Summer 2022

Problem Set

The Neoclassical Model

- **1.** This exercise will ask you to work through the derivation of the IS curve under various different scenarios.
 - a) Graphically derive the IS curve for a generic specification of the consumption function and the investment demand function.
 - b) Suppose that investment demand is relatively more sensitive to the real interest rate than in (a). Relative to (a), how will this impact the shape of the IS curve?
 - c) Suppose that the MPC is larger than in (a) but still smaller than one. How will this affect the shape of the IS curve?
- 2. In this question, you are asked to derive the Y^s curve again.
 - a) Graphically derive the Y^s curve for a generic specification of the aggregated production function, the labor supply curve, and the labor demand curve.
 - b) Show graphically and explain how an increase in the current productivity A_t affects the Y^s curve.
 - c) Show graphically and explain how an increase in the money supply M_t^s affects the Y^s curve.
- **3.** The neoclassical model is characterized by eight equations all simultaneously holding. In class you derived a graphical apparatus to characterize the equilibrium. Re-derive the equilibrium determined by the "real block" and by the "nominal block" graphically and explain the decision rules of each actor!
- **4.** Suppose that we assume specific functional forms for the consumption function and the investment demand function. These are:

$$\begin{split} C_t &= c_1(Y_t - G_t) + c_2(Y_{t+1} - G_{t+1}) - c_3 r_t \\ I_t &= -d_1 r_t + d_2 A_{t+1} + d_3 K_t \end{split}$$

Here, c_1 through c_3 and d_1 through d_3 are fixed parameters governing the sensitivity of consumption and investment to different factors relevant for those decisions.

- a) We must have $Y_t = C_t + I_t + G_t$. Use the given function forms for the consumption and investment with the resource constraint to derive an algebraic expression for the IS curve.
- b) Use this to derive an expression for the slope of the IS curve (i.e. $\frac{\partial Y_t}{\partial r_t}$).

5. Further (voluntary) homework:

Suppose the economy described in question 4 and assuming that the parameters are as follows: $c_1 = 0.6$, $c_2 = 0.5$, $c_3 = 10$, $d_1 = 20$, $d_2 = 1$, and $d_3 = 0.5$. Suppose that $Y_{t+1} = 15$, $G_t = 10$, $G_{t+1} = 10$, $A_{t+1} = 5$, and $K_t = 15$. Suppose that $r_t = 0.1$.

- a) Create an Excel file to numerically solve for Y_t .
- b) Suppose instead that $r_t = 0.15$. Solve for Y_t in your Excel file.
- c) Create a range of values of r_t , ranging from 0.01 to 0.2, with a gap of 0.001 between values. Solve for Y_t for each value of r_t . Create a plot with r_t on the vertical axis and Y_t on the horizontal axis (i.e. create a plot of the IS curve). Is it downward-sloping, as you would expect?
- d) Create another version of your IS curve when $A_{t+1} = 7$ instead of 5. Plot this along with the IS curve with $A_{t+1} = 5$. Explain how the higher value of A_{t+1} impacts the position of the IS curve.