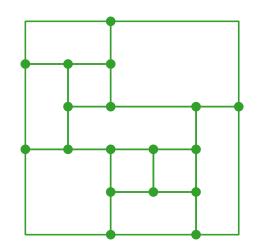
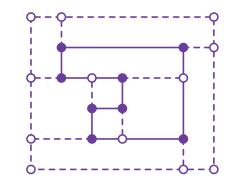


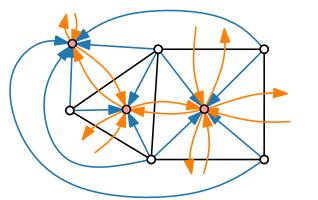
Visualization of Graphs



Lecture 5: Orthogonal Layouts

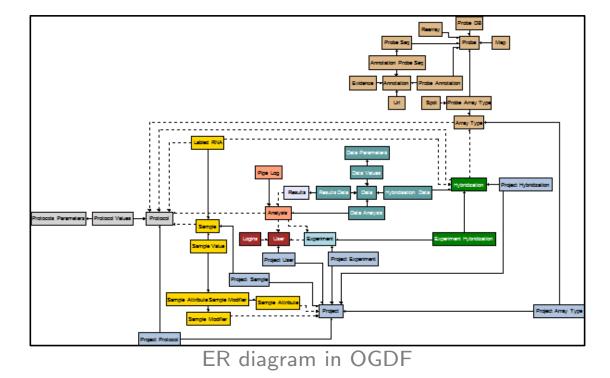


Part I: Topology – Shape – Metric

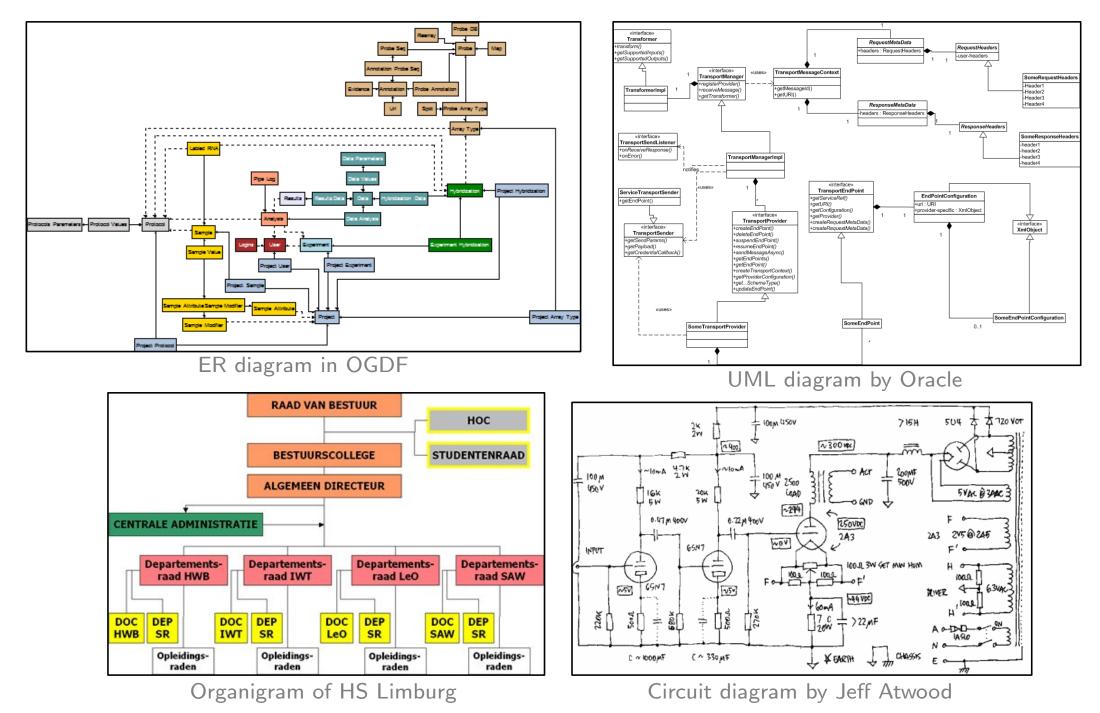


Alexander Wolff

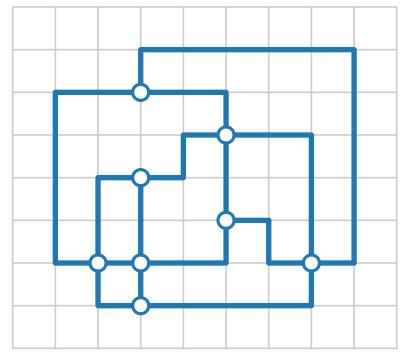
Orthogonal Layout – Applications



Orthogonal Layout – Applications



Orthogonal Layout – Definition



Definition.

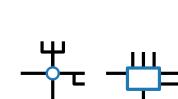
A drawing Γ of a graph G = (V, E) is called **orthogonal** if

vertices are drawn as points on a grid,

- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

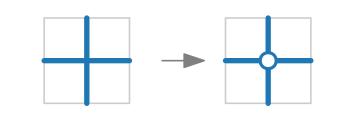
Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

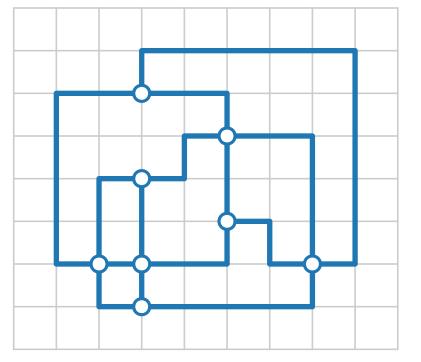


Aesthetic criteria.

- Fix embedding
- Crossings become vertices



Orthogonal Layout – Definition



Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

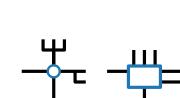
vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical segments, and

pairs of edges are disjoint or cross orthogonally.

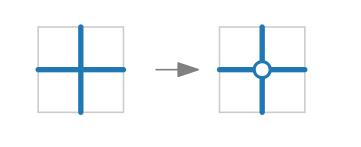
Observations.

- **Edges** lie on grid \Rightarrow **bends** lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

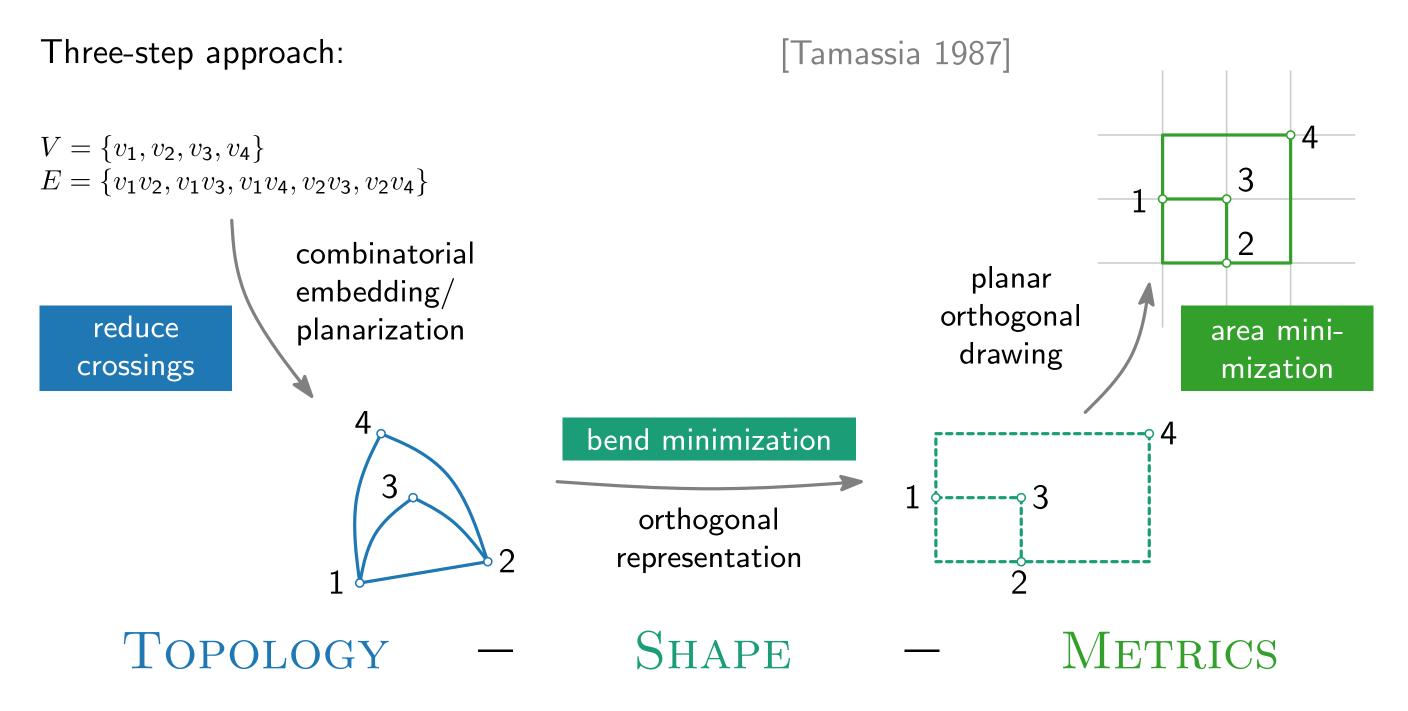
- Fix embedding
- Crossings become vertices Length of edges



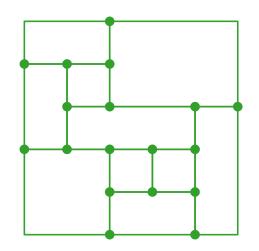
Aesthetic criteria.

- Number of bends
- Width, height, area
- Monotonicity of edges

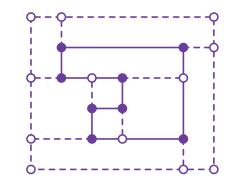
Topology – Shape – Metrics



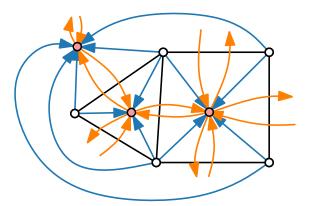
Visualization of Graphs



Lecture 5: Orthogonal Layouts



Part II: Orthogonal Representation



Alexander Wolff

Orthogonal Representation

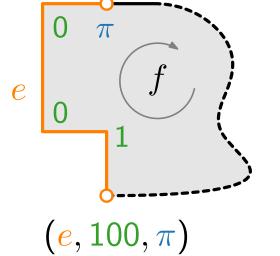
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

Let *e* be an edge with the face *f* to the right. An edge description of *e* wrt *f* is a triple (*e*, δ, α) where
δ ∈ {0,1}* (where 0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*

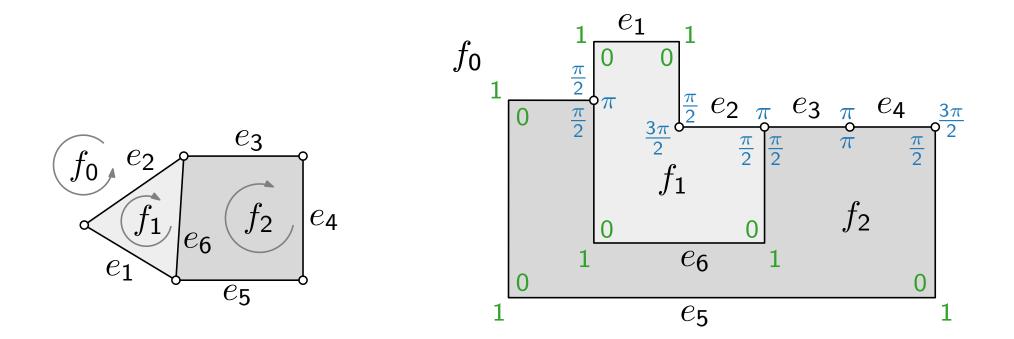


- A face representation H(f) of f is a clockwise ordered sequence of edge descriptions (e₁, δ₁, α₁), (e₂, δ₂, α₂), ..., (e_{deg(f)}, δ_{deg(f)}, α_{deg(f)}).
- An orthogonal representation H(G) of G is defined as

$$H(G) = \{H(f) \mid f \in F\}.$$

Orthogonal Representation – Example

 $H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$ $H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$ $H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$



Concrete coordinates are not fixed yet!

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

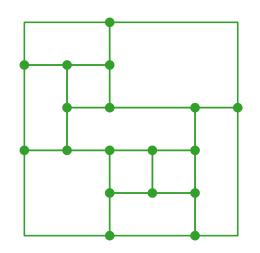
(H3) Let
$$|\delta|_0$$
 (resp. $|\delta|_1$) be the number of zeros
(resp. ones) in δ , and let $r = (e, \delta, \alpha)$.
Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha/\frac{\pi}{2}$.
For each **face** f , it holds that:
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

Ι

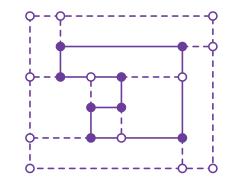
(H4) For each vertex v, the sum of incident angles is 2π .

.to e_1 $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ e_{5} $C(e_3) = 0 - 0 + 2 - 2 = 0$ $C(e_4) = 0 - 0 + 2 - 1 = 1$ $C(e_5) = 3 - 0 + 2 - 1 = 4$ $C(e_6) = 0 - 2 + 2 - 1 = -1$

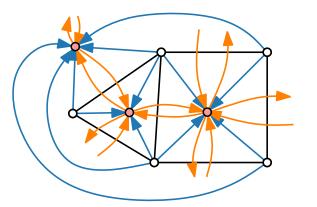
Visualization of Graphs



Lecture 5: Orthogonal Layouts



Part III: Bend Minimization



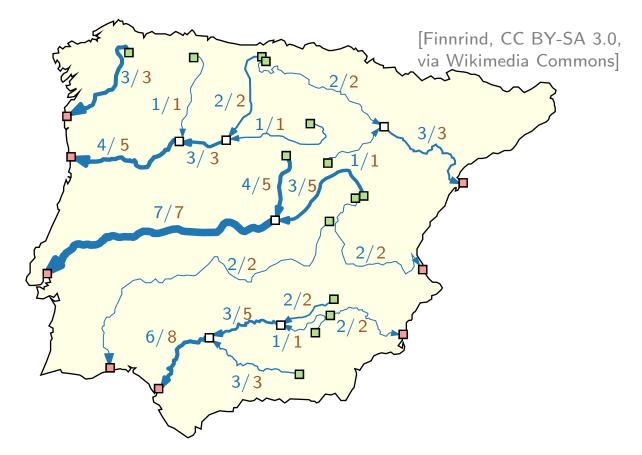
Alexander Wolff

Reminder: *s*-*t*-Flow Networks

Flow network (G = (V, E); S, T; u) with

- directed graph G = (V, E)
- sources $S \subseteq V$, sinks $T \subseteq V$
- edge *capacity* $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \to \mathbb{R}_0^+$ is called S-T flow if:



 $egin{aligned} \mathsf{0} &\leq X(i,j) \leq u(i,j) & orall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & orall i \in V \setminus (S \cup T) \end{aligned}$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

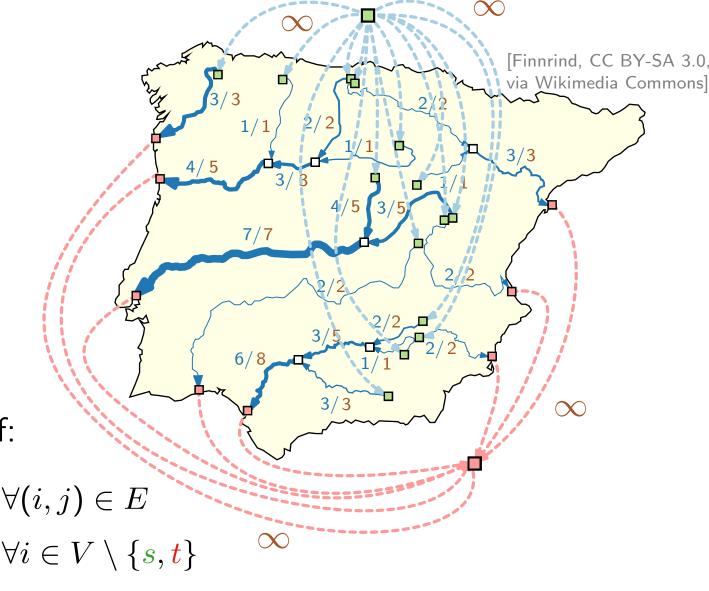
Reminder: *s*-*t*-Flow Networks

Flow network (G = (V, E); s, t; u) with

- directed graph G = (V, E)
- source $s \in V$, sink $t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \to \mathbb{R}_0^+$ is called s-t flow if:

$$egin{aligned} \mathsf{0} &\leq X(i,j) \leq u(i,j) & orall (i,j) \in E \ & \sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = \mathbf{0} & orall i \in V \setminus \{s_i\} \end{aligned}$$



A maximum *s*-*t* flow is an *s*-*t* flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.

General Flow Network

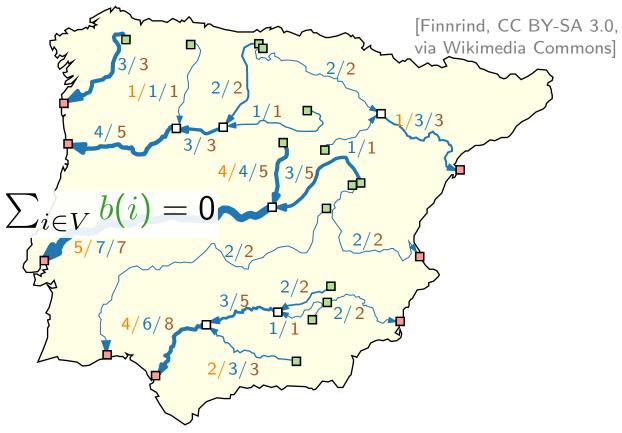
Flow network $(G = (V, E); b; \ell; u)$ with

- directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$
- edge *lower bound* $\ell : E \to \mathbb{R}_0^+$
- edge *capacity* $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$ $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$

• Cost function cost: $E \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$ A minimum cost flow is a valid flow where $\operatorname{cost}(X)$ is minimized.



General Flow Network – Algorithms

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

#	Due to	Year	R
1	Tardos	1985	0
2	Orlin	1984	О
3	Fujishige	1986	С
4	Galil and Tardos	1986	С
5	Goldberg and Tarjan	1987	С
6	Goldberg and Tarjan	1988	С
7	Orlin (this paper)	1988	С

Year	Running Time
1985	O(m ⁴)
1984	$O((n + m')^2 \log n S(n, m))$
1986	$O((n + m')^2 \log n S(n, m))$
1986	$O(n^2 \log n S(n, m))$
1987	$O(nm^2 \log n \log(n^2/m))$
1988	O(nm ² log ² n)
1988	$O((n + m') \log n S(n, m))$

S(n, m)	=	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)	×	O(Min (m + $n\sqrt{\log C}$),	Ahuja, Mehlhorn, Orlin and Tarjan [1990]
		(m log log C))	Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + $n^{2+\epsilon}$, nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)	=	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

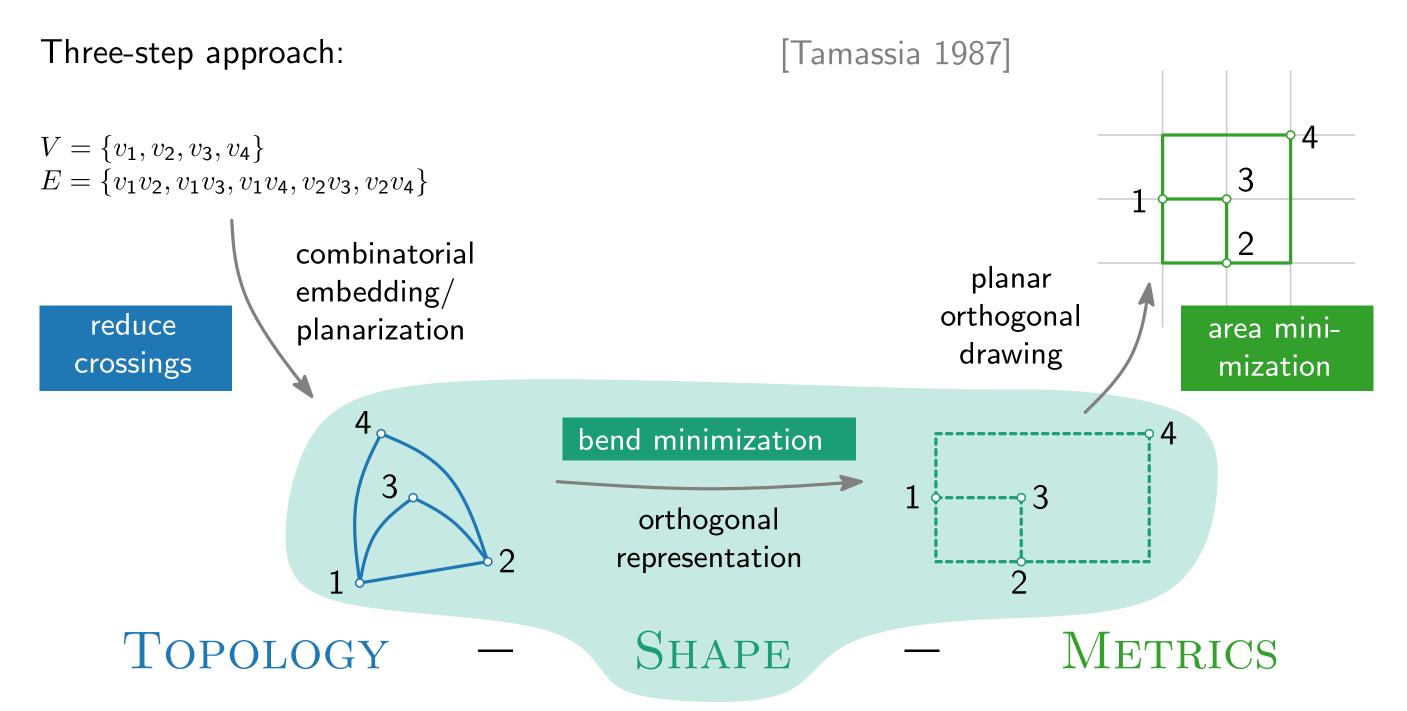
Theorem.

[Orlin 1991] The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

[Cornelsen & Karrenbauer 2011] Theorem. The minimum cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

[Orlin 1991]

Topology – Shape – Metrics



Bend Minimization with Given Embedding

Geometric bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization. Given: ■ Plane graph G = (V, E) with maximum degree 4 ■ Combinatorial embedding F and outer face f₀ Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Combinatorial Bend Minimization

Combinatorial bend minimization.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

• a unit of flow
$$= \measuredangle \frac{\pi}{2}$$

• vertices $\stackrel{\measuredangle}{\longrightarrow}$ faces (# $\measuredangle \frac{\pi}{2}$ per face)

• faces $\stackrel{\measuredangle}{\longrightarrow}$ neighbouring faces (# bends toward the neighbour)

Flow Network for Bend Minimization

e

1)

0

g

e'

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

■ $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

Directed multigraph!

Flow Network for Bend Minimization

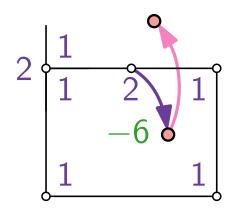
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)



 $\begin{aligned} \forall (v,f) \in E, v \in V, f \in F \\ \forall (v,f) \in E, v \in V, f \in F \\ \forall (f,g) \in E, f, g \in F \end{aligned} \begin{array}{l} \ell(v,f) &:= 1 \leq X(v,f) \\ \cos(v,f) &= 0 \\ \ell(f,g) &:= 0 \leq X(f,g) \leq \infty =: u(f,g) \\ \cos(f,g) &= 1 \\ & & \\$

Flow Network for Bend Minimization

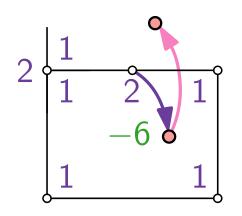
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

• $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

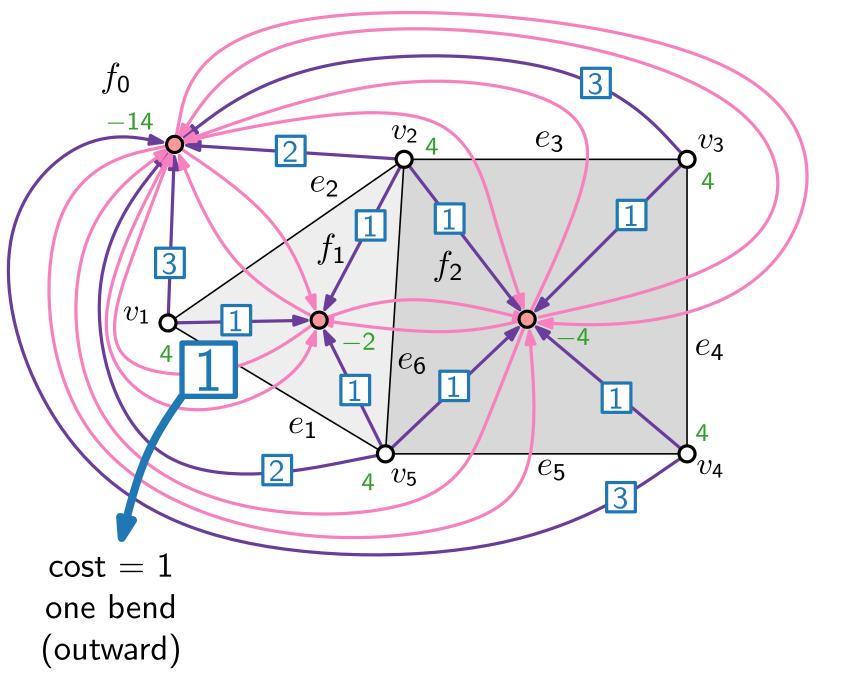
$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)



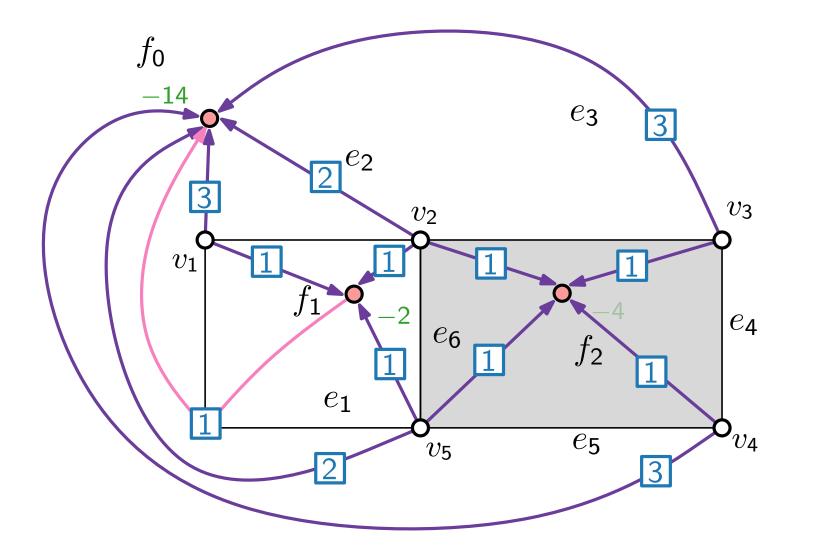
 $\forall (v, f) \in E, v \in V, f \in F \qquad \ell(v, f) := 1 \leq X(v, f) \\ cost(v, f) = 0 \\ \forall (f, g) \in E, f, g \in F \qquad \ell(f, g) := 0 \leq X(f, g) \\ cost(f, g) = 1 \qquad \text{We model only the} \\ number \text{ of bends.} \\ \forall Why \text{ is it enough?} \\ \neg Exercise!$

Flow Network Example



Legend 0 VF0 $\ell/u/{\rm cost}$ $V \times F \supseteq \overset{1/4/0}{\longrightarrow}$ $F \times F \supseteq \overset{0/\infty/1}{\checkmark}$ 4 = b-value 3 flow

Flow Network Example



Legend 0 VF0 $\ell/u/{\rm cost}$ 1/4/0 $V\times F\supseteq$ $0/\infty/1$ $F \times F \supseteq$ 4 = b-value 3 flow

Bend Minimization – Result

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

(H1) H(G) matches F, f_0

(H2) Bend order inverted and reversed on opposite sides \checkmark

(H3) Angle sum of $f = \pm 4$

(H4) Total angle at each vertex = 2π

(H1) H(G) corresponds to F, f_0 .

18 - 10

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Exercise.

Bend Minimization – Result

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

[Tamassia '87]

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: E \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k. (N1) X(vf) = 1/2/3/4(N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f (N3) capacities, deficit/demand coverage (N4) $\cos t = k$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

$$\checkmark$$

Bend Minimization – Remarks

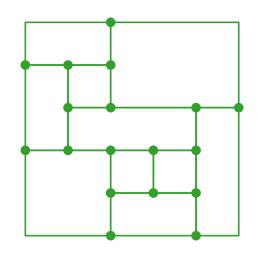
The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

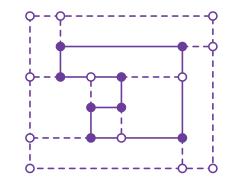
Theorem.[Cornelsen & Karrenbauer 2011]The min-cost flow problem for planar graphs with bounded costsand face sizes can be solved in $O(n^{3/2})$ time.

Theorem. [Garg & Tamassia 2001] Bend minimization without given combinatorial embedding is NP-hard.

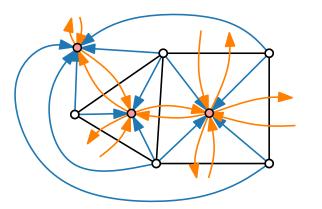
Visualization of Graphs



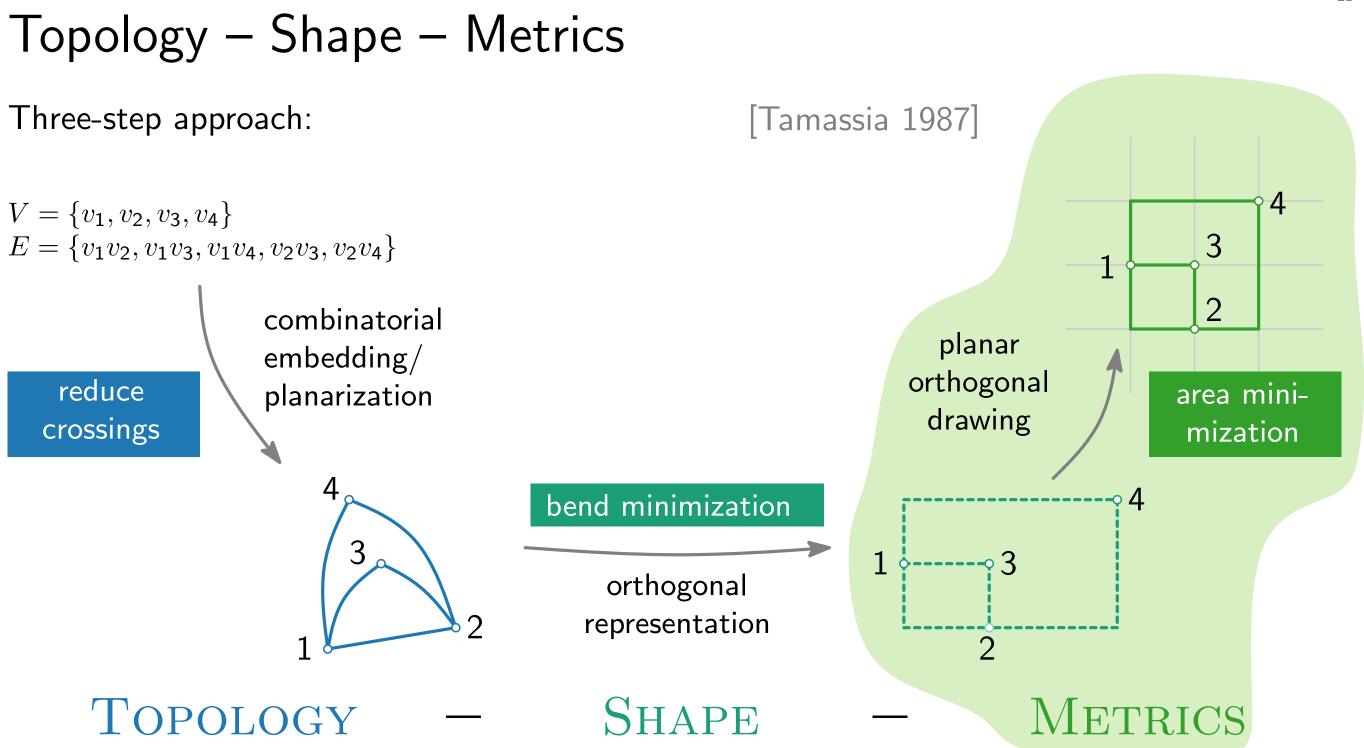
Lecture 5: Orthogonal Layouts



Part IV: Area Minimization



Alexander Wolff



Compaction

Compaction problem.

- Given: I Plane graph G = (V, E) with maximum degree 4
 - Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

- \rightarrow Guarantees possible $\hfill\blacksquare$ minimum total edge length
 - minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

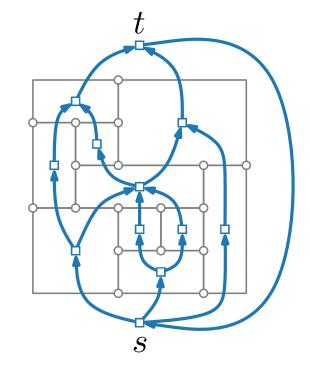
Formulate flow network for horizontal/vertical compaction

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

- $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$
- $\square u(a) = \infty \quad \forall a \in E_{hor}$
- cost(a) = 1 $\forall a \in E_{hor}$
- $\bullet \ b(f) = 0 \quad \forall f \in W_{hor}$



Flow Network for Edge Length Assignment

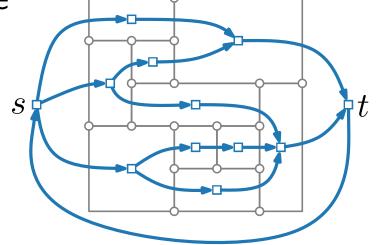
Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

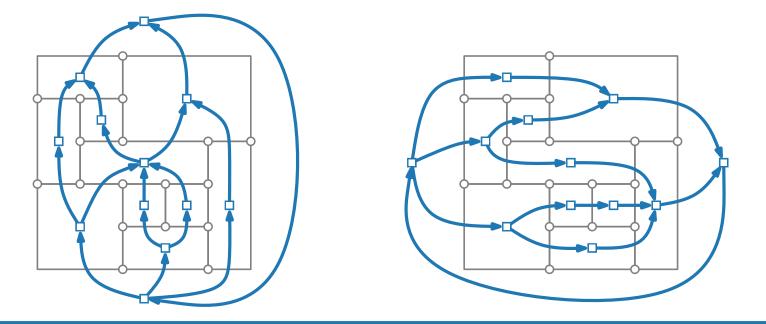
 $\ \ \, \blacksquare \ \, W_{\rm ver}=F\setminus\{f_0\}\cup\{s,t\}\qquad \ \, \blacksquare$

• $E_{ver} = \{(f,g) \mid f,g \text{ share a } vertical \text{ segment and } f \text{ lies to the } left \text{ of } g\} \cup \{(t,s)\}$

- $\blacksquare \ \ell(a) = 1 \quad \forall a \in E_{\mathsf{ver}}$
- $\bullet \ u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- cost(a) = 1 $\forall a \in E_{ver}$
- $\bullet \ b(f) = \mathbf{0} \quad \forall f \in W_{\mathrm{ver}}$



Compaction – Result



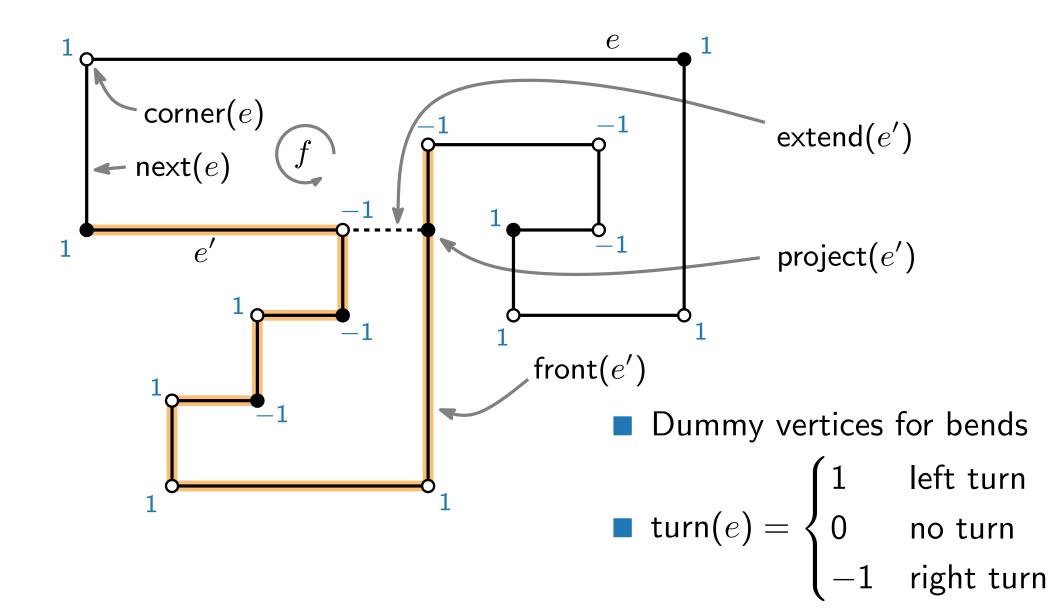
What if not all faces rectangular?

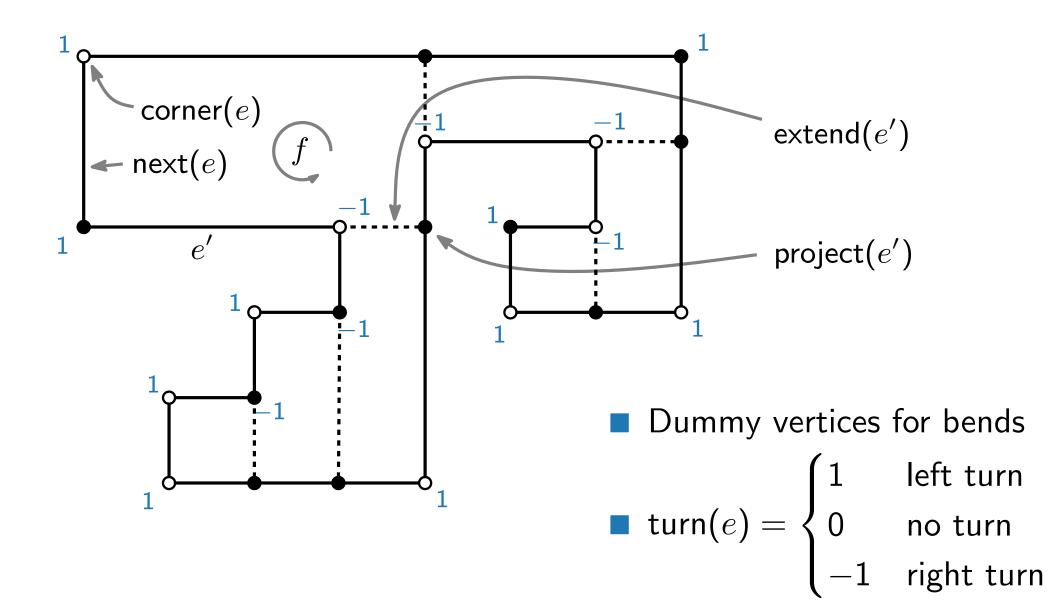
Theorem.

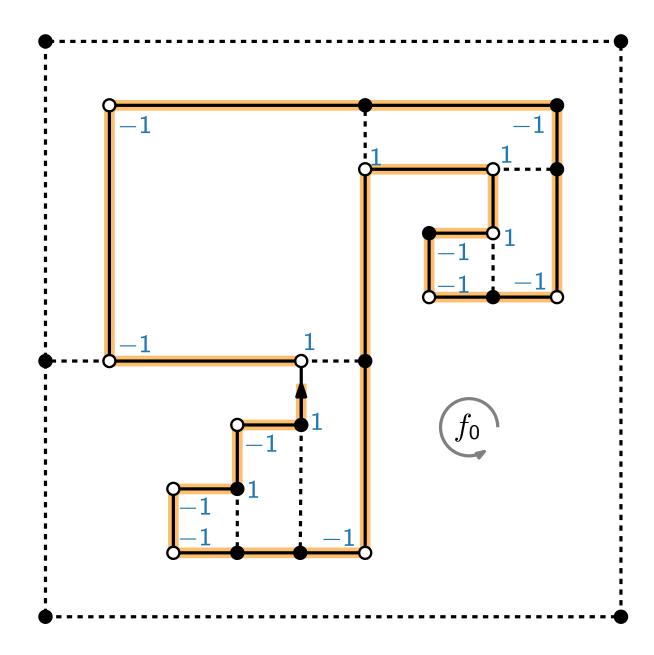
A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

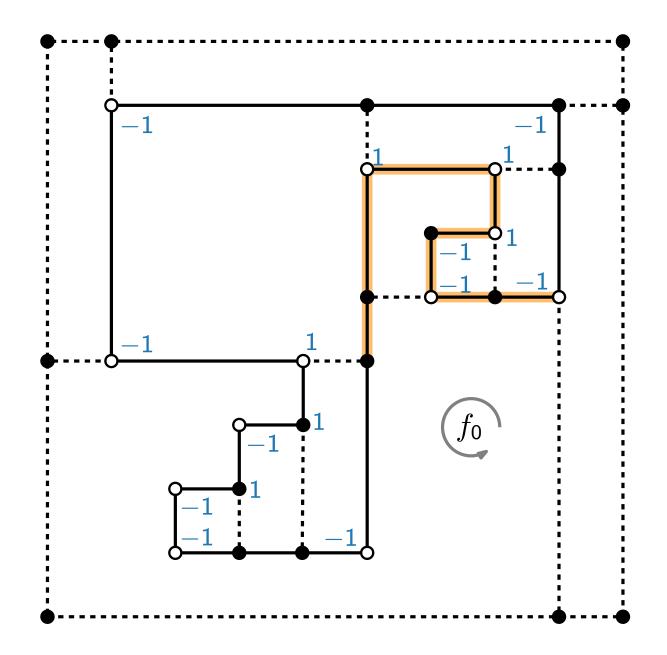
What values of the drawing do the following quantities represent?

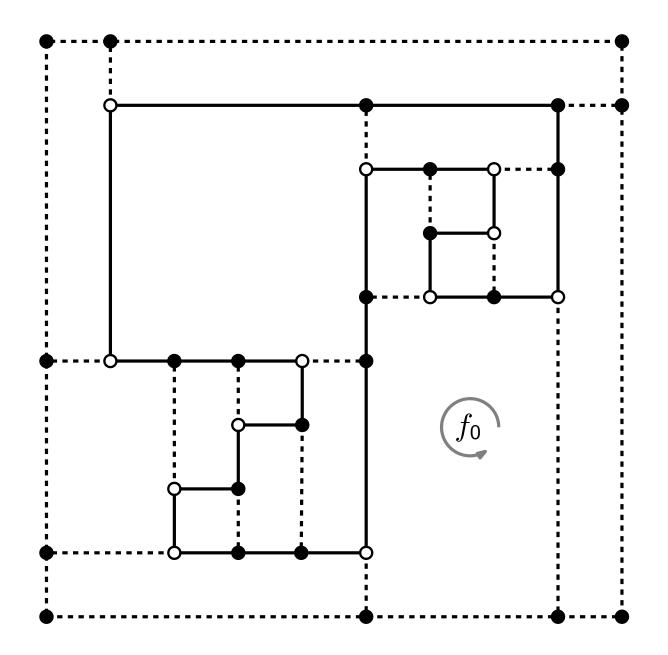
- $\blacksquare |X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|? \qquad \text{width and height of drawing}$
- $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$ total edge length

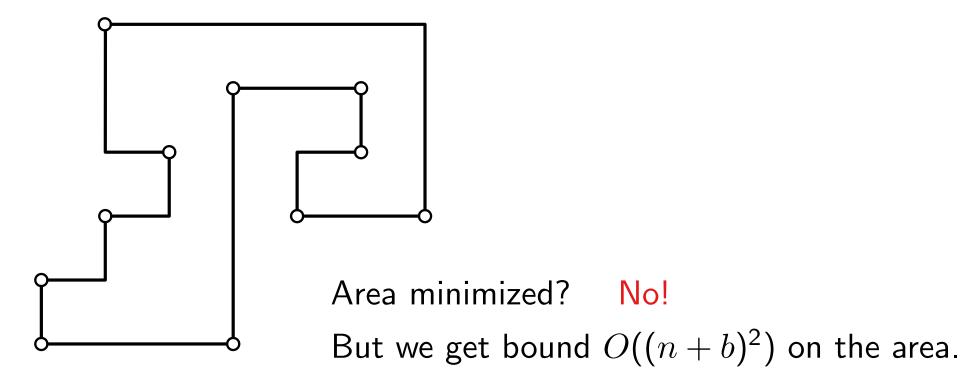








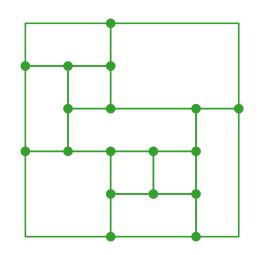




Theorem.[Patrignani 2001]Compaction for given orthogonalrepresentation is NP-hard in general.

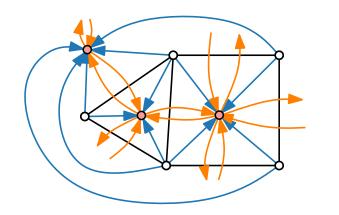
27 - 17

Visualization of Graphs

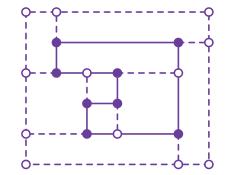


Lecture 5: Orthogonal Layouts

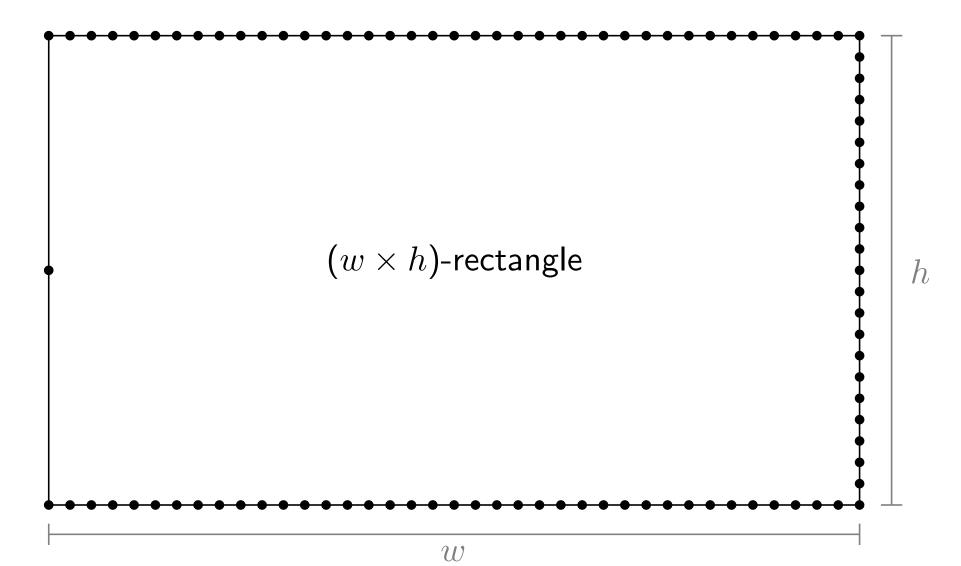
> Part V: NP-Hardness



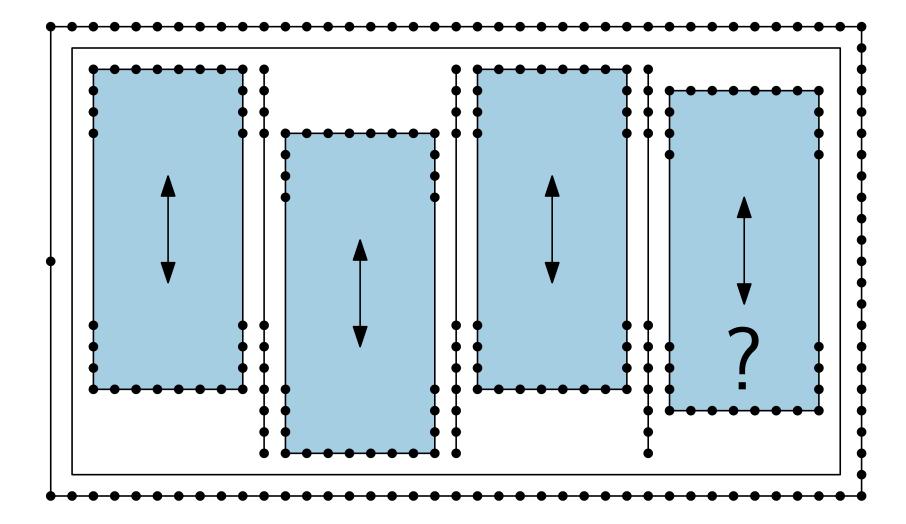
Alexander Wolff



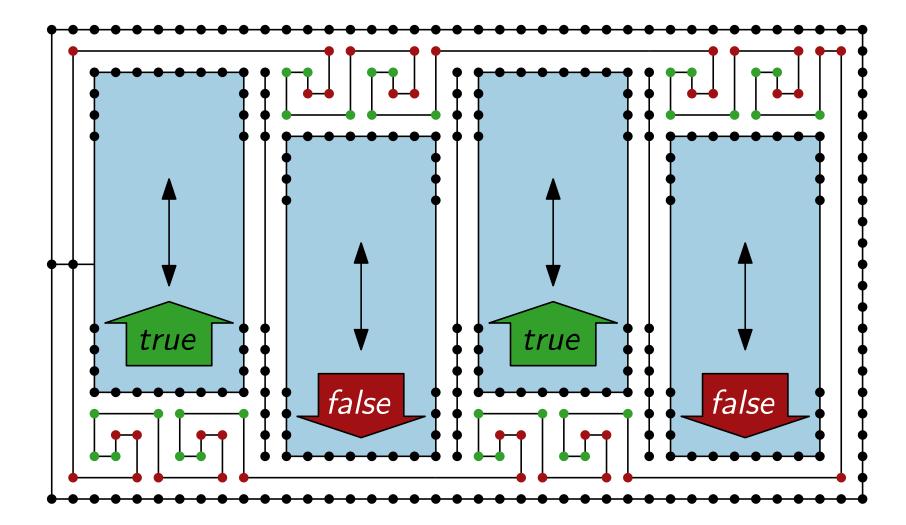
Boundary, belt, and "piston" gadget



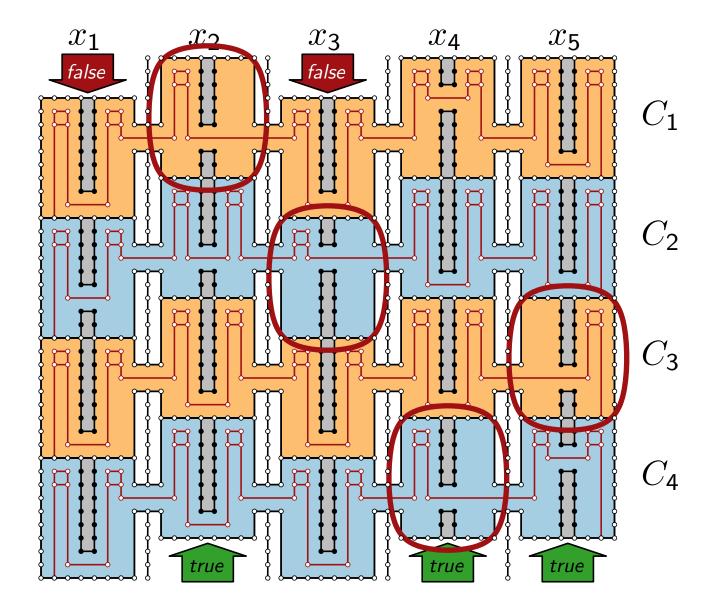
Boundary, belt, and "piston" gadget



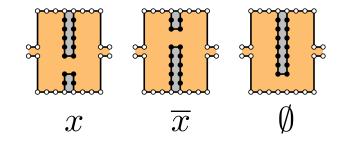
Boundary, **belt**, and "piston" gadget



Clause gadgets

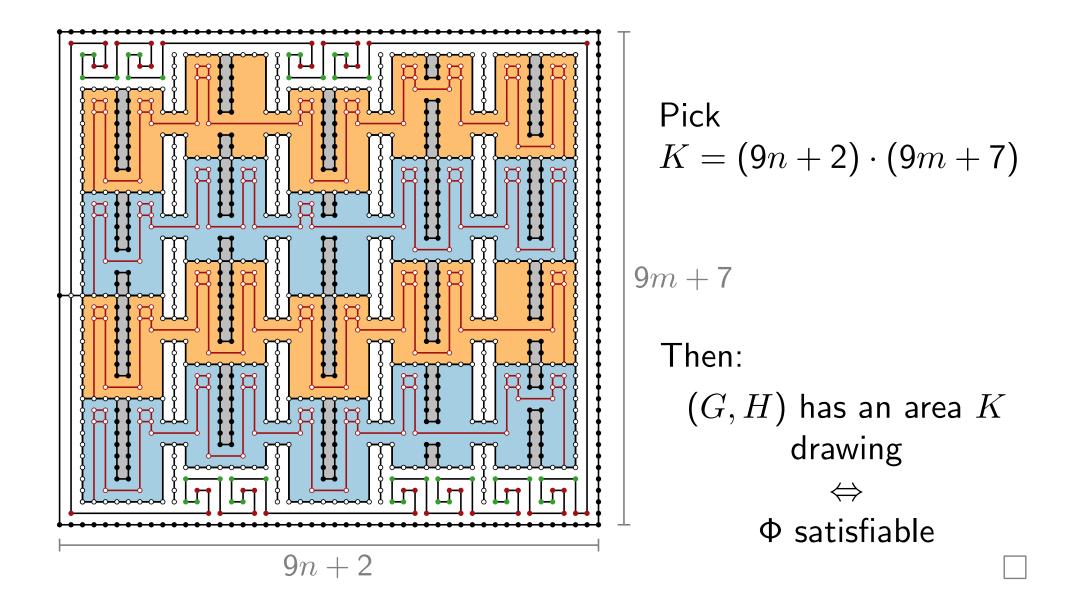


Example: $C_{1} = x_{2} \lor \overline{x_{4}}$ $C_{2} = x_{1} \lor x_{2} \lor \overline{x_{3}}$ $C_{3} = x_{5}$ $C_{4} = x_{4} \lor \overline{x_{5}}$



insert (2n-1)-chain through each clause

Complete reduction



Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.
- [Patrignani 2001] "On the complexity of orthogonal compaction"
 NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
 "Minimum rectilinear polygons for given angle sequences"
 NP-hardness proof for compaction of cycles.