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Observations.

m Edges lie on grid =
bends lie on grid points
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A drawing I of a graph G = (V, E)) is called orthogonal if
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Orthogonal Representation — Example
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Orthogonal Representation — Example
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
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Orthogonal Representation — Example
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
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Orthogonal Representation — Example
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 ®77T)7 (647 (Z)v %))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3771-)7 (647 ®7 7T)7 (637 ®7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 @77‘-)7 (647 (Z)a %))

A
fo L0 0
1 2
0 =" 5 €2 1 €3 1 €4 3
€3 ° F 7 |z P |2
‘o) 2 |2 2
f1
ee @ €4 0 0 f2
1 €6 1
€5 ° 0 0
1 €5 1

Concrete coordinates are not fixed yet!



Correctness of an Orthogonal Representation
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Correctness of an Orthogonal Representation

fo
(H1) H(G) corresponds to F', fo. —1ml
(H2) For each edge shared by faces f and g with o 2o 3r 2 62;5& o3 5 €4£
( ’61’&1)€H(f) and ( ,(52,042)61—[(9) 2 0 fl 202 2
1 1 f2
0 0




Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F', fo.

(H2) For each edge

( ,(51,041)€H(f) and (
the sequence 07 is like 05

shared by faces f and g with

7627 CVZ) S H(g)'
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Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. 1|0 oll
(H2) For each edge shared by faces f and g with 1 > 2o 3 2 egﬂgﬂ s 5 €4£'>327T
( ,(51,&1)€H(f) and ( ,(52,@2)61{(9), i fl ‘I :
the sequence 0 is like 05, but reversed and inverted. . 2 L . f
0 0




Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. 1|0 oll
(H2) For each edge shared by faces f and g with 1 > 2o 3 2 egﬂgﬂ s 5 €4£'>327T
( ,(51,&1) & H(f) and ( ,(52,&2) - H(g), ° fl 2 1? 2
the sequence 07 is like 05, but reversed and inverted. . = 2 N
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let » = (¢, 9, ). ! €5 !

Let C(r) == [d]o — |01 +2 — o/ Z.



Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F', fo.

(H2) For each edge shared by faces f and ¢ with
( 7517&1)€H(f) and ( ,(52,&2)61{(9),
the sequence 0 is like 0-, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros
(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=|d]o — |0[1 +2 — /5.
For each face f, it holds that:
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Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F', fo.

(H2) For each edge shared by faces f and ¢ with
( 7517@1)€H(f) and ( ,(52,&2)61{(9),
the sequence 0 is like 0-, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros
(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=|d]o — |0[1 +2 — /5.
For each face f, it holds that:

S C(r)—{4 if f = fo

44 otherwise.
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Correctness of an Orthogonal Representation

€1 1 fO
(H1) H(G) corresponds to F', fo.

Io OI

s s - e - e -

(H2) For each edge shared by faces f and ¢ with 1 ; =om  3m ol °2 > e
2

> sl i3 s ™
( ,(51,&1) & H(f) and ( ,(52,&2) - H(g), fl 2 1? 2
the sequence 07 is like 05, but reversed and inverted. . 2 & N
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Cles) = — +2- =
For each face f, it holds that: Cle))= — +2— =
—4 if f=
OREOER SN ()= — +2- =
rCH(f) +4  otherwise.
Cle)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) :=[0]o — |01 +2 — a/Z. Cles) =0—- +2—- =
For each face f, it holds that: Cles) = — +2— =
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) := |d]o — |0]1 +2 — /5. Cles) =0-0+2—- =
For each face f, it holds that: Cles) = — +2— =
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) := |d]o — |0]1 +2 — /5. Cles) =0-04+2-2=
For each face f, it holds that: Cles) = — +2— =
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation
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(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) := |d]o — |0]1 +2 — /5. Cles) =0-042-2=0
For each face f, it holds that: Cles) = — +2— =
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Cle3) =0-0+2-2=0
For each face f, it holds that: Cles) =0—042—1=
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7517&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Cle3) =0-0+2-2=0
For each face f, it holds that: Cles) =0—-04+2—-1=1
—4 if f =
> )= C()= ~ +2- =
reH(f) +4  otherwise.
Cleo)= — +2- =



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7617&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) := |d]o — |0]1 +2 — /5. Cles) =0-042-2=0
For each face f, it holds that: Cles) =0—-04+2—-1=1
—4 if f =
»  C(r)= 7= o C(e:)=3-0+2— =
reH(f) +4  otherwise.
Cleo)= — +2- =
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(H1) H(G) corresponds to F', fo. 1|0 oll
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
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the sequence 07 is like 05, but reversed and inverted. = —0 7
1 1 2
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Clez)=0-0+2-2=0

For each face f, it holds that:

S C(r)—{4 tJ=1Jo C

44 otherwise.



Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. 1|0 oll
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( ,(51,&1) & H(f) and ( ,(52,&2) - H(g), ° fl 2 1? 2
the sequence 07 is like 05, but reversed and inverted. = —0 7
1 1 2
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Clez)=0-0+2-2=0

For each face f, it holds that:

S C(r)—{4 tJ=1Jo C

44 otherwise.



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7617&1)€H(f) and ( 7627&2)61{(9)' i fl I :
the sequence 0 is like 0-, but reversed and inverted. . L L . fo
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) == |0]o — |0]1 +2 — /5. Cle3) =0-0+2-2=0
For each face f, it holds that: Cles) =0—-04+2—-1=1
—4 if f =
»  C(r)= tr=1 C(:)=3-0+2-1=4
reH(f) +4  otherwise.
Cleg)=0—-242—-1=



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
(H2) For each edge shared by faces f and ¢ with 1 5 i T 3 2 62;; = < 64£ 5
( 7617&1)€H(f) and ( 7527&2)61{(9)' i fl I :
the sequence 01 is like 0, but reversed and inverted. . 2 L N
(H3) Let |0|g (resp. |0|1) be the number of zeros 0 0
(resp. ones) in 0, and let r = (e, 0, ). L L
Let C(r) :== |0]o — |0]1 +2 — o/ . Cle3) =0-0+2-2=0
For each face f, it holds that: Cle))=0—-0+4+2—-1=1
—4 if f=
»  C(r)= T ;fo C(:)=3-0+2—-1=4
rCH(f) +4 otherwise.
Cleg)=0—-242—-1=-1



Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F', fo.

(H2) For each edge shared by faces f and ¢ with
( 7517&1)€H(f) and ( 7627&2)61{(9)1

the sequence 0 is like 0-, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros
(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=|d]o — |0[1 +2 — /5.
For each face f, it holds that:

)4 it f= o
Z cr) = {+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 27.

1 €1 1 fO
0 0
1 5 , 5 €2 1 €3 1 €4 3x
| ] A
o 1 o
e U
0 0
1 1
0(63):O—O+2—2:O
0(64):O—O—|—2—1:1
Cl)=3-042-1=4
Clee)=0-242—-1=—1
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Reminder: s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); S, T; u) with
m directed graph G = (V, E)

B sources S CV, sinksT CV

B edge capacity u: E — R§ U {oo}

A function X: E — R{ is called S—T flow if:

0<X(i,5) <wuli,j)  V(,j)€E
Y X(ij)— > X(i)=0  VieV\(SuUT)

(i,7)eE (j,3)€EE

A maximum ST flow is an S—T flow where Z X (z,7) is maximized.
(i,j)EEi€eS
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General Flow Network — Algorithms

Polynomial Algorithms

# Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
# Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]
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Theorem. [Orlin 1991]\
The minimum cost flow problem can be solved in
O(n? log® n + m? logn) time.

[Orlin 1991]
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Theorem.

The minimum cost flow problem can be solved in
O(n? log® n + m? logn) time.

(Orlin 1991]

Theorem.

O(n3/?) time.

The minimum cost flow problem for planar graphs
with bounded costs and face sizes can be solved in

[Cornelsen & Karrenbauer 2011]

[Orlin 1991]
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

o4

V = {U17/027/U37U4}
E = {v1v2, V103, V14, VU3, U4 }

1 <'—I3
combinatorial ! 2

embedding / planar

reduce planarization orthog.onal area mini-
crossings drawing mization

: e L 4
R o E
orthogonal ] 5 5
2 representation e S S
1 2

TOPOLOQY — SHAPE — METRICS
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Given:  m Plane graph G = (V, E) with maximum degree 4
m Combinatorial embedding F' and outer face fj

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding
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Flow Network for Bend Minimization
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reversed and inverted 0».
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incident angles is 2.

)4 it f=fo
Z Cr) = {+4 otherwise.
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(H1) H(G) corresponds to £, fo- | Define flow network N(G) = ((V U F, E); b; (; u; cost):
(H2) For each edge shared by

faces f and g, sequence 0, is B E={(v,f)eer €V X F | v between edges e, e’ of 0f} U
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(H3) For each face f it holds that: { €L X F | f’ g have common edge 6}
> o= ol mi) =4 VeV
reH(f) '
(H4) For each vertex v the sum of —4 if f — fo,
incident angles is 2. [] b = —2 de +
e (/) 8a /) {—|—4 otherwise
1
21T 5 1]
—6
1 1
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(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V U F, E); b; /; u; cost):

(H2) For each edge shared by

faces f and g, sequence 0, is B E={(v,f)eer €V X F | v between edges e, e’ of 0f} U

reversed and inverted 0-.
(H3) For each face f it holds that:

S C’(r):{_4 "=k mpv)=4 YveV

+4 otherwise.

rEH(f)
(H4) For each vertex v the sum of —4 if f — fo,
incident angles is 2. ] b = —2 de +
e g (/) 8a(f) {—|—4 otherwise
o V(v,f)e BE,veV,feF =
1 cost(v f) =
) o o o
1 2\! 1 v €E, fgeF =
—06
cost(f,g) =
1 1

I/\ol/\

{ € F'x F | f, g have common edge e}

= D (W) =

(Euler)

X(v, f) <4 =:u(v, f)

X(f,9) < =ulf,g)
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1 (@)
aF 2\! 1]
6
01 1\)
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COSt(f, g) = 1 We model only the

number of bends.
Why is it enough?
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A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.
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Proof.

< Given valid flow X in N(G) with cost k.
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For each vertex v the sum of
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The flow network N(G) has a valid flow X with cost k.
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J

Proof.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)—(H4).

(
(
(
(

ﬁ
x
ﬁ
_{

1) H(G) matches F) fy

2) Bend order inverted and reversed on opposite sides v
3) Angle sum of f = +4

4) Total angle at each vertex = 27

v

v
v
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representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.
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b(v) =4 VYveV
—4 Iff:f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X(v, f) < 4= u(v, f)
cost(v, f) =0

=0 < X(f,9) <oo=tu(f, g)
cost(f,g) =1

Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — RSL.
B Show that X is a valid flow and has cost k.
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representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.
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J

b(v) =4 VYveV
—4 Iff:f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X(v, f) < 4= u(v, f)
cost(v, f) =0

=0 < X(f,9) <oo=tu(f, g)
cost(f,g) =1

Proof.

= Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.
B Define flow X: F — RJ.

B Show that X is a valid flow and has cost k.

(NI) X(vf) =1/2/3/4
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(N3) capacities, deficit/demand coverage
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2) X(/9) =16¢4l0, (€,074,7) describes e = fg from f
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Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.
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B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

‘Theorem. [Garg & Tamassia 1996] |
The minimum cost flow problem can be solved in

O] X~ 3/4m+/log n) time.
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Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

(Theorem. [Garg & Tamassia 1996] |

The min-cost flow problem for planar graphs with bounded costs
:and vertex degrees can be solved in O(n"/*\/logn) time.

J

‘Theorem. [Cornelsen & Karrenbauer 2011]w

The min-cost flow problem for planar graphs with bounded costs
and face sizes can be solved in O(n3/?) time.

J

(Theorem. [Garg & Tamassia 2001]N
Bend minimization without given combinatorial embedding is
NP-hard.
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

04

V = {U17/027/U37U4}
E = {v1v2, V103, V14, VU3, U4 }

1 <’—I3
combinatorial ! 2

embedding/ ol

reduce planarization orthog.onal area mini-
crossings drawing mization

VAN b<c minimizztion [ — 7

1

orthogonal
2 representation 00 e .

1 2
TOPOLOQY — SHAPE — METRICS




Compaction

22 -



Compaction

22 -



Compaction

22 -



Compaction

22 -



Compaction

Special case.
All faces are rectangles.

22 -



Compaction

Special case.
All faces are rectangles.

— Guarantees possible

22 -



Compaction

(Compaction problem.
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— Guarantees possible B minimum total edge length
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Compaction

(Compaction problem.

Given:  m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of GG that realizes H(G)

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length
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Compaction

(Compaction problem.

Given:  m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of GG that realizes H(G)

Special case.
All faces are rectangles.
— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

Idea.

B Formulate flow network for horizontal /vertical compaction
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}
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Flow Network for Edge Length Assignment

Definition.

Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Whor=F\{fo}U{s,t} =
B Fho ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

[ ] u(a) — 00 Va €& Ehor
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

] u(a) = o0 Va & Ehor
B cost(a) =1 Va € Ephy
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
la)=1 Va € Ene
ula) =00 Va € Epor
cost(a) =1 Va € Fho
D) =0 Vf € Wher




Flow Network for Edge Length Assignment

Definition.
Flow Network Nyer = ((Wher, Ever); b; /; u; cost)

Wier = F\{fo} U{s,t} o
Fyer =4{(f,9) | f, g share a vertical segment and f lies to the
left of g} U{(¢,s)}

la)=1 Va & Eye
ula) =00 Va € Eye
cost(a) =1 Va € Eye
b(f) =0 Vf € Wi

24



Compaction — Result

‘Theorem.
A valid flow for Nyo and N, exists <
corresponding edge lengths induce an orthogonal drawing.

J
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Compaction — Result

What if not all faces
rectangular?

‘Theorem.
A valid flow for Nyo and N, exists <
corresponding edge lengths induce an orthogonal drawing.

J

What values of the drawing do the following quantities represent?
[] |Xhor(t7 S)| and |Xver(t, S)P width and height of drawing

] ZeEEhor Xhor(e) —+ ZeEE\/er Xver(e) total edge length
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Refinement of (G, H) — Outer Face

O

Compaction for given orthogonal
&representation Is NP-hard in general.

‘Theorem. [Patrignani 2001]1

O

Area minimized? No!

But we get bound O((n + b)?) on the area.

Compaction is NP-hard even for

v,

korthogonal representation of cycles.

‘Theorem. [EFKSSW 2022]N
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Clause gadgets

Example:
Ci=xoVI4
Co=x1VaxoVIT3
C3 — Is

0425174\/513_5

1ar 1ir

€T x 0
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Clause gadgets

Example:
Ci=xoVI4
Co=x1VaxoVIT3
C3 — X5

0425134\/513_5

1ar 1ir

insert (2n@chai
through each clause
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Complete reduction

Ul Pick
il | K=0On+2)-(9m+7)

Om + 7

Then:
(G, H) has an area K
drawing

<~

® satisfiable
[]
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| iterature

B [GD Ch. 5] for detailed explanation

B [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
Original paper on flow for bend minimization.

m [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

B [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.
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