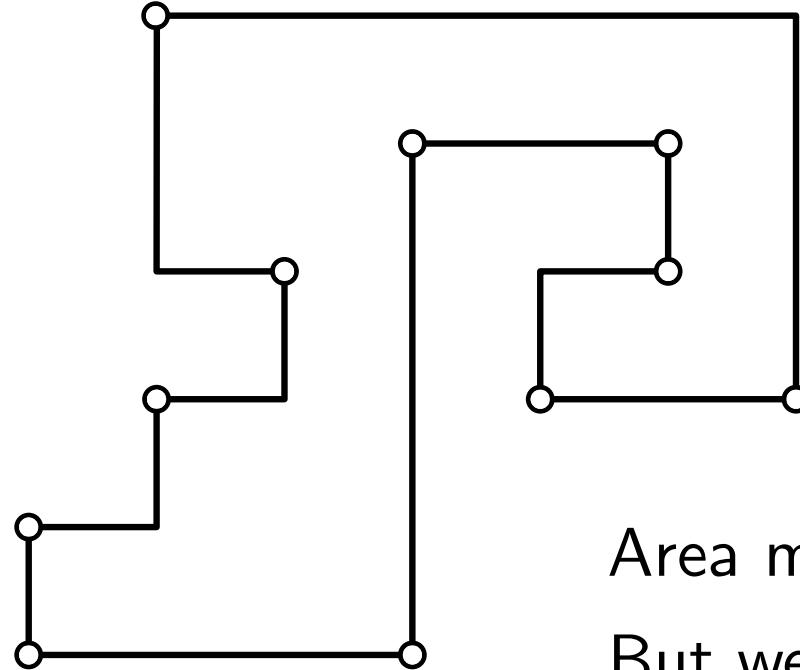
Refinement of (G, H) – Outer Face



Area minimized? **No!**

But we get bound $O((n + b)^2)$ on the area.

Refinement of (G, H) – Outer Face



Area minimized? **No!**

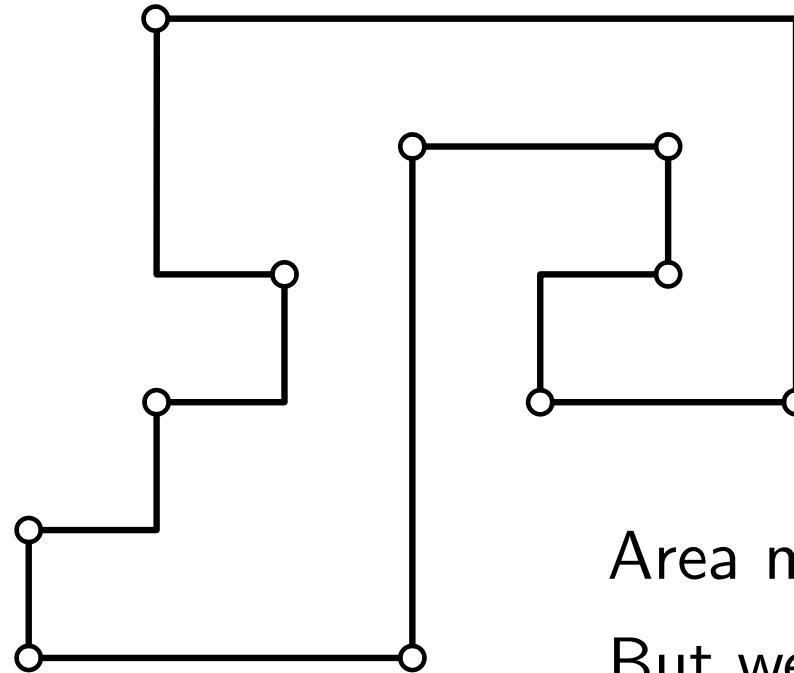
But we get bound $O((n + b)^2)$ on the area.

Theorem.

[Patrignani 2001]

Compaction for given orthogonal representation is NP-hard in general.

Refinement of (G, H) – Outer Face



Area minimized? **No!**

But we get bound $O((n + b)^2)$ on the area.

Theorem.

[Patrignani 2001]

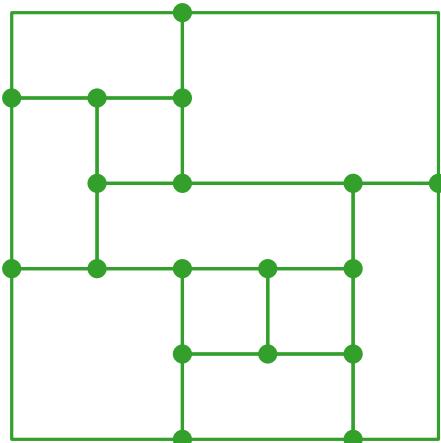
Compaction for given orthogonal representation is NP-hard in general.

Theorem.

[EFKSSW 2022]

Compaction is NP-hard even for orthogonal representation of *cycles*.

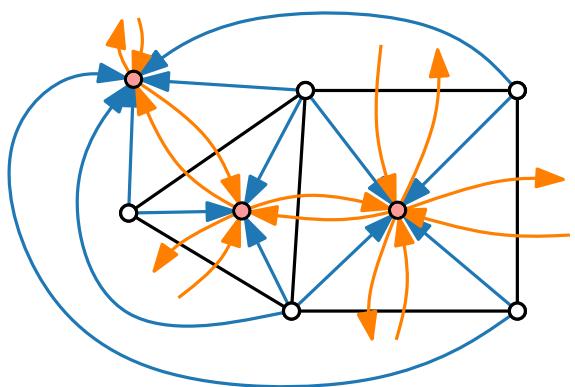
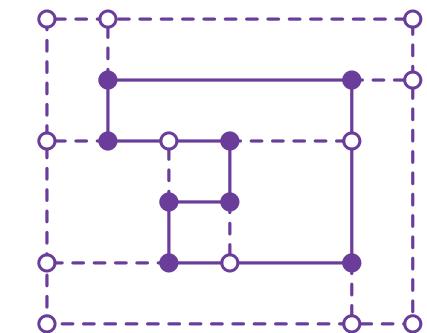
Visualization of Graphs



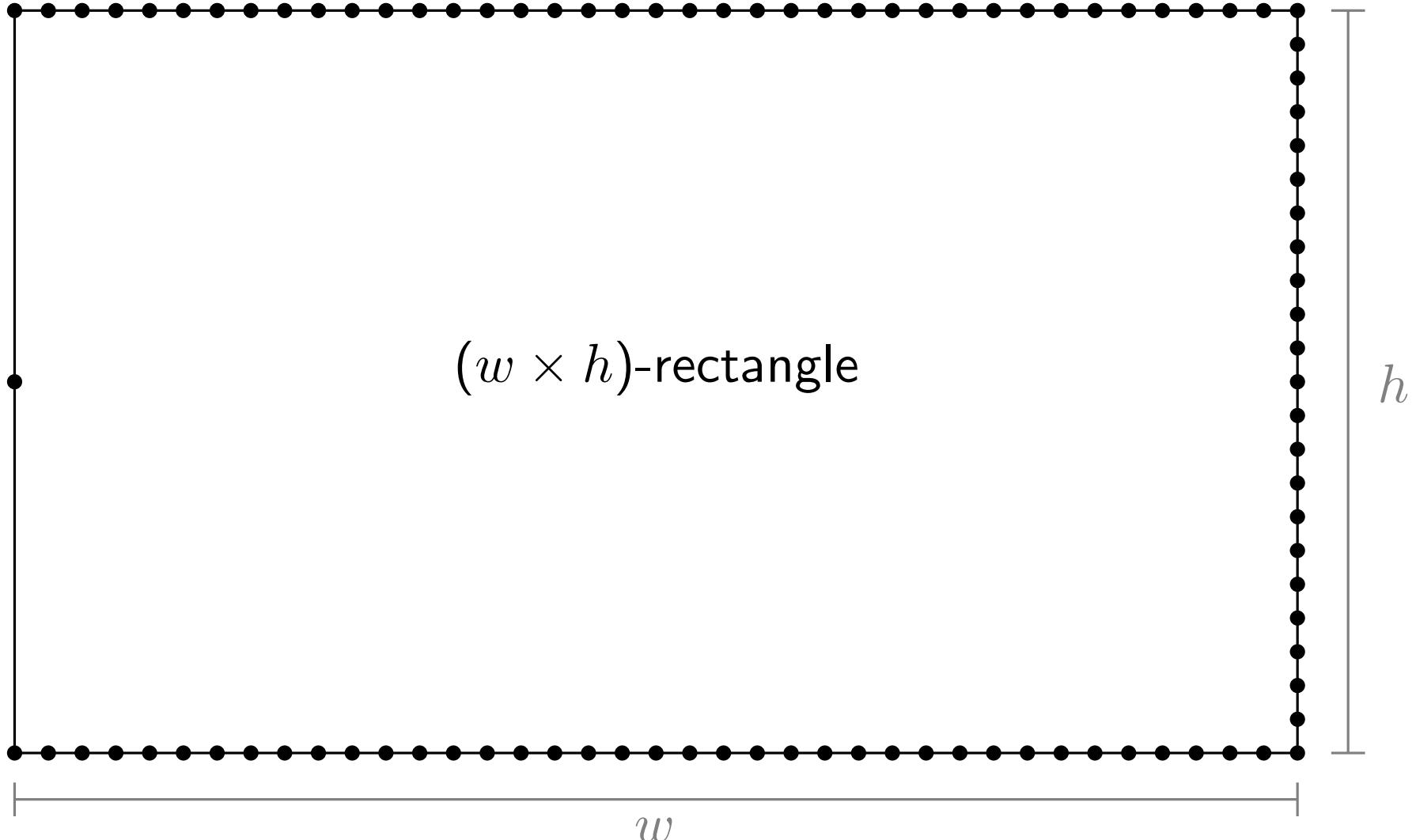
Lecture 5: Orthogonal Layouts

Part V: NP-Hardness

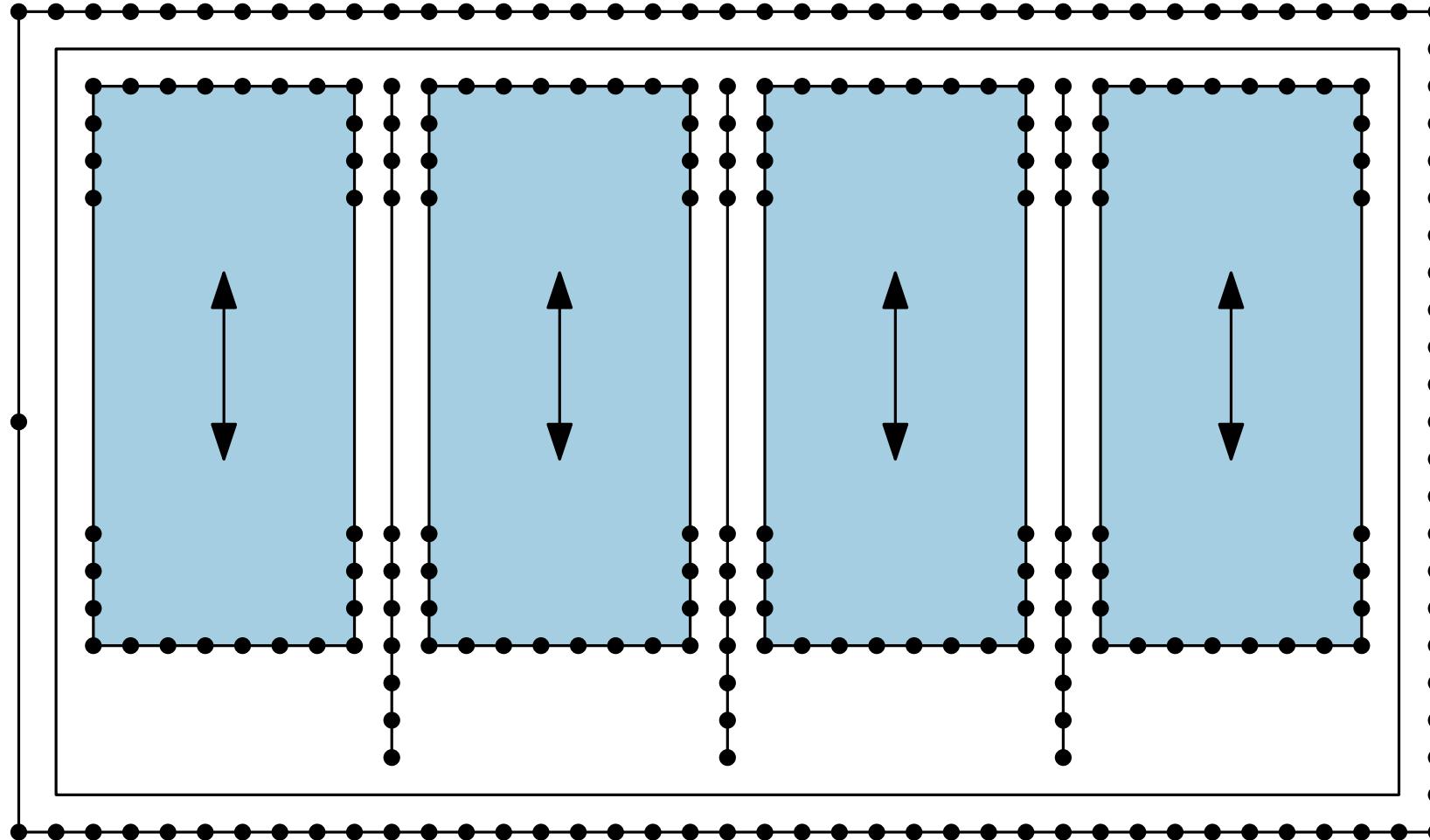
Alexander Wolff



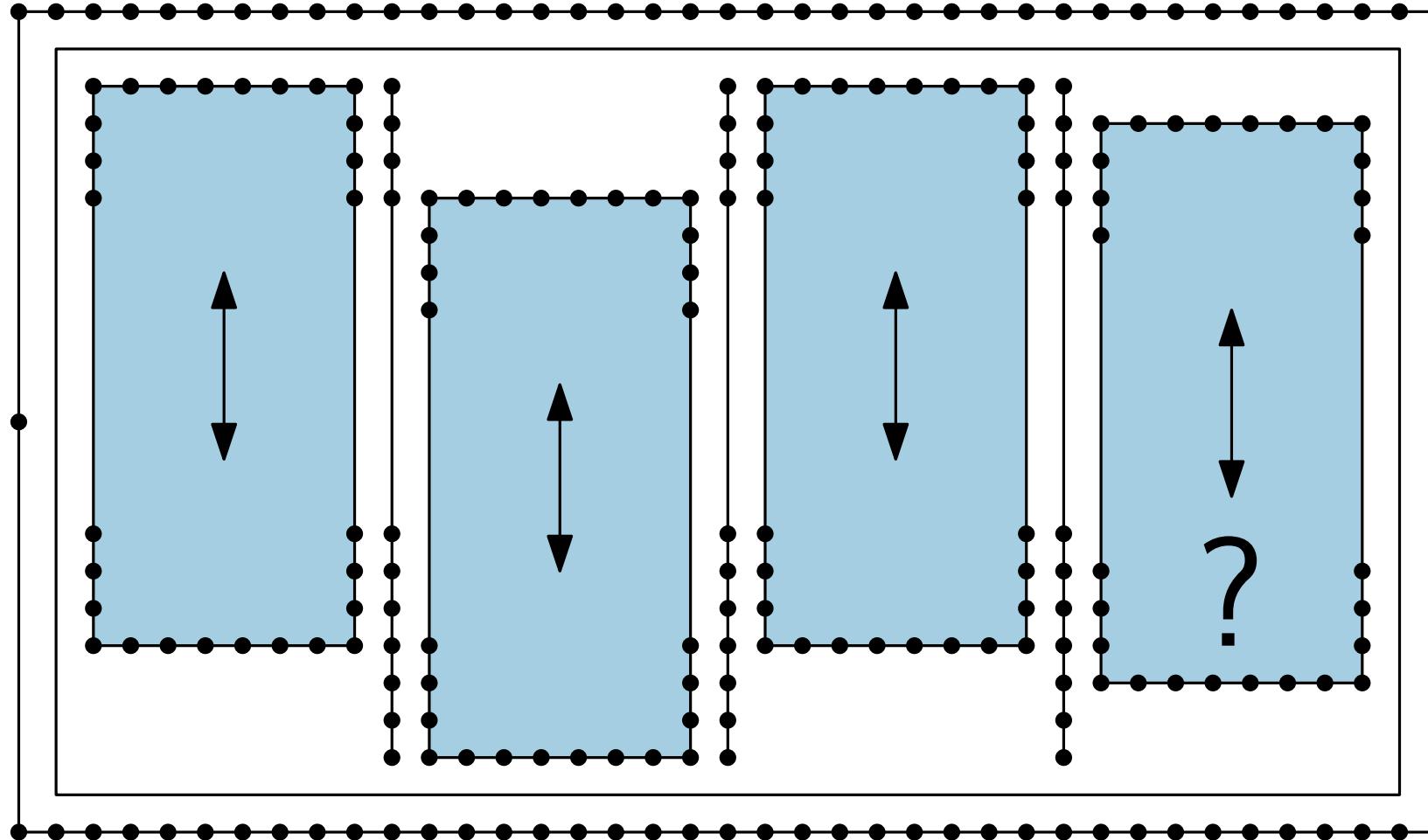
Boundary, **belt**, and “piston” gadget



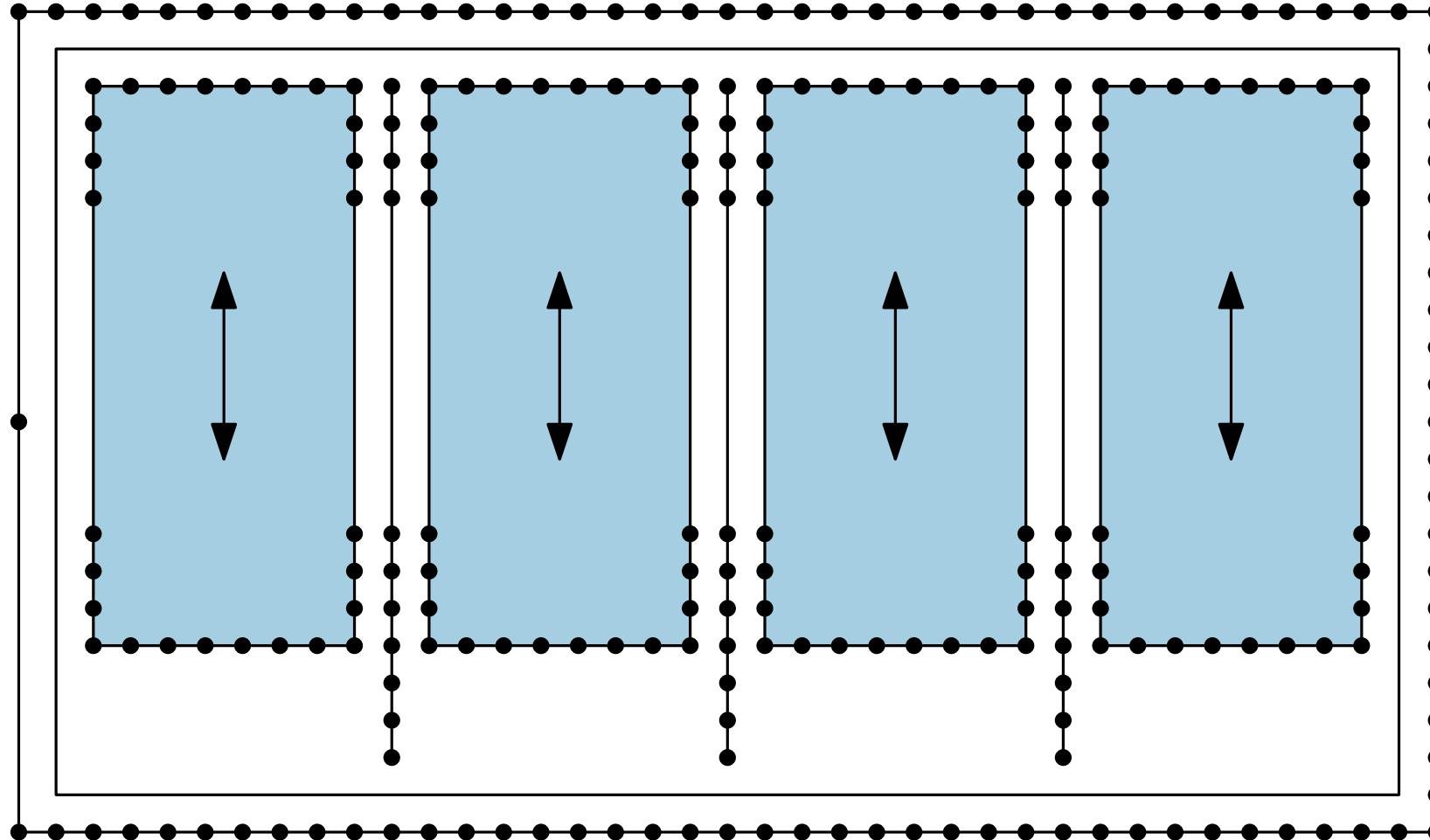
Boundary, **belt**, and “piston” gadget



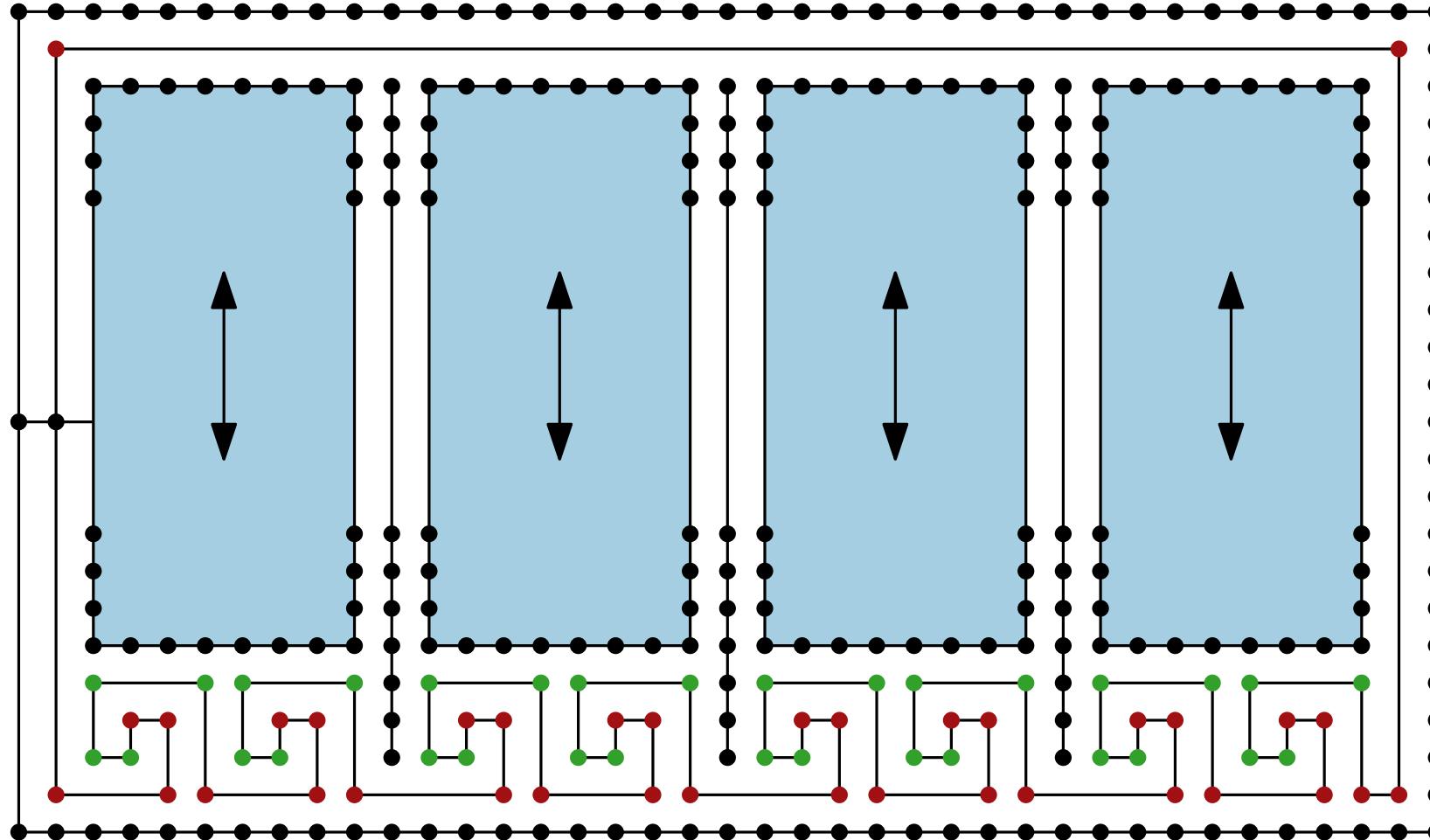
Boundary, **belt**, and “piston” gadget



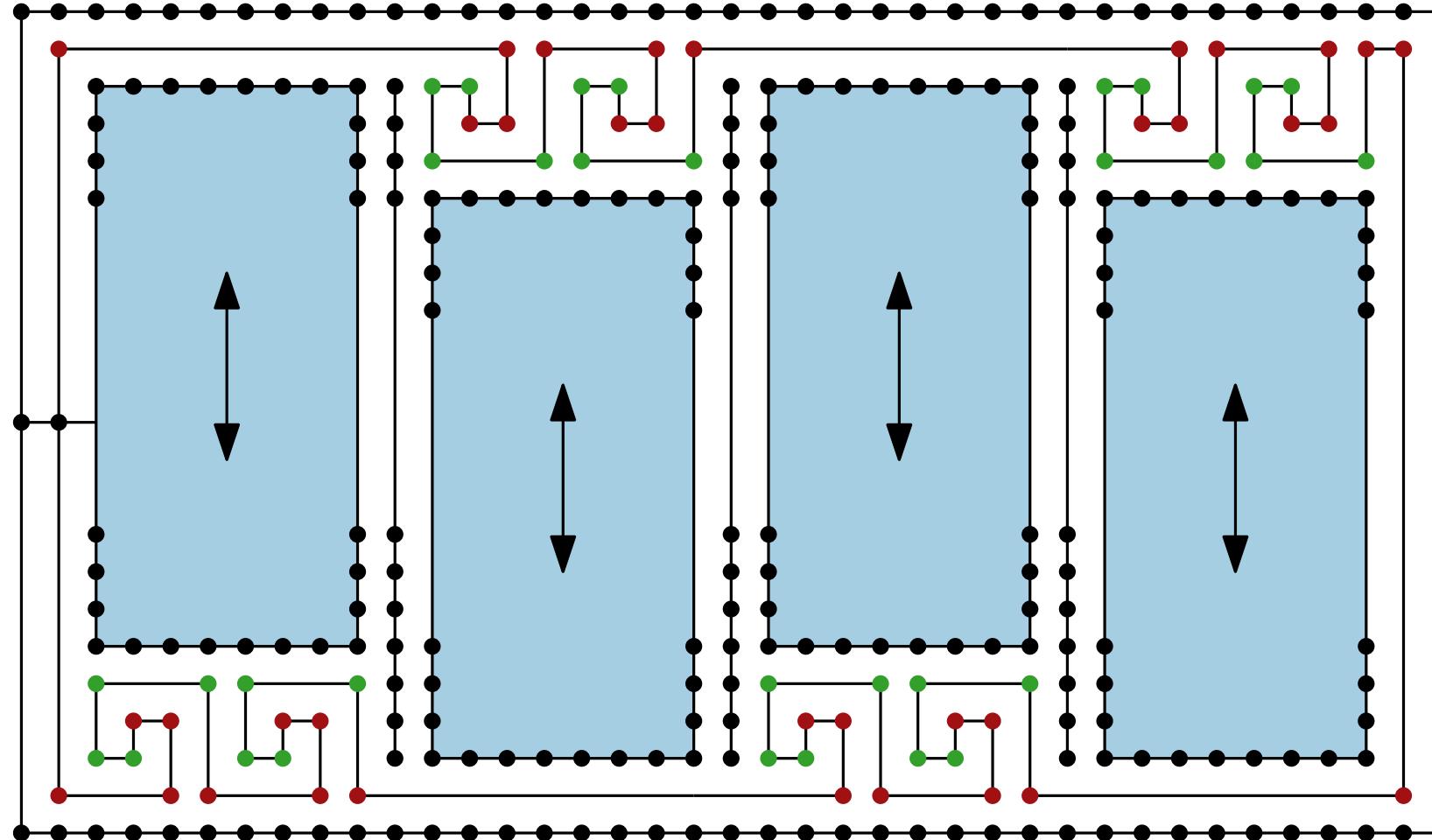
Boundary, **belt**, and “piston” gadget



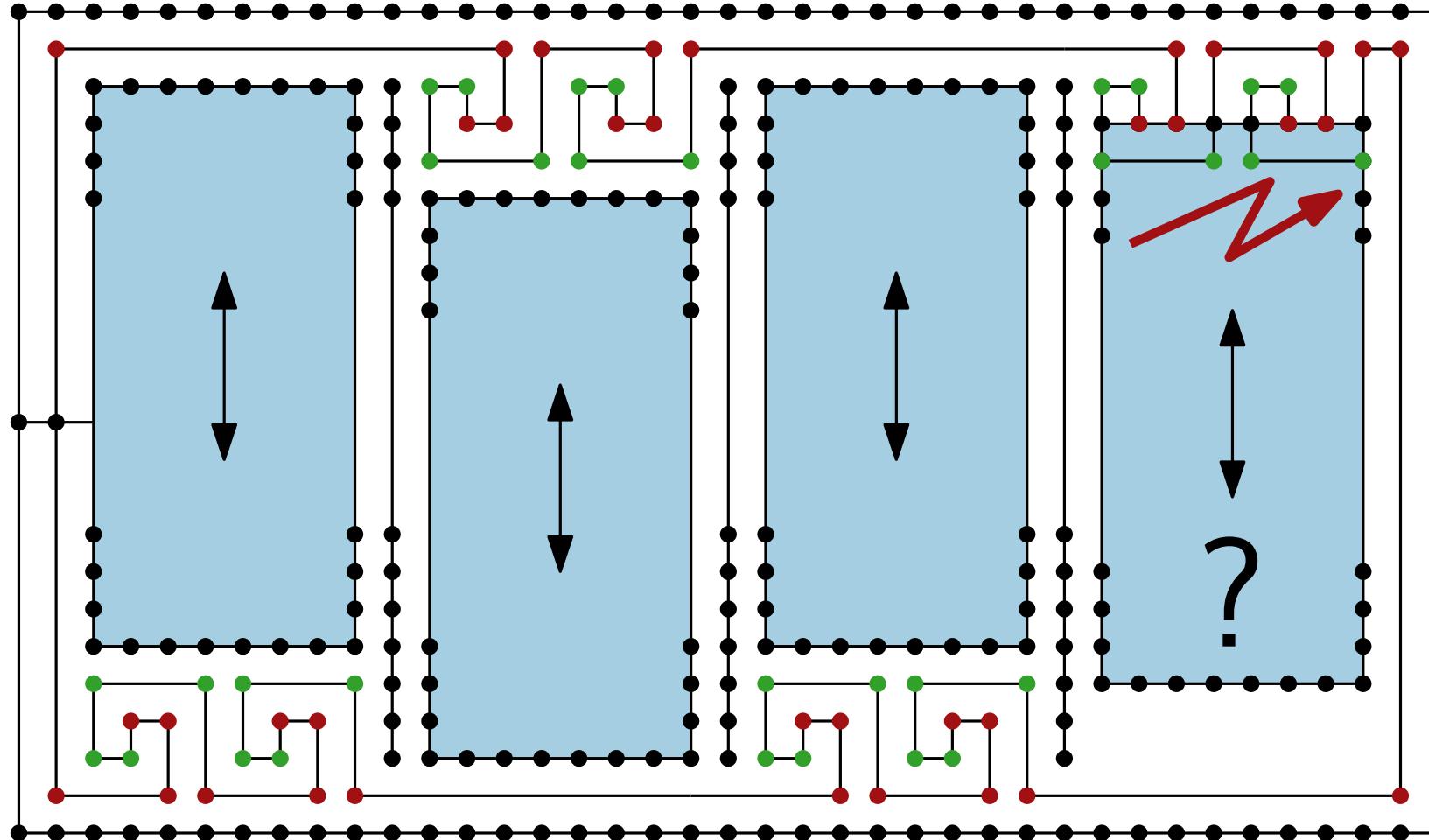
Boundary, **belt**, and “piston” gadget



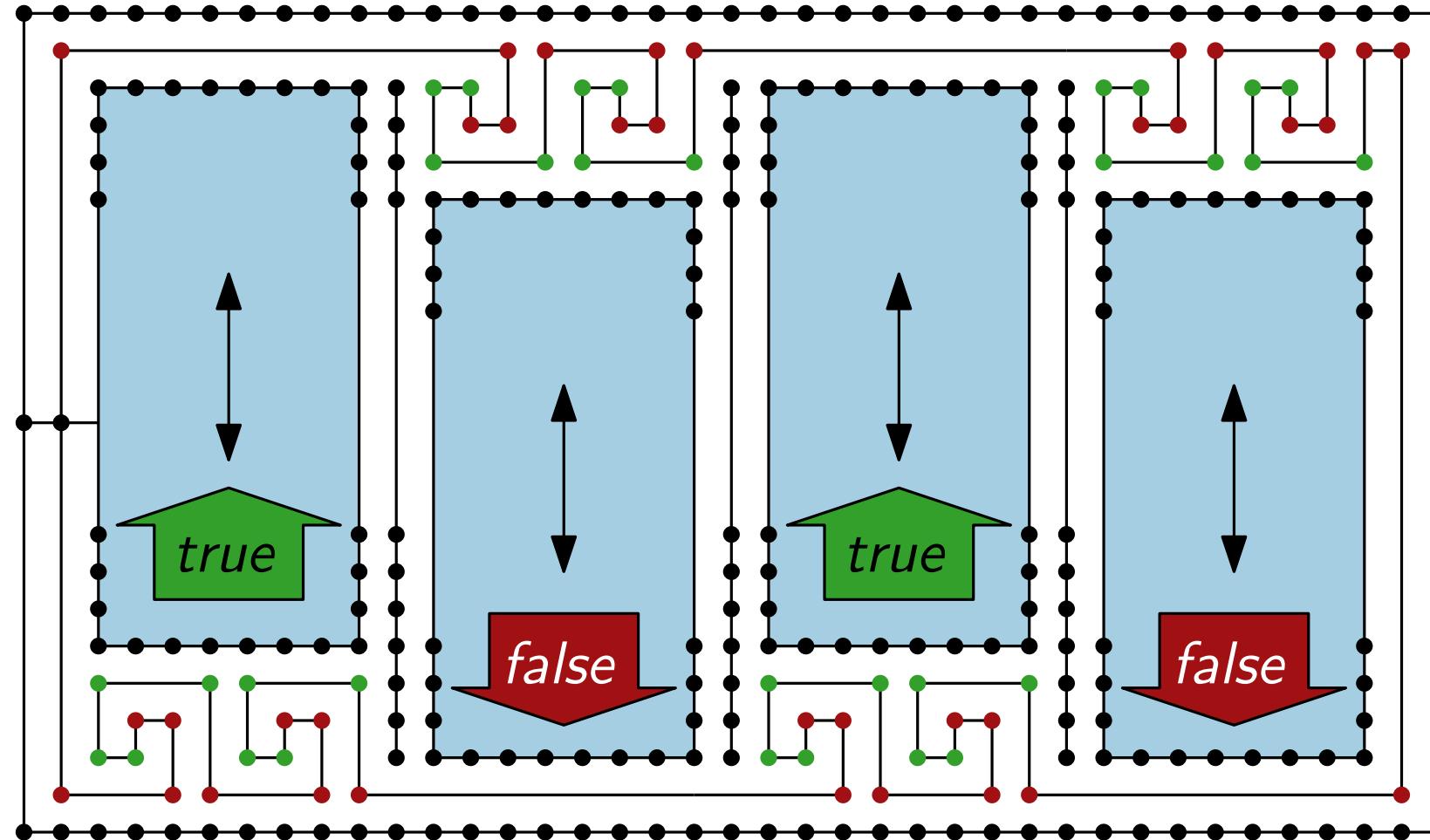
Boundary, **belt**, and “piston” gadget



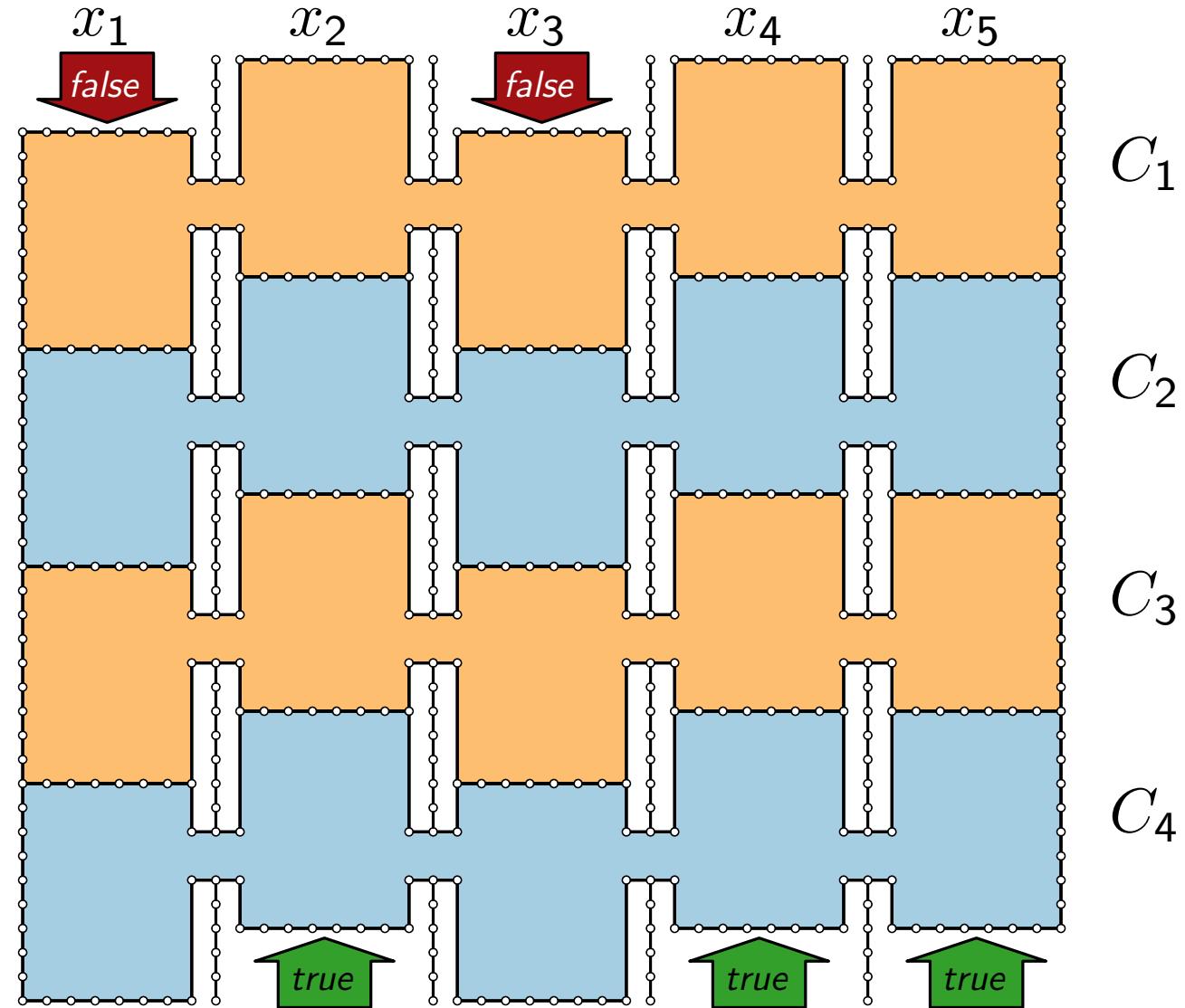
Boundary, **belt**, and “piston” gadget



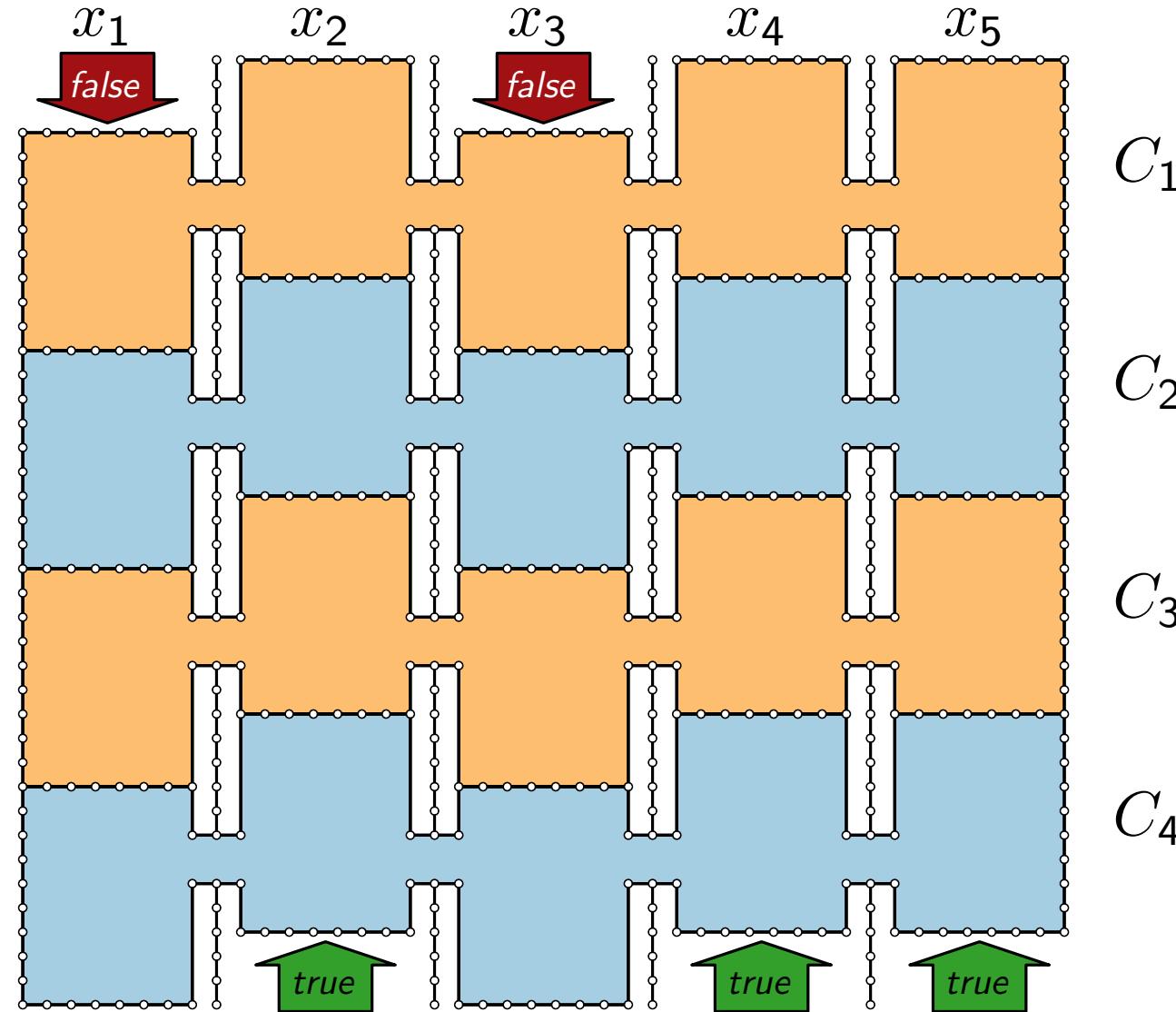
Boundary, **belt**, and “piston” gadget



Clause gadgets



Clause gadgets



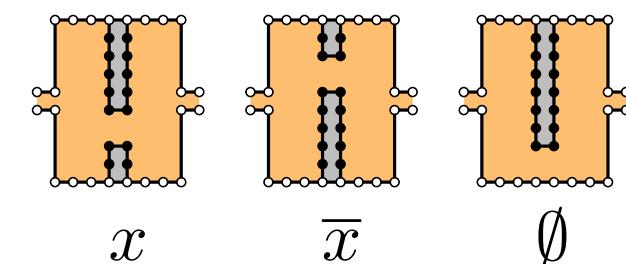
Example:

$$C_1 = x_2 \vee \overline{x_4}$$

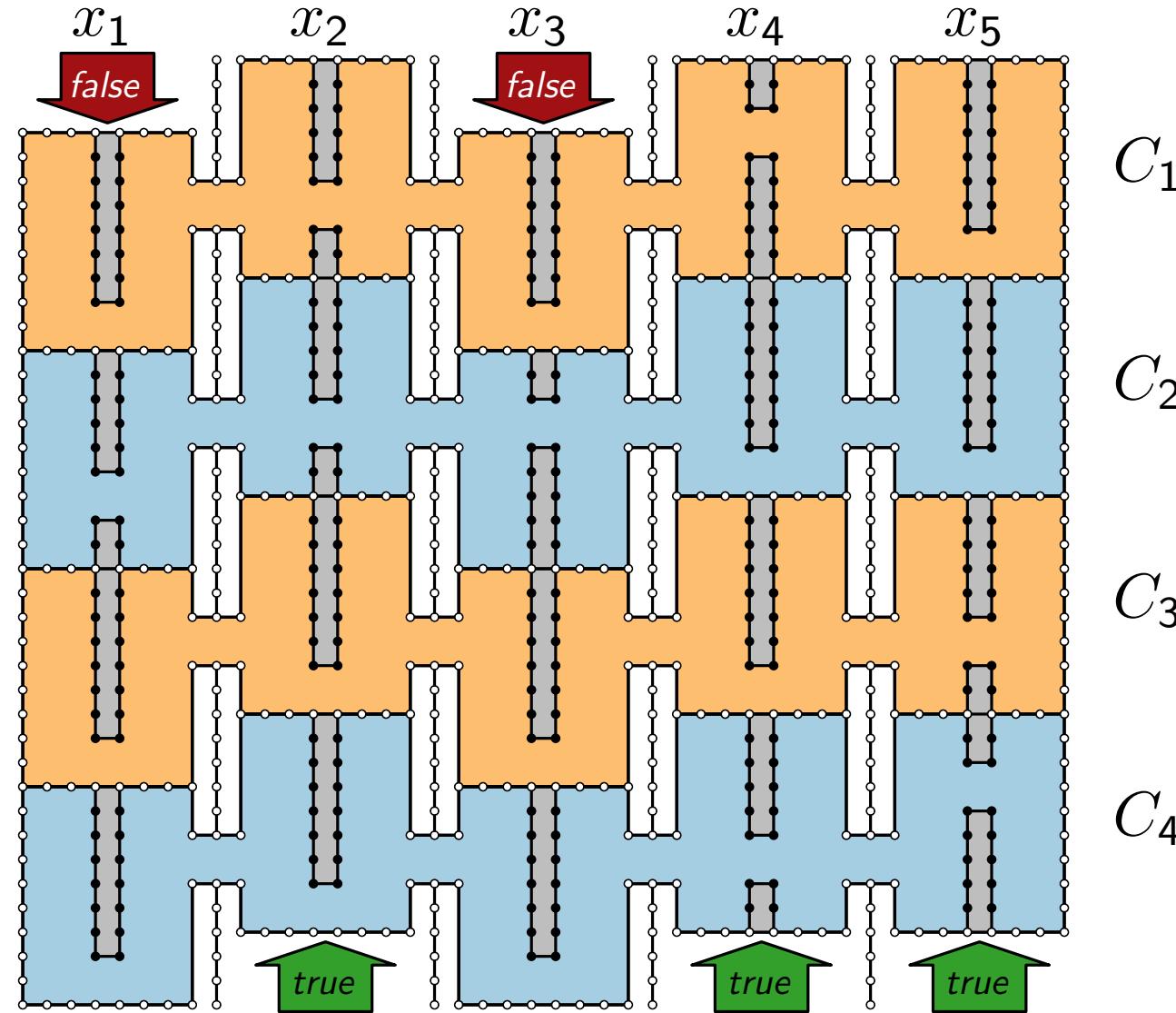
$$C_2 = x_1 \vee x_2 \vee \overline{x_3}$$

$$C_3 = x_5$$

$$C_4 = x_4 \vee \overline{x_5}$$



Clause gadgets



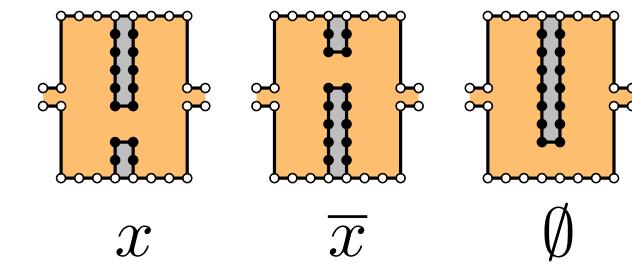
Example:

$$C_1 = x_2 \vee \overline{x_4}$$

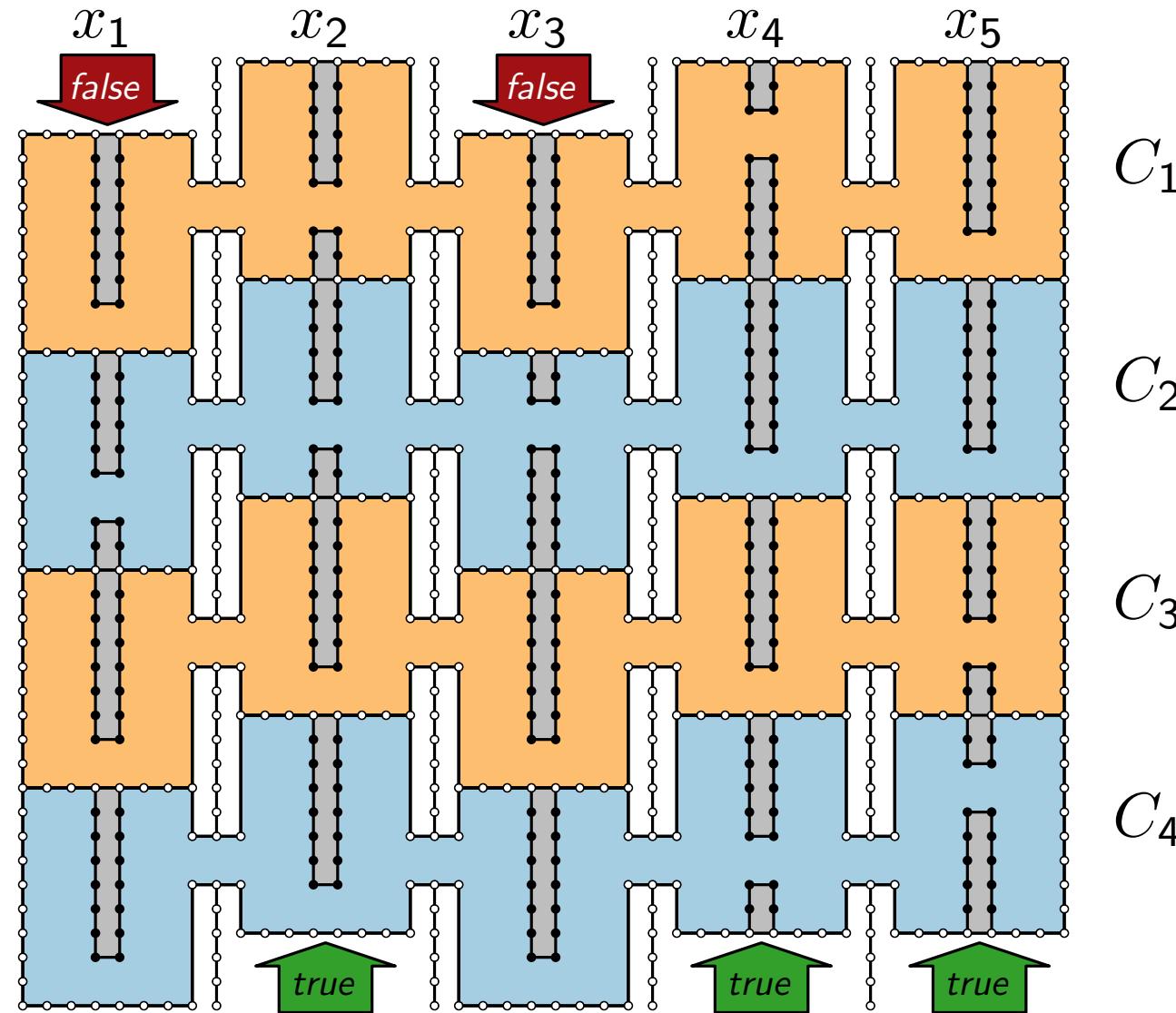
$$C_2 = x_1 \vee x_2 \vee \overline{x_3}$$

$$C_3 = x_5$$

$$C_4 = x_4 \vee \overline{x_5}$$



Clause gadgets



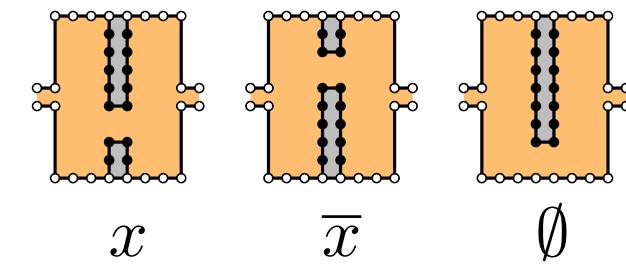
Example:

$$C_1 = x_2 \vee \overline{x_4}$$

$$C_2 = x_1 \vee x_2 \vee \overline{x_3}$$

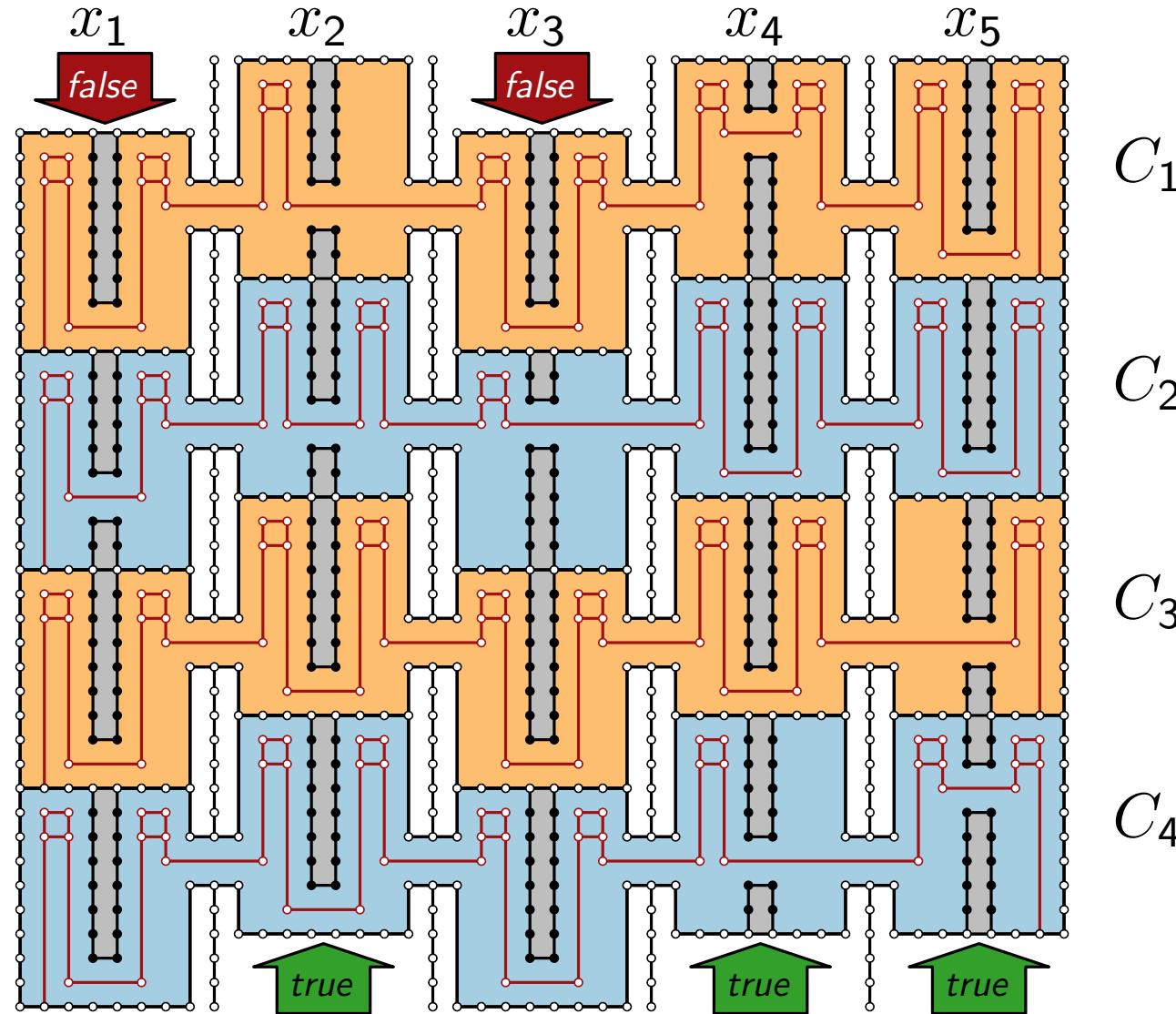
$$C_3 = x_5$$

$$C_4 = x_4 \vee \overline{x_5}$$



insert $(2n - 1)$ -chain
through each clause

Clause gadgets



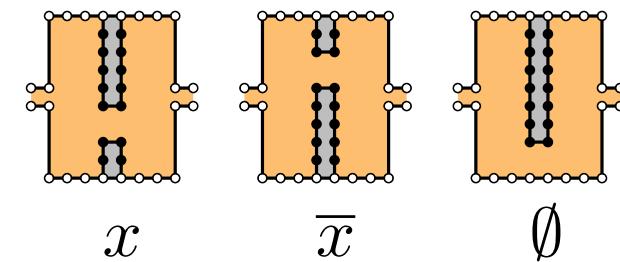
Example:

$$C_1 = x_2 \vee \overline{x_4}$$

$$C_2 = x_1 \vee x_2 \vee \overline{x_3}$$

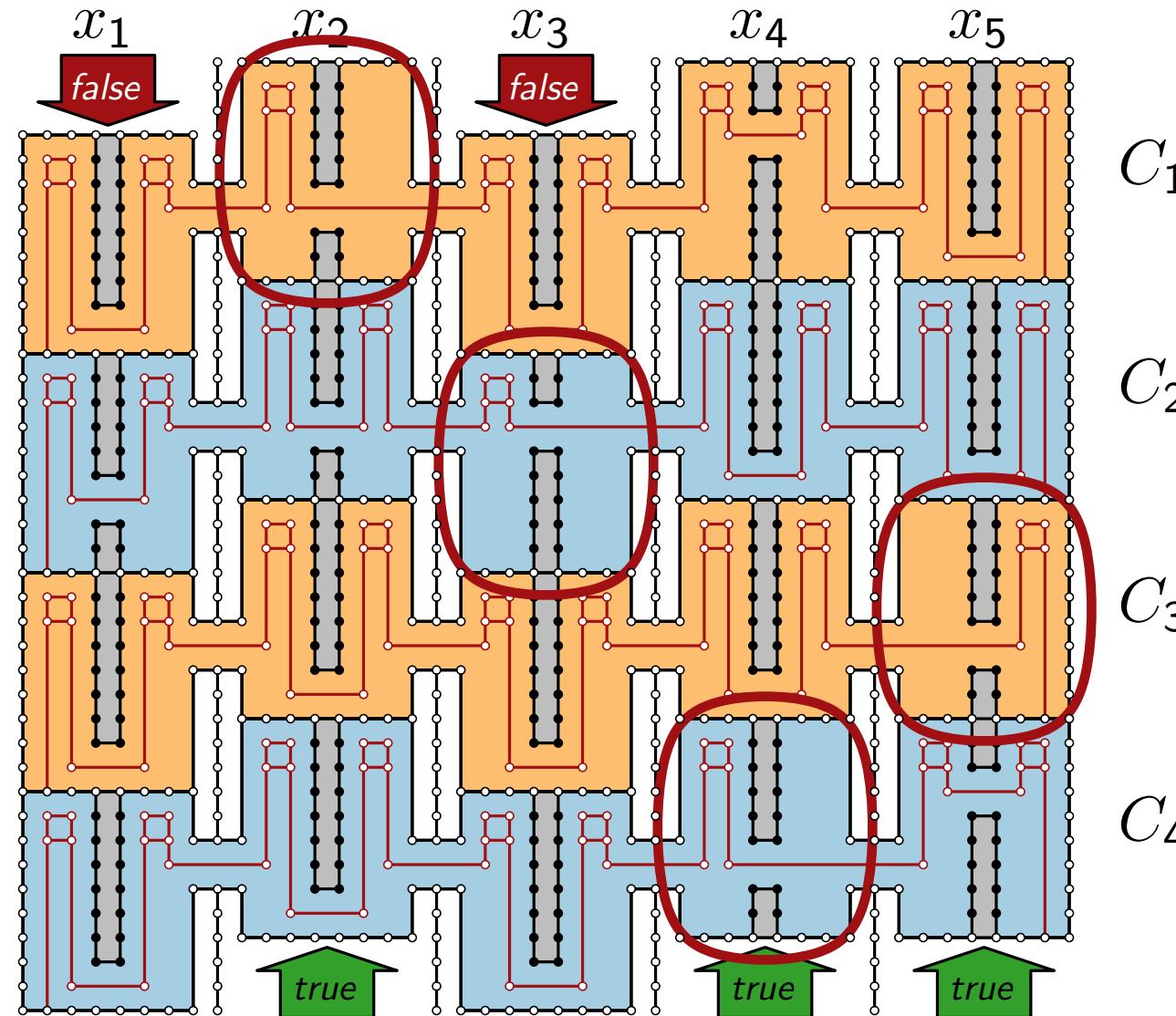
$$C_3 = x_5$$

$$C_4 = x_4 \vee \overline{x_5}$$



insert $(2n - 1)$ -chain
through each clause

Clause gadgets



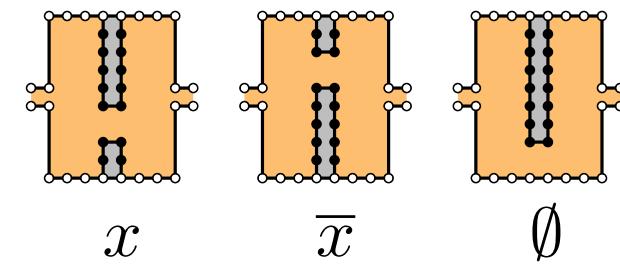
Example:

$$C_1 = x_2 \vee \overline{x_4}$$

$$C_2 = x_1 \vee x_2 \vee \overline{x_3}$$

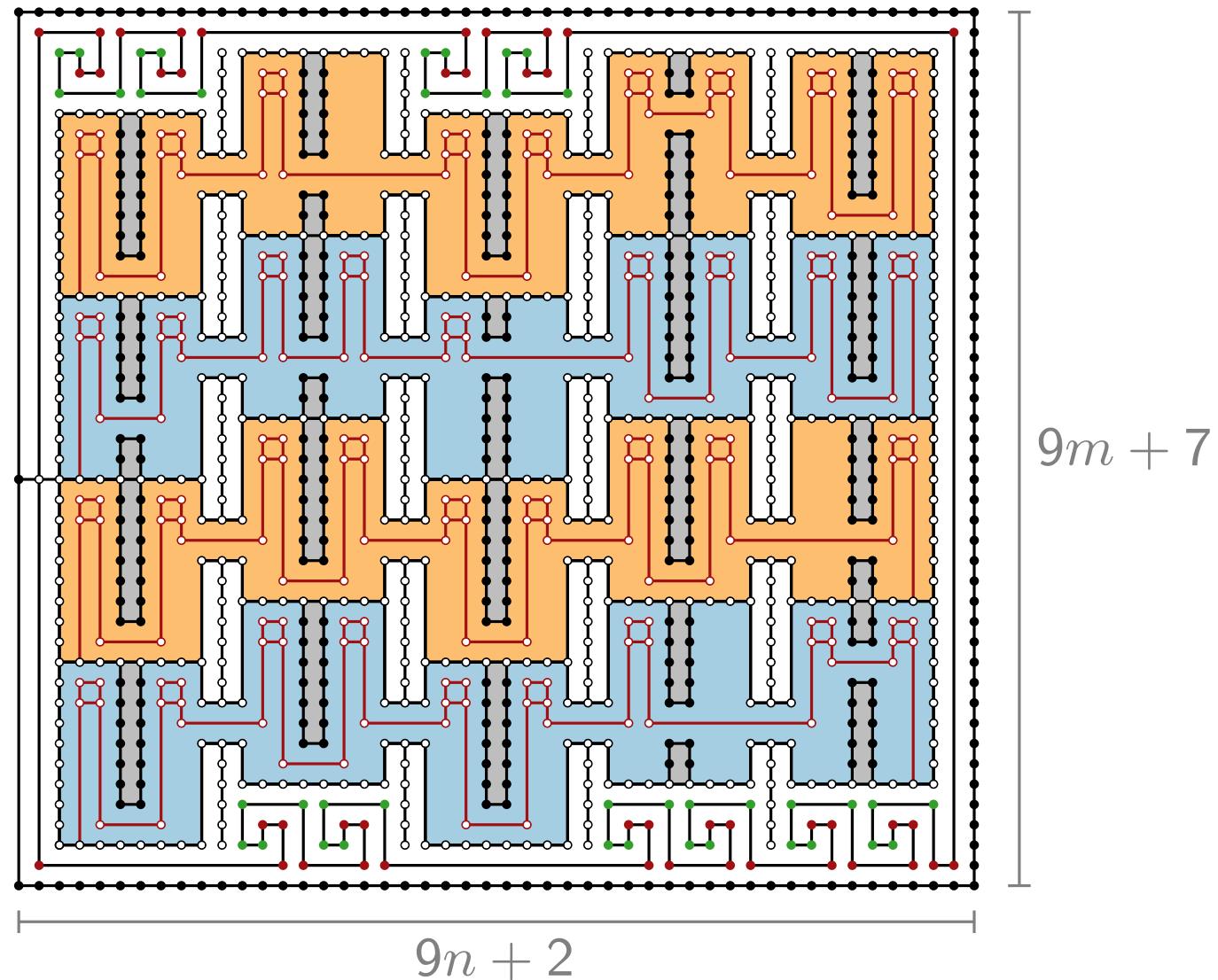
$$C_3 = x_5$$

$$C_4 = x_4 \vee \overline{x_5}$$

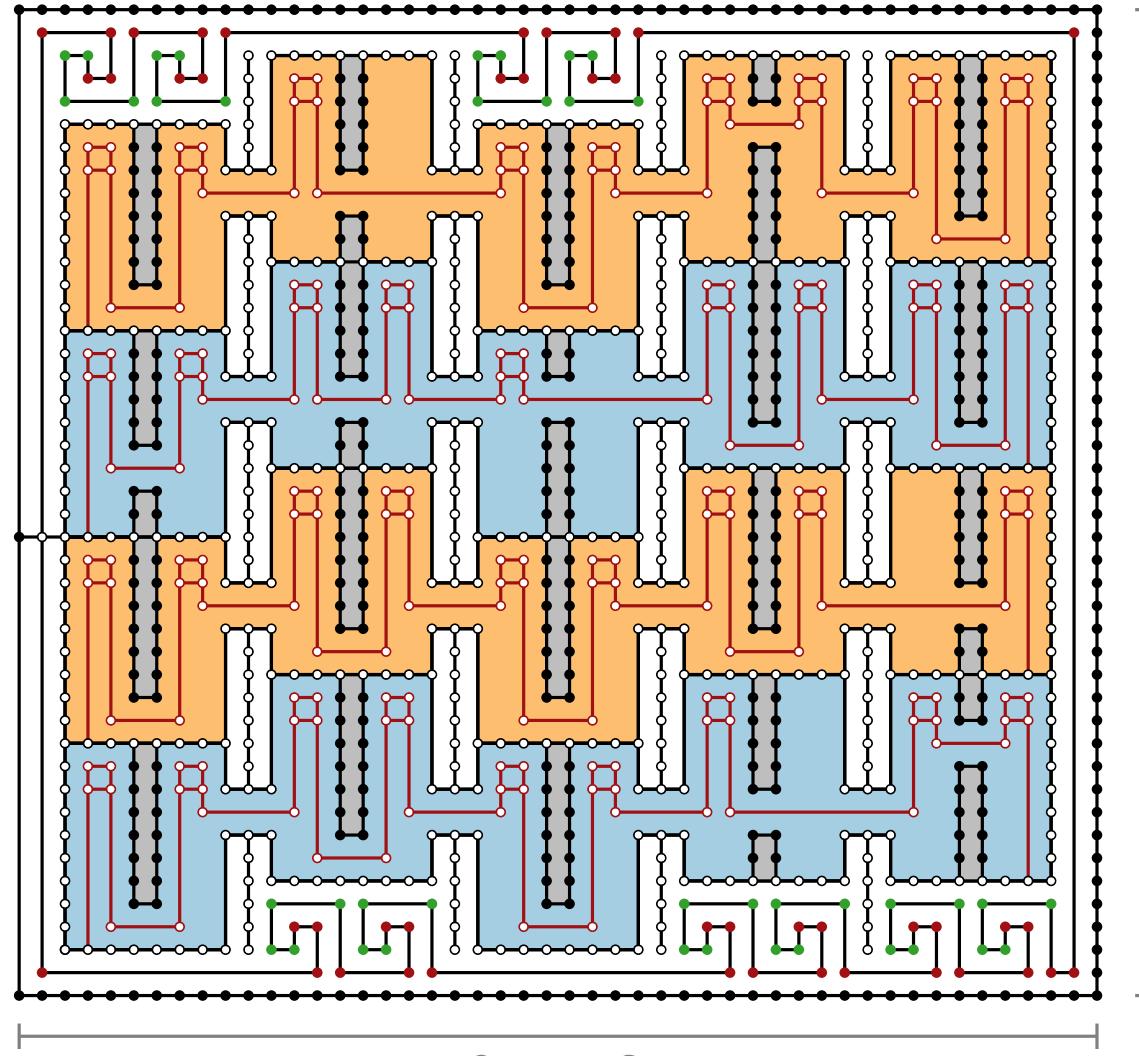


insert $(2n - 1)$ -chain
through each clause

Complete reduction



Complete reduction



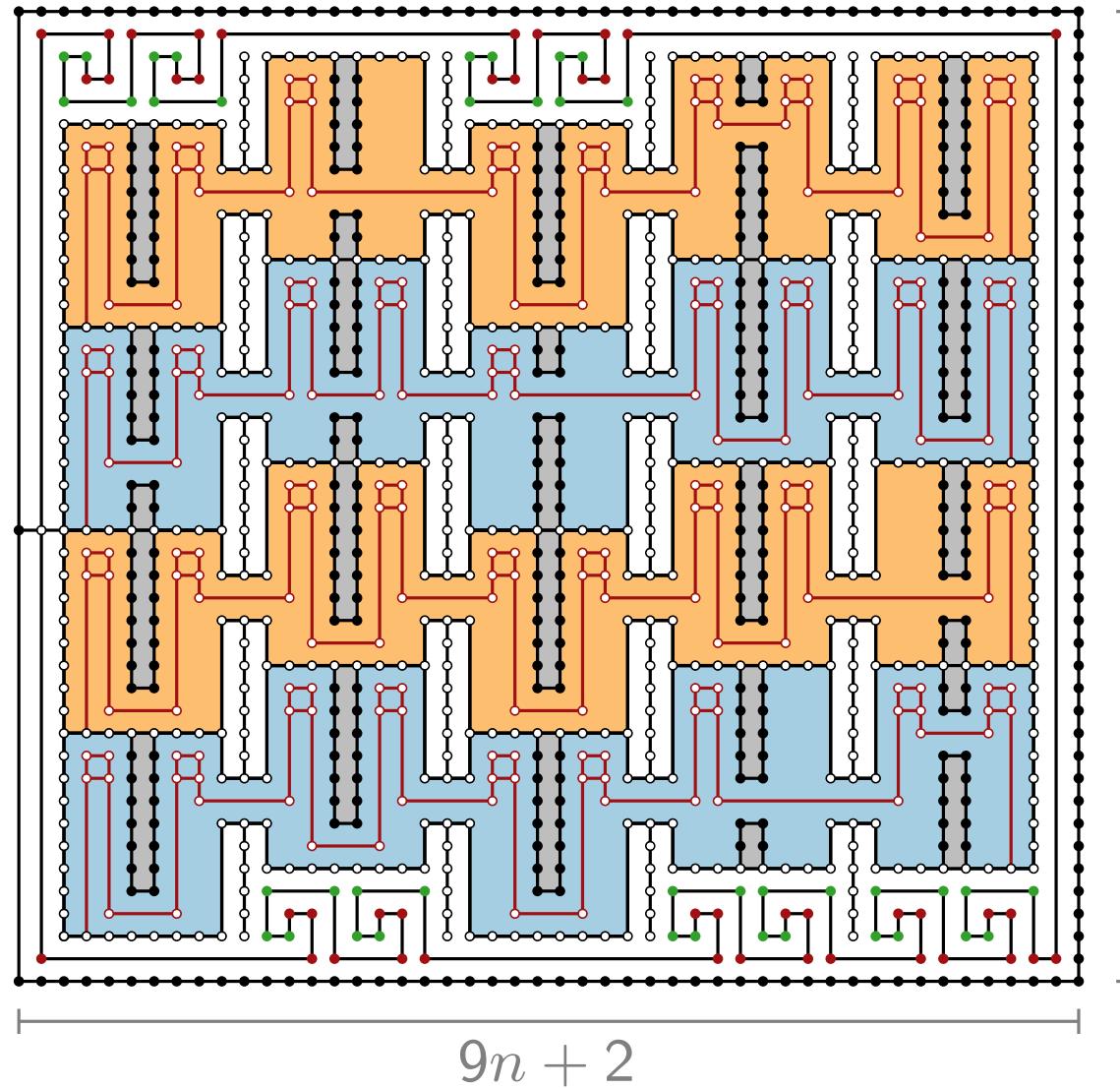
Pick

$$K = (9n + 2) \cdot (9m + 7)$$

$$9m + 7$$

$$9n + 2$$

Complete reduction



Pick
 $K = (9n + 2) \cdot (9m + 7)$

9m + 7

Then:
 (G, H) has an area K
 drawing
 \Leftrightarrow
 Φ satisfiable

Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] “On embedding a graph in the grid with the minimum number of bends”
Original paper on flow for bend minimization.
- [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.