
1

Visualization of Graphs

Part I:
Topology – Shape – Metric

Alexander Wolff

Lecture 5:
Orthogonal Layouts

2 - 1

Orthogonal Layout – Applications

ER diagram in OGDF

2 - 2

Orthogonal Layout – Applications

UML diagram by Oracle
ER diagram in OGDF

2 - 3

Orthogonal Layout – Applications

Organigram of HS Limburg

UML diagram by Oracle
ER diagram in OGDF

2 - 4

Orthogonal Layout – Applications

Organigram of HS Limburg Circuit diagram by Jeff Atwood

UML diagram by Oracle
ER diagram in OGDF

3 - 1

Orthogonal Layout – Definition

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 2

Orthogonal Layout – Definition

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 3

Orthogonal Layout – Definition

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 4

Orthogonal Layout – Definition

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 5

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 6

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 7

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

3 - 8

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

3 - 9

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

3 - 10

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

3 - 11

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 12

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 13

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 14

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 15

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 16

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Aesthetic criteria.

� Number of bends

� Length of edges

� Width, height, area

� Monotonicity of edges

� ...

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 17

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Aesthetic criteria.

� Number of bends

� Length of edges

� Width, height, area

� Monotonicity of edges

� ...

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 18

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Aesthetic criteria.

� Number of bends

� Length of edges

� Width, height, area

� Monotonicity of edges

� ...

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 19

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Aesthetic criteria.

� Number of bends

� Length of edges

� Width, height, area

� Monotonicity of edges

� ...

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

3 - 20

Orthogonal Layout – Definition

Observations.

� Edges lie on grid ⇒
bends lie on grid points

� Max degree of each vertex
is at most 4

Aesthetic criteria.

� Number of bends

� Length of edges

� Width, height, area

� Monotonicity of edges

� ...

Definition.
A drawing Γ of a graph G = (V,E) is called orthogonal if

� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.

� Fix embedding

� Crossings become vertices

4 - 1

Topology – Shape – Metrics

Three-step approach: [Tamassia 1987]

Topology Shape Metrics— —

4 - 2

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

[Tamassia 1987]

Topology Shape Metrics— —

4 - 3

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

[Tamassia 1987]

Topology Shape Metrics— —

4 - 4

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

4 - 5

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

4 - 6

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4bend minimization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

4 - 7

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

4 - 8

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

4 - 9

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

5

Visualization of Graphs

Part II:
Orthogonal Representation

Alexander Wolff

Lecture 5:
Orthogonal Layouts

6 - 1

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6 - 2

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

6 - 3

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

6 - 4

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 5

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 6

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 7

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 8

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 9

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 10

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 11

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0Definitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 12

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0 πDefinitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 13

Orthogonal Representation

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0 πDefinitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 14

Orthogonal Representation

� A face representation H(f) of f is a clockwise ordered sequence of
edge descriptions (e1, δ1, α1), (e2, δ2, α2), . . . , (edeg(f), δdeg(f), αdeg(f)).

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0 πDefinitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

6 - 15

Orthogonal Representation

� An orthogonal representation H(G) of G is defined as

H(G) = {H(f) | f ∈ F}.

� A face representation H(f) of f is a clockwise ordered sequence of
edge descriptions (e1, δ1, α1), (e2, δ2, α2), . . . , (edeg(f), δdeg(f), αdeg(f)).

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where

� δ ∈ {0, 1}∗ (where 0 = right bend, 1 = left bend)

� α is angle ∈ {π2 , π,
3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorially.

1
0

0 πDefinitions.
Let G = (V,E) be a plane graph with faces F and outer face f0.

e′

7 - 1

Orthogonal Representation – Example

e1

e2
e3

e4

e5

e6

7 - 2

Orthogonal Representation – Example

f0

e1

e2
e3

e4

e5

e6

7 - 3

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

7 - 4

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

7 - 5

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

Combinatorial “drawing” of H(G)?

7 - 6

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

f0

7 - 7

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1
f0

1 1

7 - 8

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1
f0

1 1

π
2

7 - 9

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e5

f0
1

11

1

1

π
2

7 - 10

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e5

f0
1

11

1

1

π
2 3π

2

7 - 11

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e4

e5

f0
1

11

1

1

π
2 3π

2

7 - 12

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e4

e5

f0
1

11

1

1

π
2 3π

2
π

7 - 13

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e3 e4

e5

f0
1

11

1

1

π
2 3π

2
π

7 - 14

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e3 e4

e5

f0
1

11

1

1

π
2 π 3π

2
π

7 - 15

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f0
1

11

1

1

π
2 π 3π

2
π

7 - 16

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f0
1

11

1

1

π
2

π
2 π 3π

2
π

7 - 17

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f1

f0
1

11

1

1

π
2

π
2 π 3π

2
π

7 - 18

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f1

f0 0 0
1

11

1

1

π
2

π
2 π 3π

2
π

7 - 19

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f1

f0 0 0
1

11

1

1

3π
2

π
2

π
2 π 3π

2
π

7 - 20

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f1

f0 0 0
1

11

1

1

3π
2

π
2

π
2

π
2 π 3π

2
π

7 - 21

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f0

0

0

0

0
1

11

1

1

3π
2

π
2

π
2

π
2 π 3π

2
π

7 - 22

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f0

0

0

0

0
1

11

1

1

π 3π
2

π
2

π
2

π
2 π 3π

2
π

7 - 23

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

0

0

0
1

11

1

1

π 3π
2

π
2

π
2

π
2 π 3π

2
π

7 - 24

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

0

00

0

0

0
1

11

1

1

π 3π
2

π
2

π
2

π
2 π 3π

2
π

7 - 25

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

0

00

0

0

0
1

11

1

1

π 3π
2

π
2

π
2

π
2

π
2 π 3π

2
π

7 - 26

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0
1

0

00

0

0

0
1

11

1

1

1

π 3π
2

π
2

π
2

π
2

π
2 π 3π

2
π

7 - 27

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0
1

0

00

0

0

0
1

11

1

1

1

π 3π
2

π
2
π
2

π
2

π
2

π
2 π 3π

2
π

7 - 28

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0
1

0

00

0

0

0
1

11

1

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2 π 3π

2
π

7 - 29

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

e6

f1

f2

f0

0
1

0

00

0

0

0
1

11

1

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

7 - 30

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

e1

e2 e3 e4

e5

f1

f2

f0

0
1

00
11

0
1

0
1

0 0
1 1

3π
2

π
2

ππ
2

π
2

π
2 π 3π

2
πππ

2

π
2

e6

7 - 31

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2

), (e5, 111, 3π
2

), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π2))

H(f1) = ((e1, 00, 3π
2

), (e2, ∅, π2), (e6, 00, π))

H(f2) = ((e5, 000, π
2

), (e6, 11, π
2

), (e3, ∅, π), (e4, ∅, π2))

f0

e1

e2 e3 e4

e5

f1

f2

f0

Concrete coordinates are not fixed yet!

0
1

00
11

0
1

0
1

0 0
1 1

3π
2

π
2

ππ
2

π
2

π
2 π 3π

2
πππ

2

π
2

e6

8 - 1

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

8 - 2

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 3

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 4

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 5

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 6

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 7

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1e6

8 - 8

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 9

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 10

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 11

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 12

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 13

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 14

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 15

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 16

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 17

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 18

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 19

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

8 - 20

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g),
the sequence δ1 is like δ2, but reversed and inverted.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ, and let r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α/π2 .
For each face f , it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− 2 = 0

C(e4) = 0− 0 + 2− 1 = 1

e4

C(e5) = 3− 0 + 2− 1 = 4

e1

e2 e3 e4

e5

e6

f1

f2

f0

0

00

0

0
1

11

1

1

π 3π
2

π
2

ππ
2

π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− 1 = −1

9

Visualization of Graphs

Part III:
Bend Minimization

Alexander Wolff

Lecture 5:
Orthogonal Layouts

10 - 1

Reminder: s-t-Flow Networks

Flow network (G = (V,E);S, T ;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

10 - 2

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

10 - 3

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

10 - 4

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

10 - 5

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

10 - 6

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

10 - 7

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

10 - 8

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

10 - 9

Reminder: s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/

2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/Flow network (G = (V,E); s, t;u) with

� directed graph G = (V,E)

� source s ∈ V , sink t ∈ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called s–t flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s–t flow is an s–t flow where
∑

(s,j)∈E

X(s, j) is maximized.

∞

∞

∞

∞

11 - 1

General Flow Network

Flow network (G = (V,E);S, T ;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

11 - 2

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

Flow network (G = (V,E);S, T ; `;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge capacity u : E → R+

0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

11 - 3

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

Flow network (G = (V,E);S, T ; `;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge lower bound ` : E → R+

0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

11 - 4

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

Flow network (G = (V,E);S, T ; `;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge lower bound ` : E → R+

0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

4/

5/

1/

2/

1/

4/

11 - 5

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E);S, T ; `;u) with

� directed graph G = (V,E)

� sources S ⊆ V , sinks T ⊆ V
� edge lower bound ` : E → R+

0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

11 - 6

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called S–T flow if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

11 - 7

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

11 - 8

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

� Cost function cost : E → R+
0 and cost(X) :=

∑
(i,j)∈E cost(i, j) ·X(i, j)

11 - 9

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

A maximum S–T flow is an S–T flow where
∑

(i,j)∈E,i∈S

X(i, j) is maximized.

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

� Cost function cost : E → R+
0 and cost(X) :=

∑
(i,j)∈E cost(i, j) ·X(i, j)

11 - 10

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3

1 2
2

3

1

2
2

5

5

8

3

2

1
2

1

3/

1/ 2/

1/

2/

3/

1/

7/ 2/
2/

2/

1/
2/

3/

5

33/
4/

3/

6/

3/4/

4/

5/

1/

2/

1/

4/

Flow network (G = (V,E); b; `;u) with

� directed graph G = (V,E)

� node production/consumption b : V → R with
∑
i∈V b(i) = 0

� edge lower bound ` : E → R+
0

� edge capacity u : E → R+
0 ∪ {∞}

A function X : E → R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E∑
(i,j)∈E

X(i, j)−
∑

(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

� Cost function cost : E → R+
0 and cost(X) :=

∑
(i,j)∈E cost(i, j) ·X(i, j)

A minimum cost flow is a valid flow where cost(X) is minimized.

12 - 1

General Flow Network – Algorithms

[Orlin 1991]

12 - 2

General Flow Network – Algorithms

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum cost flow problem can be solved in
O(n2 log2 n+m2 log n) time.

12 - 3

General Flow Network – Algorithms

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum cost flow problem can be solved in
O(n2 log2 n+m2 log n) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum cost flow problem for planar graphs
with bounded costs and face sizes can be solved in
O(n3/2) time.

13

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

14 - 1

Bend Minimization with Given Embedding

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

14 - 2

Bend Minimization with Given Embedding

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

14 - 3

Bend Minimization with Given Embedding

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

14 - 4

Bend Minimization with Given Embedding

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

14 - 5

Bend Minimization with Given Embedding

Compare with the following variation.

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

Find:

14 - 6

Bend Minimization with Given Embedding

Compare with the following variation.

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

Find:

14 - 7

Bend Minimization with Given Embedding

Compare with the following variation.

Geometric bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends that
preserves the embedding.

Find:

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

Find:

15 - 1

Combinatorial Bend Minimization

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

15 - 2

Combinatorial Bend Minimization

Idea.
Formulate as a network flow problem:

� a unit of flow =]π2

� vertices
]−→ faces (#]π2 per face)

� faces
]−→ neighbouring faces (# bends toward the neighbour)

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

15 - 3

Combinatorial Bend Minimization

Idea.
Formulate as a network flow problem:

� a unit of flow =]π2

� vertices
]−→ faces (#]π2 per face)

� faces
]−→ neighbouring faces (# bends toward the neighbour)

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

15 - 4

Combinatorial Bend Minimization

Idea.
Formulate as a network flow problem:

� a unit of flow =]π2

� vertices
]−→ faces (#]π2 per face)

� faces
]−→ neighbouring faces (# bends toward the neighbour)

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

15 - 5

Combinatorial Bend Minimization

Idea.
Formulate as a network flow problem:

� a unit of flow =]π2

� vertices
]−→ faces (#]π2 per face)

� faces
]−→ neighbouring faces (# bends toward the neighbour)

Combinatorial bend minimization.

� Plane graph G = (V,E) with maximum degree 4

� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

16 - 1

Flow Network for Bend Minimization
(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 2

Flow Network for Bend Minimization
(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 3

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 4

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 5

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′

f

v

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 6

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′

f

v

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 7

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′

f

v

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 8

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′

f

v

Directed multigraph!

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 9

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′g

f

v

Directed multigraph!

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 10

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′g

f

v

Directed multigraph!

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 11

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

e
e′g

f

v

Directed multigraph!

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 12

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

16 - 13

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

1

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 14

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

1

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 15

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

1

1 1

12

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 16

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 17

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 18

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w)

?
= 0

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 19

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 20

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 21

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 22

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 23

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 24

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 25

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 26

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1 We model only the
number of bends.
Why is it enough?

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

16 - 27

Flow Network for Bend Minimization

Define flow network N(G) = ((V ∪ F,E); b; `;u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂f} ∪
{(f, g)e ∈ F × F | f, g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

⇒∑
w b(w) = 0

(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)

cost(v, f) = 0

∀(f, g) ∈ E, f, g ∈ F `(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)

cost(f, g) = 1 We model only the
number of bends.
Why is it enough?

Exercise!

1

1 1

12
−6

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

1
2

17 - 1

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

17 - 2

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

Legend

17 - 3

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

`/u/cost

1/4/0

Legend

17 - 4

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

`/u/cost

1/4/0

Legend

17 - 5

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

`/u/cost

1/4/0

Legend

17 - 6

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

`/u/cost

1/4/0

Legend

17 - 7

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 8

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 9

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 10

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 11

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 12

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 13

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

Legend

17 - 14

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

Legend

17 - 15

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

−2 −4

−14

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

Legend

17 - 16

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

−2 −4

−14

11

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

1 1

17 - 17

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

−2 −4

−14

111

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

1 1

1

1

17 - 18

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

−2 −4

−14

111

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

1 1

1

1
3

2

3

3
2

17 - 19

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V

F

4

4

4

4

4

−2 −4

−14

111

cost = 1
one bend
(outward)

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

1

Legend

1 1

1

1
3

2

3

3
2

17 - 20

Flow Network Example

V

F

−2 −4

−14

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

111
1

1 1

1

1
3

2

3

3
2

17 - 21

Flow Network Example

V

F

−2 −4

−14

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

111
1

1 1

1

1
3

2

3

3
2

17 - 22

Flow Network Example

V

F

−2 −4

−14

V × F ⊇

F × F ⊇

`/u/cost

1/4/0

0/∞/1

4 = b -value

3 flow

Legend

f1

f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

111

1 11

3
2

3

32

1

1

18 - 1

Bend Minimization – Result

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 2

Bend Minimization – Result

Proof.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 3

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 4

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 5

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

18 - 6

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

18 - 7

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

18 - 8

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

18 - 9

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

18 - 10

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.

� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F , f0.

(H2) For each edge {u, v} shared by
faces f and g, sequence δ1 is
reversed and inverted δ2.

(H3) For each face f it holds that:∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of
incident angles is 2π.

18 - 11

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 12

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

18 - 13

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)
cost(f, g) = 1

18 - 14

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(N1) X(vf) = 1/2/3/4 X

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)
cost(f, g) = 1

18 - 15

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(N1) X(vf) = 1/2/3/4 X

(N2) X(fg) = |δfg|0, (e, δfg, x) describes e
∗
= fg from f X

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)
cost(f, g) = 1

18 - 16

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(N1) X(vf) = 1/2/3/4 X

(N2) X(fg) = |δfg|0, (e, δfg, x) describes e
∗
= fg from f X

(N3) capacities, deficit/demand coverage X

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)
cost(f, g) = 1

18 - 17

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

� Define flow X : E → R+
0 .

� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G,F, f0) has a valid orthogonal
representation H(G) with k bends. ⇔
The flow network N(G) has a valid flow X with cost k.

(N1) X(vf) = 1/2/3/4 X

(N2) X(fg) = |δfg|0, (e, δfg, x) describes e
∗
= fg from f X

(N3) capacities, deficit/demand coverage X
(N4) cost = k X

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,

+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f, g) := 0 ≤ X(f, g) ≤ ∞ =: u(f, g)
cost(f, g) = 1

19 - 1

Bend Minimization – Remarks

� The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

19 - 2

Bend Minimization – Remarks

� The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996]
The minimum cost flow problem can be solved in
O(|X∗|3/4m

√
log n) time.

19 - 3

Bend Minimization – Remarks

� The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996]
The min-cost flow problem for planar graphs with bounded costs
and vertex degrees can be solved in O(n7/4

√
log n) time.

19 - 4

Bend Minimization – Remarks

� The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996]
The min-cost flow problem for planar graphs with bounded costs
and vertex degrees can be solved in O(n7/4

√
log n) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The min-cost flow problem for planar graphs with bounded costs
and face sizes can be solved in O(n3/2) time.

19 - 5

Bend Minimization – Remarks

� The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 2001]
Bend minimization without given combinatorial embedding is
NP-hard.

Theorem. [Garg & Tamassia 1996]
The min-cost flow problem for planar graphs with bounded costs
and vertex degrees can be solved in O(n7/4

√
log n) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The min-cost flow problem for planar graphs with bounded costs
and face sizes can be solved in O(n3/2) time.

20

Visualization of Graphs

Part IV:
Area Minimization

Alexander Wolff

Lecture 5:
Orthogonal Layouts

21

Topology – Shape – Metrics

Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

22 - 1

Compaction

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 2

Compaction

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 3

Compaction

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 4

Compaction

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 5

Compaction

Special case.
All faces are rectangles.

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 6

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 7

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 8

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 9

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area
Properties.

� bends only on the outer face

� opposite sides of a face have the same length

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 10

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area
Properties.

� bends only on the outer face

� opposite sides of a face have the same length

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 11

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area
Properties.

� bends only on the outer face

� opposite sides of a face have the same length

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

22 - 12

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length

� minimum area
Properties.

� bends only on the outer face

� opposite sides of a face have the same length

Compaction problem.

� Plane graph G = (V,E) with maximum degree 4

� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

Idea.

� Formulate flow network for horizontal/vertical compaction

23 - 1

Flow Network for Edge Length Assignment

23 - 2

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

23 - 3

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor

23 - 4

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 5

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 6

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 7

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 8

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 9

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 10

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 11

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 12

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 13

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 14

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 15

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

23 - 16

Flow Network for Edge Length Assignment

Definition.
Flow Network Nhor = ((Whor, Ehor); b; `;u; cost)

� Whor = F \ {f0} ∪ {s, t}
� Ehor = {(f, g) | f, g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) =∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀f ∈Whor
s

t

24

Flow Network for Edge Length Assignment

Definition.
Flow Network Nver = ((Wver, Ever); b; `;u; cost)

� Wver = F \ {f0} ∪ {s, t}
� Ever = {(f, g) | f, g share a vertical segment and f lies to the

left of g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ever

� u(a) =∞ ∀a ∈ Ever

� cost(a) = 1 ∀a ∈ Ever

� b(f) = 0 ∀f ∈Wver

s t

25 - 1

Compaction – Result

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 2

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 3

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 4

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

width and height of drawing

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 5

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

width and height of drawing

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 6

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

width and height of drawing

total edge length

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

25 - 7

Compaction – Result

What values of the drawing do the following quantities represent?

� |Xhor(t, s)| and |Xver(t, s)|?
�

∑
e∈Ehor

Xhor(e) +
∑
e∈Ever

Xver(e)

What if not all faces
rectangular?

width and height of drawing

total edge length

Theorem.
A valid flow for Nhor and Nver exists ⇔
corresponding edge lengths induce an orthogonal drawing.

26 - 1

Refinement of (G,H) – Inner Face

f

26 - 2

Refinement of (G,H) – Inner Face

f

� Dummy vertices for bends

26 - 3

Refinement of (G,H) – Inner Face

e

f

� Dummy vertices for bends

26 - 4

Refinement of (G,H) – Inner Face

e

f

� Dummy vertices for bends

26 - 5

Refinement of (G,H) – Inner Face

e

corner(e)

f

� Dummy vertices for bends

26 - 6

Refinement of (G,H) – Inner Face

e

next(e)

corner(e)

f

� Dummy vertices for bends

26 - 7

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

f

� Dummy vertices for bends

26 - 8

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 9

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 10

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1
front(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 11

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1
front(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 12

Refinement of (G,H) – Inner Face

e′

e

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1
front(e′)

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 13

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 14

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 15

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 16

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 17

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

26 - 18

Refinement of (G,H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn

0 no turn

−1 right turn

f

� Dummy vertices for bends

27 - 1

Refinement of (G,H) – Outer Face

f0

27 - 2

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 3

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 4

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 5

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 6

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 7

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 8

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 9

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 10

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 11

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 12

Refinement of (G,H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1

−1

−1
−1

27 - 13

Refinement of (G,H) – Outer Face

f0

27 - 14

Refinement of (G,H) – Outer Face

Area minimized?

27 - 15

Refinement of (G,H) – Outer Face

Area minimized? No!

27 - 16

Refinement of (G,H) – Outer Face

Area minimized? No!

But we get bound O((n+ b)2) on the area.

27 - 17

Refinement of (G,H) – Outer Face

Area minimized? No!

But we get bound O((n+ b)2) on the area.

Theorem. [Patrignani 2001]
Compaction for given orthogonal
representation is NP-hard in general.

27 - 18

Refinement of (G,H) – Outer Face

Area minimized? No!

But we get bound O((n+ b)2) on the area.

Theorem. [Patrignani 2001]
Compaction for given orthogonal
representation is NP-hard in general.

Theorem. [EFKSSW 2022]
Compaction is NP-hard even for
orthogonal representation of cycles.

28

Visualization of Graphs

Part V:
NP-Hardness

Alexander Wolff

Lecture 5:
Orthogonal Layouts

29 - 1

Boundary, belt, and “piston” gadget

w

h(w × h)-rectangle

29 - 2

Boundary, belt, and “piston” gadget

29 - 3

Boundary, belt, and “piston” gadget

?

29 - 4

Boundary, belt, and “piston” gadget

29 - 5

Boundary, belt, and “piston” gadget

29 - 6

Boundary, belt, and “piston” gadget

29 - 7

Boundary, belt, and “piston” gadget

?

29 - 8

Boundary, belt, and “piston” gadget

true true

false false

30 - 1

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false

x2

30 - 2

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false Example:
C1 = x2 ∨ x4

C2 = x1 ∨ x2 ∨ x3

C3 = x5

C4 = x4 ∨ x5

x x ∅

x2

30 - 3

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false Example:
C1 = x2 ∨ x4

C2 = x1 ∨ x2 ∨ x3

C3 = x5

C4 = x4 ∨ x5

x x ∅

x2

30 - 4

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false Example:
C1 = x2 ∨ x4

C2 = x1 ∨ x2 ∨ x3

C3 = x5

C4 = x4 ∨ x5

x x ∅

insert (2n− 1)-chain
through each clause

x2

30 - 5

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false Example:
C1 = x2 ∨ x4

C2 = x1 ∨ x2 ∨ x3

C3 = x5

C4 = x4 ∨ x5

x x ∅

insert (2n− 1)-chain
through each clause

x2

30 - 6

Clause gadgets

C1

C2

C3

C4

x1 x3 x4 x5

true

false

truetrue

false Example:
C1 = x2 ∨ x4

C2 = x1 ∨ x2 ∨ x3

C3 = x5

C4 = x4 ∨ x5

x x ∅

insert (2n− 1)-chain
through each clause

x2

31 - 1

Complete reduction

9m+ 7

9n+ 2

31 - 2

Complete reduction

9m+ 7

9n+ 2

Pick
K = (9n+ 2) · (9m+ 7)

31 - 3

Complete reduction

9m+ 7

9n+ 2

Pick
K = (9n+ 2) · (9m+ 7)

(G,H) has an area K
drawing
⇔

Φ satisfiable

Then:

�

32

Literature

� [GD Ch. 5] for detailed explanation

� [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
Original paper on flow for bend minimization.

� [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

� [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.

	Orthogonal layout
	Applications
	Definition

	Topology - Shape - Metrics
	Orthogonal Representation
	Definition
	Example
	Correctness

	Bend Minimization
	s-t-Flow Networks
	General Flow Network
	General Flow Network - Algorithms
	Problem Statement
	Idea
	Flow Network
	Example
	Result
	Remarks

	Area Minimization
	Problem Statement
	Flow Network
	Result
	Refinement of Inner Face
	Refinement of Outer Face

	NP-hardness
	Boundary, {\re belt}, and ``piston'' gadget
	Clause gadgets
	Complete reduction

	Literature

